환경기술 기술동향보고서

환경오염물질 검지용 색센서 개발을 위한 NT/BT/ET 융합기술
목 차

제1장 기술의 개요 ... 1
1. 기술의 정의 ... 1
2. 기술의 필요성 ... 3
3. 기술의 분류 ... 5
4. 국내외 환경센서 기술 정책 동향 ... 11

제2장 기술 연구개발 동향 ... 16
1. 국외 기술개발 동향 ... 16
2. 국내 기술개발 동향 ... 33
3. 기술 경쟁력 비교 ... 39

제3장 산업체 동향 .. 42
1. 환경센서 산업의 기술동향 ... 42
2. 나노바이오 환경센서 동향 ... 44

제4장 기술 시장동향 .. 52
1. 환경센서 시장 동향 .. 52
2. 환경색센서 기술시장 동향 ... 57

제5장 파급효과 및 전망 ... 71
1. 기대효과 .. 71
2. 파급효과 .. 72
3. 환경색센서 분야의 연구전략 .. 72
4. 발전방향 및 전망 .. 76

제6장 참고문헌 ... 77
표 목차

<표 1> 색센서의 분석방법론에 따른 검출 대상물질 정리 ... 6
<표 2> 색센서용 유기염료 종류(MRS Bull., 720, 2004) .. 10
<표 3> 유해성 물질 모니터링 분야 미래기술 요구사항 및 핵심기술 (2009, 환경부) 13
<표 4> 환경색센서 분야의 국내 기술수준 비교 ... 41
<표 5> 나노바이오센서 응용사례1 ... 45
<표 6> 나노바이오센서 응용사례2 ... 46
<표 7> 1차 오염물질 검지용 사용되는 환경색센서 기술(INL 2007 보고서) 56
<표 8> QUANTOFIX를 이용한 다양한 오염물질 검출 페이퍼 ... 59
<표 9> RAE 기상 환경색센서의 적용범위 ... 62
<표 10> 환경색센서에 사용될 기능성 물질들 ... 65
그림 목차

<그림 1> 센서의 기 본 구조 ... 1
<그림 2> 색센서의 일종인 임신체외진단테스터 원리 .. 2
<그림 3> 기존 환경센서와 신 환경센서의 개념 비교 .. 4
<그림 4> 활용기술에 관한 비도 ... 5
<그림 5> 검출 대상별 동도(청색-중금속, 적색-화학물질, 녹색-단백질) 5
<그림 6> 색센서를 이용한 환경오염물질 검출에 관한 개념도 7
<그림 7> 나노입자의 표면공명분광 현상 ... 8
<그림 8> 나노입자의 종류와 크기에 따른 색상변화 8
<그림 9> 분자간 상호작용력의 크기 비교 .. 9
<그림 10> 일반적인 공액고분자 종류(Wikipedia) ... 11
<그림 11> 나노입자의 3가지 형태의 안정화 전략(Chem, Bio, Chem., 9, 2363, 2008) 16
<그림 13> MUA-AuNP를 이용한 가역적 중금속 검지용 환경색센서(Nano Lett., 1, 165, 2001) ... 17
<그림 14> Azacrown을 이용한 Pb 분석 환경색센서(Nanotech., 21, 315503, 2010) 18
<그림 15> 라벨링에 따른 색센서 적용 방법론 ... 18
<그림 16> Mecaptobuano와 AuNP를 이용한 label-free 중금속 검지용 환경색센서(J. Phy. Chem., C, 114, 16329, 2010) ... 19
<그림 18> DTT, Cys 등을 이용한 비소 검지용 환경색센서(Angew. Chem., 48, 9668, 2009) ... 20
<그림 19> AgNP를 이용한 Co 검지용 환경색센서(ACS Appl. Mater. Interface, 2, 684, 2010) ... 21
<그림 21> DNAyme-AuNP를 이용한 중금속 검지용 환경색센서(JACS, 125, 6642, 2003) 22
<그림 22> H2PO4- 검지용 환경색센서 및 성능곡선(Anal. Sci., 25, 261, 2009) 23
<그림 23> Melamine 검지용 색센서(JACS, 131, 9496, 2009) 23
<그림 24> CD-AgNP를 이용한 aromatic isomer 검지용 환경색센서 .. 24
<그림 26> 정량, 정성 분석이 가능한 glucose 색센서(Biosen. Bioelect., 24, 3702, 2009) ...

<그림 30> Mercycyanine을 이용한 Cu 이온 검지용 환경색센서(Org. Lett., 12, 2202, 2010) · 27

<그림 31> 촉매반응에 의한 귀금속 이온 검출용 환경색센서(JACS, 129, 12354, 2007) 27

<그림 32> 2가 금속이온 선택성을 보이는 환경색센서(Dye Pig., 80, 98, 2009) 28

<그림 34> 1-Zn를 이용한 음이온계 검출용 환경색센서(Org. Lett., 9, 1979, 2007) 29

<그림 37> PDA를 이용한 mixed vesicle(JACS, 122, 776, 2000) .. 31

<그림 38> Valinomycin(A), monensin(B)를 이용한 PDA liposome의 색센서(JACS, 122, 776, 2000) .. 31

<그림 39> PDA-aptamer를 이용한 단백질 검지용 색센서
(Adv, Func, Mater., 20, 3092, 2010) ... 32

<그림 40> AuNP를 이용한 수온 검지용 환경색센서
(ACS Appl, Mater. Interfaces, 2, 292, 2010) ... 33

<그림 41> Aptamer-AuNP를 이용한 항생체 검지용 색센서(Biosen. Bioelect., 26, 1644, 2010) .. 34

<그림 42> AgNP를 이용한 histidine 검지용 색센서(Langmuir, 26, 2181, 2010) 34

<그림 43> Naphthalimide 염료를 이용한 Cu 이온에 대한 환경색센서(Tetrahedron, 66, 1678, 2010) ... 35

<그림 44> Azobenezen을 이용한 Zn2+ 검출용 환경색센서(Tetrahedron, 65, 6959, 2009) ... 35

<그림 45> Cu-Azobenezen을 이용한 음이온계 환경색센서(Tetrahedron, 66, 1846, 2010) ... 36

<그림 47> Sterptavidin 검지용 biotin-PDA 색센서의 TEM 사진(Biosen. Bioelect., 21, 1536, 2006) .. 37

<그림 49> PDA를 가교로 활용한 DCDDA-bis-mCPE 색센서(Adv. Func. Mater., 17, 3447, 2007) .. 38

- iv -
(그림 50) PDA를 이용한 nucleic acid 검지용 센서(Adv. Func. Mater., 18, 701, 2008) ... 39
(그림 53) 2012년 미국내 센서관련 투자 비율(Weetall 자료) 53
(그림 54) 현장에서 즉각적으로 사용가능한 환경색센서 이용빈도(INL 2007 보고서) 55
(그림 55) 페이퍼 형태의 색센서(Health Hound Inc.) .. 57
(그림 56) pH-Fix에서 판매하고 있는 페이퍼 형태의 환경색센서 58
(그림 57) PEHANON과 pH indicator paper ... 58
(그림 58) Nitrate 검지용 Quantofix 환경색센서 ... 60
(그림 59) 종이형태의 환경색센서 제조 방법 ... 60
(그림 60) 튜브형태의 환경색센서(EnviroSupply & Service Inc.) 61
(그림 61.) 다양한 종류의 유해가스 검출용 환경색센서(RAE Systems) 61
(그림 62) 튜브형태의 환경색센서 제조 방법 ... 63
(그림 63) 칩형태의 환경색센서 장치(Drager Safety Inc.) .. 64
(그림 64) Armband 형태의 환경색센서(Morphix Technologies Inc.) 64
(그림 65) Dithizone을 이용한 중금속 이온 검지 방법 .. 68
(그림 66) 중금속 검지용 개인 휴대용 페이퍼-색센서(Bee Well Company) 69
(그림 67) 중금속 검지용 개인 휴대용 투브-색센서(Vitality Plus Australia) 70
(그림 68) 가역적 환경색센서로의 활용 가능성(J. Org. Chem., 74, 2167, 2009) 73
(그림 69) 중금속과 음이온계 환경오염물질을 동시에 검지 가능한 화합물(Tetrahedron, 66, 1846, 2010) ... 74
(그림 70) 다중 복합 환경색센서의 모델(Adv. Funct. Mater., 19, 209, 2009) 75
제1장 기술의 개요

제1절 기술의 정의

1. 환경모니터링 기술

○ 환경 측정은 환경 분석, 환경 계량이라고도 하며, 환경 측정 대상은 대기, 배기가스, 배수, 하천수, 지하수, 토양 등의 환경 시료에 제한된다. 환경오염의 측정은 주로 화학물질의 농도 측정하는 직접적인 방법과 대상물질의 물리화학적 특성을 측정하여 농도로 환산하는 간접적인 방법이 있다.

○ 환경모니터링(environmental monitoring)은 물리적, 화학적, 생물학적, 광학적 정보를 센서에서 인식하여 전기적 신호나 소리, 광 등을 이용하여 대상 물질을 감지하는 기술이다. 가장 기본적인 환경모니터링 기술은 TMS(tele-monitoring system)과 같은 현장에서 대상 환경오염물질(SOx, NOx 등)을 검지하여 실시간(in-situ)으로 정보를 제공하는 것에서부터, 시료를 채집하여 외부 전문 분석장비를 이용(ex-situ)하는 방법까지 다양하다.

○ 국내외 환경규제의 강화와 함께 신환경환경오염물질(나노물질 포함)에 대한 새로운 모니터링 기술이 요구되고 있다. 또한 나노바이오 기술의 발전과 함께 현장 분석이 가능한 소형이면서 휴대가능하고 실시간 분석이 가능한 장비의 개발을 요구하고 있다.

<그림 1> 센서의 기본 구조
2. 환경색센서 기술

○ 색센서는 대상물질 검지시에 색상이 변하는 것으로 대상물질을 감지하는 기술로, colorimetric sensor, optoelectronic nose, chromogenic sensor 등 다양하게 불리온다. 가장 대표적인 색센서로는 리트머스 종이가 있다. 용액의 pH를 색깔만의 변화를 이용하여 검지하는 기법으로 추가적인 부대장비 필요 없이 정성적인 물리화학적 특성을 현장에서 즉각적으로 판정 가능한 센서 기술을 지칭한다.

○ 또 다른 일반화된 색센서로는 임신체외진단테스터가 있다. 임신후 7일이후에 여성 호르몬 중 융모성자극호르몬(human chorionic gonadotropin, hCG)의 급격한 배출 증가로 자가 임신테스트가 가능하게 된다. 테스트를 위해서 금나노입자(AuNP) 주변에 항hCG 항체를 코팅시켜 immunoassay를 제작한다. hCG 호르몬과 항hCG-AuNP와 결합하게 되면, 항체-항체 반응에 따른 응집 발생되고 AuNP가 응집하게 된다. 이때 나노입자의 크기에 따른 색상변화가 발생하여 가시광에서 적색 또는 보라색으로 색변화가 일어난다.

○ 이와 같이 색센서는 대상물질을 검지했을 때, 맨눈(naked eye)로 현장에서 실시간으로 정보를 제공하는 센서를 말한다. 대상물질이 액상 내 중금속, 기상내 VOC 등 다양한 용도로 사용가능하며 assay 형태로 제조시에는 복합적인 물질을 동시에 측정 가능한 기술이다.

<그림 2> 색센서의 일종인 임신체외진단테스터 원리
제2절 기술의 필요성

1. 기존 환경모니터링 기술의 한계

○ 기존 환경모니터링의 범위는 환경 유해물질 또는 오염을 유발할 수 있는 대상에 대한 실시간 또는 주기적인 관찰을 통한 관리라고 되어 있다. 광범위한 해석으로는 전지구적인 관점인 이산화탄소 모니터링에서부터 세포내 유해성 관리 모니터링까지 그 범위를 확대할 수 있다.

○ 광학적 모니터링에는 원자흡광 분석과 ICP발광 분석이 사용되며, 전자기적 측정방법에는 전기 화학 반응, impedance, 가스의 이온화 측정, pH센서, 반도체 가스센서 등이 있다.

○ 모니터링과 관련된 최근 연구 사례를 살펴보면, 인공위성 자료를 이용한 이산화탄소 모니터링 연구, 마이크로레일에서의 환경오염물질이동 모니터링 연구, 환경유해물질의 모니터링을 위한 세포 사망 개발 등이 진행되고 있다.

○ 이러한 환경모니터링의 목적은 다음과 같이 구분할 수 있다.

해결하고자 하는 환경오염 문제의 측정을 통한 제어
지속적인 관찰을 통한 예상하지 못한 문제점 파악
발생될 문제의 시급성과 위해성에 따른 실시간 감시와 대처
장기간 모니터링을 통한 데이터 축적 및 이를 통한 환경오염 문제 개선책 마련
환경규제치의 준수와 관련 유관기관으로의 실시간 또는 연속적인 자료 제출

○ 그러나 기존 환경모니터링 기술은 장치 위주의 기술로 주로 외국 장비에 의존하고 있는 실정이며, 원천 및 핵심 기술도 외국에 의존하고 있다. 환경오염물질을 실시간으로 감지하는 것은 환경규제에 준용하기 위한 방법이 되기도 하지만, 현장에서 즉각적인 오염물질 노출 여부를 별다른 장비없이 감지할 수 있다면 그것만큼 우수한 기술이 없다고 하겠다.

○ 일례로 대만 앞바다에 유조선이 좌초되었을 당시, 기상에 노출된 벤젠계 VOC의 노출량을 실시간으로 감지가 가능했다면 오염물질 제거에 단순히 방진복만을 착용하지 않았을 것이다. 흡입에 대한 방호를 충분히 하지 않아서 현지 주민의 호흡계 절환이 속출되고 있는 것이 사실이다.

○ 즉 기존 환경센서 및 모니터링 기술은 휴대가 용이하지 않고 현장 분석에 불편함이 있어서 즉각적인 정보생산이 어려다는 한계점이 있다. 또한 정비 의존적인 기술로서 중소 기업이나 기존환경기술 개발업체들이 시장에 참여하기가 쉽지 않다. 따라서 휴대가능하고 실시간으로 부대장비없이 대상물질을 감지할 수 있는 기술이 개발되어야 한다. 이에 대한 가장 최선의 대안책이 바로 색센서이다.
2. 나노바이오 기술의 발전

○ 2000년 이전이 IT 기술이 지배했다면, 현재는 나노와 바이오기술이 첨단기술로서 자리고 있다. 이에 환경기술도 그 본질을 변형시키고 있다. 기존의 후처리 또는 정정 기술 분야로 대표되는 환경기술에 나노/바이오 기술을 접목 시켜 보다 향상되고 진보된 첨단환경기술로 거듭나기 위해서는 기술간의 융합이 필수적이 사안이 되었다.

○ 현재 공학기술에서는 학문간의 벽이 없어진지 오래이며, 다학문간 연구를 통해 새로운 기술들이 창출되고 있다. 전통적인 환경정책에서 벗어난 환경의 점 개선 및 경제발전을 위한 환경기술 도출을 위한 변화 추진되고 있으며, 기존 환경기술의 통제중심의 정책 및 규제에서 효율성 중대(사전오염방지, 통합 환경관리)로의 개념 전환이 일어나고 있다.

○ 이에 대한 증기로 마이크로 수준의 환경문제에서 나노수준의 환경문제로의 개념적 전환 이 일어나고 있으며, 나노수준에서의 환경문제 기작 규명이 가능해 지고 있다. 또한 과학적 규명에 바탕을 둔 환경정책 도출이 가능해 졌다. 또한 환경진단기술 중 BT가 융합 된 환경바이오모니터링(environmental biomonitoring)도 주목 받고 있다.

○ 나노바이오 기술은 다항종 소량생산에 적합한 기술로서 중소기업도 원천기술 개발이 용이한 분야이다. 기존 환경모니터링과 같은 장비 위주의 환경센서 시장 창출이 아닌, 프린터의 카트리지 판매와 같은 소모품 위주의 나노바이오 환경융합센서 칩(카트리지)를 판매할 수 있는 신시장을 창출해야 한다.

<그림 3> 기존 환경센서와 신 환경센서의 개념 비교
제3절 기술의 분류

1. 색센서 문헌조사

○ 최근 SCI 논문 113건을 조사하여 환경오염물질 검지에 활용 가능한 색센서에 관한 원천 기술을 조사하였다. 색센서에 활용되는 물질로는 금나노, 은나노와 같은 금속계열과 유기염료를 제조하여 대상물질과 결합시 색변화를 관찰할 수 있는 재료 등이 제시되었다. 나노입자와 염료를 이용하는 기술이 거의 동일한 수준으로 보고되고 있다. 금속을 이용하는 것은 입자의 크기에 따른 색상변화를 이용하는 것으로, 표면공명분광(surface plasmon resonance) 현상에 기인하는 plasmonic nanoparticle이 이에 활용된다. 따라서 주로 금, 은, 양자점 등의 나노입자가 제시되고 있다.

<그림 4> 활용기술에 관한 빈도

<그림 5> 검출 대상별 빈도(청색-중금속, 적색-화학물질, 녹색-단백질)
어레이 기술은 1개종의 대상물질만을 검출하지 않고 복합적인 성분분석에 사용하고자 개발하는 것으로 DNA chip과 유사한 형태를 지닌다. Vesicle을 이용하는 기술은 이중막 구조를 지닌 phospholipid를 이용하는 것으로, 주로 단백질 검출에 활용되고 있다.

검출 대상물질로는 중금속이 가장 대표적이며, 기상 및 액상 화학물질도 검출할 수 있는 것으로 보고되고 있다. 나노입자를 이용하는 기술의 경우는 상당 부분 중금속 검출에 사용되며, 방인유발물질 단백질 검출에도 상당 부분 활용되고 있다. 유기염료를 이용하는 방법에는 주로 대상물질을 선택적으로 검출하는 화학분석쪽으로 활용되고 있다.

<표 1> 색센서의 분석방법론에 따른 검출 대상물질 정리

<table>
<thead>
<tr>
<th>분석 방법론</th>
<th>검출대상</th>
</tr>
</thead>
<tbody>
<tr>
<td>나노입자</td>
<td>증금속 Zn, Cu, Pb, Hg, As, Ag, Ln, Cr, Co</td>
</tr>
<tr>
<td></td>
<td>화학물질 H2PO4, HCHO, TNT, sulfide, melamine</td>
</tr>
<tr>
<td></td>
<td>바이오물질 amino acid, protein</td>
</tr>
<tr>
<td>유기염료</td>
<td>증금속 Cd, Pd, Cu, Hg, Ca, Pb, Zn, Co, U</td>
</tr>
<tr>
<td></td>
<td>화학물질 VOC, anion, CN, AcO, phosphate, NH4, aniline</td>
</tr>
<tr>
<td></td>
<td>바이오물질 amino acid, protein</td>
</tr>
<tr>
<td>Vesicle</td>
<td>증금속 -</td>
</tr>
<tr>
<td></td>
<td>화학물질 -</td>
</tr>
<tr>
<td></td>
<td>바이오물질 amino acid, protein, nucleotide</td>
</tr>
<tr>
<td>어레이</td>
<td>증금속 -</td>
</tr>
<tr>
<td></td>
<td>화학물질 NH2, COOH, SH, VOC</td>
</tr>
<tr>
<td></td>
<td>바이오물질 amino acid, protein</td>
</tr>
</tbody>
</table>

환경색센서로 활용 가능한 분야는 수계와 기상에 대한 오염물질 검출로서 현재까지는 정성분석에 주로 사용되고 있다. 가장 대표적인 증금속인 Hg, Cd에서부터 음용수 제한물질인 비소에도 적용되고 있다. 기상은 다양한 가스상 물질부터 액상내 유해물질도 검출에 활용하고 있다. 따라서 액상내 간존하는 대상 오염물질 검출과 세집증후군에 영향을 주는 포르말린 등과 같은 VOC 검출에도 활용가능하다고 판단된다.
2. 색센서의 활용기술 분류

(1) 나노입자 이용법

○ 환경색센서로 가장 널리 쓰이는 기법은 나노입자의 응집에 따른 외형적 입자크기 증가로 인한 색상변화 방법이다. 가시광(400~700 nm) 파장 범위내의 입자크기는 주간에 쉽게 색상관찰이 가능하지만, 해당 파장보다 작은 입자는 사실상 가시광으로 색상을 관찰하기 어렵다. 센크림에 사용되는 200~400 nm의 TiO2는 광산란을 하여 백색으로 보이는 것일뿐 개별입자에 대한 색상을 보인다고는 할 수 없다.

○ 즉 나노수준의 입자는 흩뿌린 광과에 의해 나노입자 주변의 자유전자의 진동을 유발시키는 표면공명분광현상이 발생된다. 100 nm 이상의 나노입자는 일반 금속과 동일한 특성을 보이지만, 이보다 작은 나노입자는 광에 의한 자유전자 유도와 함께 진동이 유발된다. 전자기파의 전기장과 반대방향으로 자유전자 구름이 이동하면서 진동을 하게 되고, 멜스웰의 정의에 의해 모든 진동하는 물체는 해당 진동에 따른 전자기파(빛)을 발생하게 된다. 이러한 과정에서 특정 파장을 방출하게 된다.
이러한 표면공명분광현상은 입자의 크기, 모양, 종류에 따라서 다양하게 나타난다. 성당의 스테인글라스가 바로 이러한 현상을 이용한 사례라 할 수 있다. 금속 나노입자를 활용하기 때문에 유기물에 의한 분해가 적게 발생하고 색상이 뚜렷하게 발생하는 장점이 있다.

만약 입자가 구형이라면 입사되는 전자기파에 의해 3차원 모두 동일하게 전자진동을 일으키게 될 것이고, 단일색상만을 발현하게 된다. 그러나 입자의 모양이 비구형이거나 길이방향으로 비대칭이면, 두 가지 이상의 전자구름의 공명이 발생하여 혼합색이 나타나게 된다.

입자의 거리가 가까워지거나 금속나노주변에 코팅된 유기물(단백질 포함)의 결합에 따라 외형적 크기 증가는 입자의 색상변화를 유발하게 된다. 이러한 기법을 이용하여 대상물질을 검출하는 선택적 기능성 유기물을 금속 나노입자 주변에 코팅하게 된다.
(2) 유기염료 이용법

○ 색센서의 기본 작용력은 분자간 상호작용력(intermolecular interaction)에 의해 좌우된다. 분자간 상호작용력은 수소결합부터 반데르발스 인력까지 다양하게 작용할 수 있다. 이중에서 분자인식 기능성 선택적 센싱을 위해서는 강한 분자상호작용력을 선호하게 된다. 따라서 Lewis, Bronsted 산-염기 반응을 일으킬 수 있는 염료가 사용하게 된다.

<그림 9> 분자간 상호작용력의 크기 비교

○ 해당 분야는 주로 화학과 출신의 연구자들에 의해 집중적으로 연구가 진행되고 있으며, K. S. Suslick 교수에 의해 sensor array 연구가 집대성되고 있다. "Chemoresponsive dye"로 불리는 색상변화를 일으키는 핵심물질은 a)Lewis acid/base dye, b)Bronsted acid/base dye, c)permanent dipole dye 등이 제시되고 있다. 각각에 대한 대표적인 염료로는 a)metal-ion containing dye, b)pH indicator, c)zwitterionic solvatochromic dye 등이 있다.

○ 해당 유기염료내에 금속이온이 molecular pocket에 담지 되거나 유기물이 고정되면, Lewis 또는 Bronsted 산점이 변하게 되어 광산란 또는 광흡수 정도가 변하게 된다. 또한 산점이 변하는 것은 곧 pH가 변하는 것을 동시에 측정가능하게 된다. 산과 염기 양 측에서 반응하면 양측성인 zwitterionic 특성을 지니게 된다. 따라서 유기염료는 특정 금속이온이나 특정 유기물과 반응할 수 있는 활성성이 있어야 하며, 광신호를 발산할 수 있는 색상점이 있어야 한다.
<표 2> 색센서용 유기염료 종류(MRS Bull., 720, 2004)

<table>
<thead>
<tr>
<th>Chemoresponsive dye</th>
<th>Remark</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis acid/base dye</td>
<td>Metal-ion containing</td>
<td>Metalloporphyrins</td>
</tr>
<tr>
<td>Bronsted acid/base dye</td>
<td>pH indicator</td>
<td>Methyl red</td>
</tr>
<tr>
<td>Permonent dipole dye</td>
<td>Solvatochromic</td>
<td>Reichardt's dye</td>
</tr>
</tbody>
</table>

(3) 기타 방법

- 나노입자나 유기염료를 이용하는 방법 이외에 vesicle을 이용하는 방법이 있다. 이는 생물체의 세포막과 동일한 이중층(bilayer) 구조를 지니고 있으며, 원료물질에 따라서 다양한 크기의 구형 vesicle을 제조할 수 있다.
- 물방울과 같은 형상으로 제조되는 vesicle에 형광물질이나 대상물질을 반응할 수 있는 가능성을 분자를 고정하여 색상변화를 통해 검출하는 방식을 취한다.
해당 물질을 제조하기 위해서는 공액고분자(conjugated polymer)를 이용하게 되는데, 주로 polydiacetylene(PDA)가 선호된다. 해당물질을 이용하여 필름형태로 제조하거나 liposome 형태로 제조하여 액상내 색상변화를 관찰한다.

![공액고분자 종류](wikipeida)

제4절 국내외 환경센서 기술 정책 동향

1. 환경센서 정책 동향

- OECD 2030 환경전망보고서는 위태성이 높은 유해화학물질과 같은 환경오염 인자의 관리가 지속적으로 필요하고, 신종 화학물질의 증가로 체계적 관리가 미흡하거나 오히려 악화 될 것으로 예상하고 있다. 이에 대한 환경관리 및 연구 정책이 지속적으로 개선되고 추진되지 못한다면 환경오염에 의한 개인적, 사회적 손실은 회피하기 어려울 것으로 전망하고 있다.

- 환경오염 인자의 지속적인 관리를 위해서는 환경오염 인자를 특성별로 정확하고, 쉽고, 빠르게 감지하여 오염에 대한 의사 결정을 부여할 수 있는 환경오염 측정 및 감시 기술이 반드시 필요하며, 이에 대한 기술 요구가 빠르게 증가하고 있다. 환경오염 측정 및 감시 기술의 핵심요소 기술이 환경센서 기술이다.
환경센서 기술은 다양한 환경 유해물질들(환경 규제 대상 항목 포함)을 현장에서 신속하게 분석하고 검출하여 환경오염 요인을 사전에 모니터링함으로써 환경오염 사고를 미연에 방지하고, 시시각각으로 변화하는 매체별 환경오염 요인에 대한 지속적인 감시와 관리를 가능하게 하는 핵심요소 기술이다. 따라서 환경오염 인지를 평가하고 감시할 수 있는 다양한 원천 기술로부터 환경센서를 개발하고 이를 수요 주체에 사용을 요구하는 기술 지향성 R&D 정책 방향, 혹은 이와 반대로 환경관리 주체의 수요 요구에 따른 환경센서를 개발하고 공급하는 수요자 지향성 중심의 R&D 정책 전략이 요구된다.

녹색기술 육성 및 삶의 질 향상 추세에 따른 고급형 환경서비스의 수요가 증가하고 있으며, 바이오센서, 바이오칩, 비색 및 물리 화학기반의 환경센서에 대한 연구개발투자 수요가 확대 요구되는 시점에 도달했다. 그러나 아직까지 환경센서에 대한 산업화 기반이 전반적으로 취약하고, 민간부문에서도 기술 인식이 취약하여 수요가 많지 않은 실정이다.

위해성 물질 사용 증가와 다양한 신종 화학물질의 개발 증가 및 미래 사회의 주요환경 변화를 인식할 때 미량 유해 물질이나, 유해성 물질을 진단 할 수 있는 환경센서의 수요가 분명 증가할 것이나, 아직까지 이에 대한 통합환경 관리 체계, 기후변화 요인에 따른 영향 증가 등에 대한 체계적 연구가 이루어지지 않았고, 이에 대한 연구 및 공공 부문의 정책 제시가 필요한 실정이다.

환경센서 분야는 현재까지는 경쟁이 상대적으로 심하지 않으면서 향후 높은 성장률이 기대되는 틈새시장 분야로 인식되고 있으며, 연구 개발에 국가의 정책적 지원이 집중된다면 향후 경쟁이 치열해질 환경센서 시장에서 국내 기업이 선점할 수 있을 것으로 평가된다.

2. 국내 환경센서 기술 정책 동향

 국내 환경센서 기술개발 여건의 장점은 환경매체별 연구인력 및 기술 개발 기반이 성숙되어 있다는 점이며, 최근의 경향은 BT, NT, IT 기술을 접목한 융합형 환경센서의 기술 개발이 요구되고 있으나 개별적 연구팀에서 실증 적응을 염두해 두기보다는 연구 측면에서의 원천 기술 개발이 주류를 이루고 있다. 원천기술을 바탕으로 기존의 기술로는 측정이 불가능한 항목을 측정할 수 있는 새로운 환경센서의 개발이 요구되고 있다.

국내 환경센서 기술 R&D 정책은 수요체에 대한 고려와 실험화 연구보다는 각 부처별로 원천기술 개발에 집중이 되어 왔다.
표 3. 유해성 물질 모니터링 분야 미래기술 요구사항 및 핵심기술 (2009, 환경부)

<table>
<thead>
<tr>
<th>중점영역</th>
<th>환경기술 수요</th>
<th>핵심 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>유해화학물질 모니터링</td>
<td>실시간 현장적/원격정보제공</td>
<td>실시간소통 미래형 유해화학물질 측정·알기기술</td>
</tr>
<tr>
<td></td>
<td>환경취약계층 및 생활공간</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>새로운 환경오염 위험 대비</td>
<td>신유해화학물질 독성평가 관리</td>
<td>신종 유해화학물질 평가 및 발굴 기술</td>
</tr>
<tr>
<td></td>
<td>신중유해화학물질 모니터링 분야</td>
<td>낙농물질 및 갑류의학적 모니터링</td>
</tr>
<tr>
<td>지구온 환경변화 대비</td>
<td>장기적 오염물질 관리</td>
<td>전문성 장기적 오염물질 관리 기술</td>
</tr>
<tr>
<td></td>
<td>국제 환경규제 및 기후변화 대응 분야</td>
<td>REACH 등 환경규제 대응 기후변화대응 유해물질 모니터링</td>
</tr>
<tr>
<td>지속적으로 안전한 생활환경 구축을 위한</td>
<td>매체통합 유해화학물질 관리</td>
<td>매체 통합관리 및 다미체 환경평가기술</td>
</tr>
<tr>
<td></td>
<td>유해화학물질 통합관리 제도 구축 분야</td>
<td>생태계위험성평가기반관리를 위한</td>
</tr>
<tr>
<td></td>
<td></td>
<td>지속가능 환경관리 기술</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

○ 환경센서 자체가 다품종 소량 생산이라는 특성상 완제품 형태의 판매는 주로 중소업체를 통해 이루어지고 있으며, 낙후된 기술과 인식으로 인해 아직은 독자적 기술 구축보다는 선진외국의 기술을 도입, 판매하고 있는 실정임. 이러한 국내 현실을 감안하여 정부, 관련 연구소 및 업계의 네트워크 구축을 통해 환경센서의 국산화 개발을 위한 정책적합의가 요구된다.

○ 환경센서는 유해성 물질 모니터링 분야 미래기술 요구사항 및 핵심기술에 반드시 필요한 요소기술이며, 환경부는 2009년 이에 대한 기술 중심의 R&D정책 방향을 제시하였 다. 유해물질 모니터링, 위험성 관리 및 서비스 기술 등의 상위 개념에서 세부 요소 기술로서 환경센서 기술 개발이 요구되고 있으며 이에 대한 연구 정책방향을 수립하고 있다.

○ 모니터링기술의 경우 기존의 기기 분석 방법을 통한 방법 등을 고려할 수 있었으나 기존의 방법의 경우 실시간 측정, 탐지 기술을 제공해 주는데 한계가 있으므로 미래 환경기술의 현실적 달성을 위해서는 센서화된 기기 개발이 필수적이며 이에 대한 연구 지원을 고려하고 있다.
3. 주요국의 환경센서 기술 정책 동향

(1) 미국

○ EPA를 중심으로, FDA, DOE, USDA, NIH, NIEHS 등의 국가 기관들이 연계하여 신종 유해화학물질 모니터링 및 노출관리 관련 정책을 마련하고 있다.
○ 원격모니터링기술, 바이오칩을 이용한 생물학적 환경바이오센서 기술 및 심혈관 등의 미래 환경시각 주도를 위한 BT, NT, IT 융합기술 기반 환경센서 신기술 개발을 추진 중이며, 전세계적으로 가장 활발하게 환경센서 기술이 개발되고 있다.
○ 환경센서 개발을 위한 관리 지표 데이터베이스를 관련 연구자들이 검색 가능하도록 제공하는 정책을 운영 중이며, 유해화학물질(미세먼지, 내분비계 장애물질, 잔류의약품 등)에 대한 독성 기전 연구, 독성 평가 및 모니터링 기술 개발을 추진하는 정책을 세우고 있어, 유해화학물질 관리 단계별 적용 가능한 환경센서 기술 개발을 추진하고 있다. 연구 단계에서 적용 가능한 센서 기술을 포함하여 최종 수요자 중심의 센서 기술 개발을 적극 추진하고 있다.
○ EPA는 수질 환경센서를 바이오센서 기술과 연계하여 개발하려는 움직임이 활발하다. 수질의 유해물질 모니터링을 위한 현장 분석기술의 한계점(현장에서의 유해물질의 다양성 및 복잡성 등)과 기존 실험실에 기초한 한계점을 극복할 수 있는 바이오센서 기술을 적극 발굴하고 이를 실증화 할 수 있는 환경센서 연구 정책을 펼치고 있다.
○ NSF funding을 기반으로 UCLA 주도로 CENS(Center for Embeded Networked Sensing)을 운영하여 ENS(Embeded Network Sensing) 시스템을 개발하는 프로젝트를 추진하고 있다. ENS는 수질, 대기, 토양 환경 등에 적용 가능한 환경 센서 등을 국지적으로 분산 시켜 부분적, 일시적으로 발생하는 환경 현상의 변화 및 오염원을 추적하는데 적용하고 있다.
○ 앱타머, 항체, 덴드리머 등의 차세대 또는 고성능 리셉터 및 지지체에 대한 연구 개발이 활발하며 이러한 리셉터 소재 관련 연구를 통해 개발이 어려운 화학작용제 검출, 식품유해물질 검사, 유해화학물질이나 법정규제물질 검출용 환경센서 개발 등의 다양한 분야에 대한 원천기술을 개발을 정책적으로 추진하여 진행 중이다.

(2) EU

○ 환경기술관련 연구는 대부분 Framework Programme에서 수행하고 있고, 오염자부담원칙과 사전오염예방기준 근간 신화학물질 정책인 REACH (Registration, Evaluation, and Authorization of Chemicals)를 마련하여 2007년 6월부터 법안이 시행 중이다.
○ 내분비계장애물질, 혼합물, 나노물질 관리 등에 대한 새로운 입법을 추진 준비 중이며, 대기오염을 감시하기위한 대규모 센서 네트워크 구축을 위한 연구 과제를 진행하고 있다.

○ 유럽의 정책적 특징은 관련 환경 규제 법규와 유해물질 관리방안을 체계적으로 정립하고, 이에 근거한 기술 개발을 유도하고 있고, 수요자 및 관리 주체 중심의 환경센서 개발을 추진하고 있다.

○ 환경센서를 연구하는 다양한 분야의 연구자들이 연례 워크샵, 기술 미팅을 통해 유럽 내 연구 역량과 정책 수립 제안 역량을 강화하고, 현장 적용 기능성을 염두해 둔 환경센서 개발 연구에 집중하고 있다.

(3) 일본

○ 환경성은 환경문제 해결과 쾌적하고 풍요로운 생활 실현, 새로운 환경 시장 및 고용 창출, 지역 환경화를 목표로 신환경연구, 기술 개발 추진 전략을 발표하여, 향후 5년간 중점적으로 추진해야할 환경연구 기술개발 중점과제와 효과적 추진 방향을 제시하였다.

○ 환경기술 개발을 위해 연구기술개발 영역 간 제휴 및 산학연 및 정부와 지역 간 제휴, 국제적 네트워크 체계 구축 등의 방향을 제시하였으며, 지역단위의 환경연구 개발 강화를 강조하고 있다.

○ 국토의 자연자원, 환경을 총망라하여 센서 기반의 u-칩을 장착하여 국토환경 정보를 실시간으로 수집하며, 장착된 u-칩에서 발신된 정보를 수신하여 모니터링하는 유비쿼터스 국토환경 모니터링 시스템 구축을 추진 중이다.

○ 현실화 불가능한 기술을 배제하고 상용화 가능한 NT-ET에 기반을 둔 환경센서 연구 및 투자를 선호하는 경향을 보인다.

○ 이론적 연구나 평가보다는 더욱 우수한 검출효과를 나타내고, 실생활에 바로 적용할 수 있는 제품중심의 환경 센서 연구를 정책적으로 활발하게 지원하고 있다.
제2장 기술 연구개발 동향

제1절 국외 기술개발 동향

1. 나노입자 활용

(1) 중금속 검지용 색센서

○ 나노입자를 이용한 중금속 검지용 색센서는 다음과 같은 2가지 기작에 따른다. Interparticle crosslinking으로 입자간의 척력을 극복하여 입자간의 응집이 발생하여 색깔이 변하는 경우와 noncrosslinking-aggregation로서 반데르발스 작용력이 입자간 척력을 극복하여 거리가 가까워져서 발생하는 경우이다.

○ 나노입자는 정전기적(electrostatic) 작용력, 구조적(steric) 작용력을 이용하여 안정화되거나 두가지를 모두 이용(electrosteric)하는 안정화 기법을 사용한다. 보통 정전기적 안정화기법을 사용하는 나노입자의 경우, 반대 전하를 지닌 중금속과 결합하면 중성을 띄거나 입자간의 거리가 가까워져서 응집과 침전을 유발하게 되어 색상변화를 일으킨다.

○ 일반적으로 표면공명분광현상이 나타나는 금속물질, 특히 금나노, 은나노입자가 환경색센서에 사용된다. 입자간의 거리가 가까워지거나 응집되면, 즉 분산상에서 응집상으로 변하면 색상이 바뀌게 된다. 응집상으로 변하게 되는 가교역할을 대상 화학물질이나 중금속 이온 등이 하게 되며, 이러한 과정을 거쳐 대상 물질을 정성적으로 검지하게 된다.
○ 해당 과정은 상당부분이 비가역성이라서 섹센서로의 재사용이 어려울 수 있다는 단점을 지니고 있다.

![Diagram of AuNP aggregation and color change](image)

○ Northwestern University의 Joseph T. Hupp 교수팀은 AuNP의 표면게질을 통하여 hyper-Rayleigh scattering (HRS)를 발생시키는 섹센서를 개발하였다. 해당 연구결과가 우수한 것은 일반적으로 AuNP을 이용한 섹센서가 비가역적이지만 해당 결과는 chelation/aggregation 공정이 강한 금속 chelator인 EDTA를 혼합하여 가역적으로 만들 수 있었다는 점이다. 따라서 해당 결과를 잘 이용하면 반복사용이 가능한 중금속 검지용 환경색센서로도 개발 가능하다.

![Diagram of MUA-AuNP color change](image)

<그림 13> MUA-AuNP를 이용한 가역적 중금속 검지용 환경색센서(Nano Lett., 1, 165, 2001)
보통 AuNP 주변에 SH로 기능기를 코팅하게 되면 용액내 중금속중에서 Hg2+만을 선택적으로 검지하게 된다. 따라서 일반적으로 수온 검지용 색센서가 많이 발표되고 있다. 반면 이란의 Alizadeh 연구팀은 azacrown 기능기를 이용한 방법을 제시하였다. Azacrown ether-terminated alkanethiolate를 합성하여 ionipohore 검지체로 사용하였다. Pb2+ 이온이 azacrown ether 내부에 고정되면서 두 개의 아민기능기가 서로 결합하는 방식을 취하고 있다.

이상의 방법은 금속 나노입자 주변에 표면코팅을 취하는 labeling method라던 표면처리를 하지 않은 금속나노입자주변에 중금속과 결합할 수 있는 cheating 물질을 함께 혼합하여 색갈 변화를 유발하는 label-free method도 제시되고 있다. 사용된 물질로는 2-mercaptoethanol, 4-mercaptobutanol 등을 이용하였는데, 어떠한 물질을 사용하느냐에 따라서 Hg만 검지하기도 하고(4-mercaptobutanol) Pb, Ag, Cu까지 검지하기도 하였다.
Dithio nitrobenzoic acid로 변형시킨 AuNP의 경우는 Cr3+에 대하여 선택성을 보이게 된다. 해당 물질은 다른 중금속이 존재하더라도 특이적으로 Cr(III)에 대해서만 결합력을 지니게 된다. 100 ppb 수준까지 측정이 가능하며, 다양한 중금속이 혼합되어 있더라도 뛰어난 선택성을 지닌다.

Malonamide로 기능기화 시킨 AuNP의 경우는 2가가 아닌 3가 중금속에 대한 선택성을 지닌다. Oregon University의 Hutchison 교수의 보고에 의하면, tetramethylmalonamide로 코팅한 AuNP은 라탄계(Ln)에 대하여 선택적인 색전성 결과를 보인다고 보고하였다.
전이금속인 Cu, Cd, Fe 등에 대해서는 전혀 색상 변화를 보이지 않지만 Eu에 대해서는 빨강색에서 청색으로 색상변화를 가져왔다.

- Ray 교수팀은 음용수내 비소를 검출할 수 있는 방법을 고안하기도 하였다. AuNP에 dithiothreitol(DTT), cysteine(Cys), gluthathione 등을 고정하여 비소에만 선택적으로 결합하는 색센서를 개발하였다. 이는 음용수내에 잔존하는 비소를 ppb 수준까지 현장에서 분석 가능한 기법으로 제안되고 있다.

![DTT, Cys, Glutathione 결합 실험](그림 18)

Gold Nanoparticle (AuNP), DTT, Cys 등을 이용한 비소 검지용 환경색센서(Angew. Chem., 48, 9668, 2009)

- AuNP 이외에 은나노입자(AgNP) 또한 LSPR 현상이 발생하므로, 이를 이용한 중금속 색센서도 보고되고 있다. 중국의 Haibing Li 교수는 Co²⁺에 선택적으로 색변화를 보이는 triazole-carboxyl AgNP를 제조하였다. 단순히 carboxyl 기로 변형시켰을 때는 Co, Cu, Pb에 대하여 결합력을 보이지만, triazole-carboxyl 기능기를 올렸을 경우에는 Co만을 선택적으로 결합하는 것으로 나타났다. 최소 측정 농도는 7 uM까지 가능하다.
Nanocrystalline TiO2 필름을 이용해서도 수은 감지가 가능함을 보고한 사례도 있다. 영국의 Palomares 교수는 Ru계열의 유기염료와 혼합한 TiO2를 박막형태로 만들어서 수은을 포함한 다른 중금속에 노출시켰을 때, 수은만을 선택적으로 감지하는 것을 보고하였다. 이와 같이 박막형태로도 제조 가능함을 보이고 있다.

유기물을 금속나노입자에 기능기를 올리는 대신에 DNAzyme를 직접AuNP에 고정시켜 선택성을 부여한 연구결과도 보고되고 있다. 해당 연구는 University of Illinois 대학의 Yi Lu 교수팀이 활발히 연구중이다. DNAzyme를 적절히 변형시켜 Pb, Cu 등에 선택적으로 고정될 수 있도록 하여, 금나노입자와 결합하여 응집되도록 하는 과정을 거친다. Lu 그룹이외에 다른 많은 연구팀에서는 C-base riched single strand DNA-AuNP를 이용
하여 Ag⁺ 이온에 선택적인 색센서를 개발한 바도 있다. 그러나 해당 공정은 DNA 조작이라는 측면에서 다품종 생산과 상업화 측면에서는 이득이 적은 것은 사실이다. 따라서 해당 방법을 이용한 환경색센서로는 바람직하지 않다고 판단된다.

<그림 21> DNAyme-AuNP를 이용한 중금속 검지용 환경색센서(JACS, 125, 6642, 2003)

(2) 화학물질 검지용 색센서

○ 중금속을 검지하는 기능성 물질은 구조가 단순하고 제조가 용이하다는 장점이 있다. 그러나 특정 유해화학물질을 검지하기 위해서는 선택성을 부여하기 위하여 직접 기능성 물질을 디자인 해야하는 어려움이 있다. 또한 상당부분이 DNA, 단백질의 조작을 통하여 금속나노입자 주변에 코팅하는 방식을 취하고 있다. 즉 단백질간의 결합이나 DNA의 결합으로 발생된 금속나노입자간의 응집으로 색상변화를 유도하는 것이다.

○ 일본의 Kimura 교수팀은 H2PO4⁻를 검지할 수 있는 thiol 기반 AuNP 환경색센서를 개발하였다. Phenylurea로 변형시킨 AuNP는 음이온계 물질에 대한 선택성을 지니게 되며, HSO₄⁻, CH₃COO⁻ 등도 검지하지만 상대적 우위의 선택성을 지니는 것으로 평가되었다. Hexanethiolate로 코팅할 경우는 선택성이 없다는 것도 보고하였다.
우유에 들어 있을 수 있는 melamine을 검지할 수 있는 유기물 색색서가 중국의 Lehui Lu 교수에 의해 개발되었다. melamine과 cyauric acid와 수소결합을 하여 색변화를 발생시킨다. 최대 검출하한은 2.5 ppb로서 부대장비 없이 색변화를 쉽게 관찰할 수 있는 장점이 있다.

Aromatic isomer를 검지할 수 있는 AgNP 색센서도 개발되었다. 호주의 Qijin Zhang 교수팀은 cyclodextrin(CD)으로 변형시킨 AgNP를 제조하여, phenol, pyrocatechin, hydroquinone, resorcinol 등의 검지 결과를 보였다. CD는 사방 모양을 지니고 있어서 사방의 안쪽에 aromatic isomer가 고정되는 형태로 대상 오염물질을 검지하는 것으로 판단된다. 또한 ortho-, meta-, para- 형태의 이성질체의 aromatic 화합물도 CD와의 영감 형태가 달라져서 색상변화가 틀려진다는 것을 보고하였다. 즉, 단순히 aromatic 화학 물질을 검지하는 것에서 넘어서 이성질체까지 육안 판찰로 구분이 가능하다는 점에서 우수한 연구결과라고 할 수 있다.
중국의 Haibing Li 교수가 sulfonatocalix[4]arene이라는 물질로 변형시킨 AgNP를 이용하여 다양한 살충제 잔류물질을 검지할 수 있음을 보였다. 특히 optimal에 대한 선택성이 우수한 것으로 나타났다. 미국의 Paresh Chandra Ray 교수팀은 ATP-AuNP를 이용하여 TNT 잔류물을 검지하는 환경색센서도 개발하여 100 pM까지 검지 성능을 보고하였다.

(3) 바이오물질 검지용 색션서

단백질과 같은 바이오물질 검지용 색션서는 바이오센서로 불리우며, 환경색센서와는 구분되므로 여기서는 최소한의 내용만 소개한다.

대부분 AuNP에 target DNA에 맞춰 변형시킨 DNA를 고정시켜 입자들의 응집이 발생하면 색상이 변하는 방법을 취하고 있다. 이는 임신진단테스터기의 원리와 동일하며, 비가격적인 기법이라 할 수 있다. 해당 내용은 DNA를 조작해야 하며 대량생산이 불가하여 색션서로서는 권장되는 방법은 아니다. 그러나 특정 병인유발인자 단백질이나 DNA를 검출하는 의료용 kit로 제작될 경우 고부가가치 상품으로 제작 가능하다. 이러한 점에서 해당 연구가 진행되고 있다고 판단된다.

이란의 Pooria Gill 교수는 Helicobacter pylori DNA를 AuNP에 고정시켜서 해당 서기관을 감지할 수 있는 바이오센서를 개발하기도 하였다. 중국의 Xi Chen 연구팀은
CdTe/CdS 양자점을 이용하여 glucose를 정량, 정성 분석할 수 있는 색센서를 개발하기도 하였다. 이외에도 ATP 검출용 바이오 색센서, 살로렘라 균 검지용 색센서 등 다양하게 보고되고 있다.

<그림 26> 정량, 정성 분석이 가능한 glucose 색센서(Biosen. Bioelect., 24, 3702, 2009)

2. 유기염료 활용

(1) 중금속 검지용 색센서

○ 가장 대표적인 중금속 이온중에서 수은 검지에 대한 관심이 가장 높은 것은 사실이다. 이에 유기염료를 이용한 중금속 검지용 환경색센서도 Hg, Cu, Pb 순서로 보고 논문이 많은 것으로 파악되었다.

○ 수은의 경우는 다양한 유기화합물을 합성하여 선택성을 부여하고 형광분석으로도 가능토록 한 색센서들이 보고되고 있다. 중국의 Qian 교수팀은 rhodamine 기반의 유도체를 합성하여 수은에 선택성을 부여하였다. 해당 색센서는 수은을 검지하면 핑크색으로 변하며, 형광분석에서도 색이 두툼하게 나타나는 특징이 있다. 또한 EDTA를 공급하면 원래 상태로 회귀하여 가역적 색센서로 활용가능하다. 중국의 Xiaohua Wu 교수는 coumarinazine 유도체를 이용하여 Hg2+, Fe2+에 선택성을 보이는 물질을 만들기도 하였다. 특히 수은에 대하여 더욱 높은 선택성을 보인다.
○ 미국의 Gregory Tew 교수팀은 terpyridine 유도체를 합성하여 수은에 대한 선택성이 우수한 염료를 개발하였다. 다양한 전이금속 중에서 수은의 경우는 핑크색으로, 철의 경우는 노란색으로 변하는 결과를 나타내었다. Tetrathiényl-substituted boron-dipyrrin을 이용하면 Cu, Hg에 대한 선택성을 보인다는 보고도 있다.

○ 중국의 Xuhong Qian 교수팀은 diaminonaphthalimide를 합성하여 Cu2+를 육안으로 색변화를 관찰할 뿐만 아니라 형광분석으로 가능한 색센서를 개발하였다. 해당 물질은 pH에 의해서도 색변화 관찰되며, Cu2+의 고정으로 노랑색에서 빨강색으로 변한다. 또한 형광분석시에는 초록색에서 검은색으로 변하는 특징을 보인다. EDTA를 혼합하면 원래대로 회복하여 반복사용이 가능하다는 장점이 있다.

○ 또한 merocyanine을 이용하여 Cu2+를 선택적으로 결합하여, 블은색에서 파랑색으로 색변화를 일으키는 보도도 있다.
귀금속을 회수할 수 있는 색센서도 개발되었다. 미국의 Koide 교수는 allylic oxidative 삽입기작을 이용한 Pd, Pt 이온에 대한 색변화를 보이는 물질을 개발하였다. 이는 귀금속이 촉매반응을 일으켜 색변화를 보이는 것으로 실제 해당 금속이온이 결합하는 것이 아닌 촉매반응에 의한 색변화를 관찰하는 기법이다. 따라서 직접 결합은 없지만 귀금속과 같이 상온에서 촉매 반응을 일으키는 물질에 대한 색센서도 가능함을 보인 사례라고 할 수 있다.

<그림 31> 촉매반응에 의한 귀금속 이온 검출용 환경색센서(JACS, 129, 12354, 2007)
또 다른 중요한 중금속 중 하나인 Pb를 검출하기 위해서는 diphenylthiocarbzone를 이용하거나 pyridine 유도체를 이용하는 연구가 보고되고 있다. 중국의 Lizhu Wu 박사는 tetrathiafulvalene-pyridine 유도체를 합성하여 다양한 양이온계 금속물질중에서 Pb2+에 선택성을 보이는 연구결과를 발표하였다.

중금속 이외에 Ca2+, Na+, K+에 반응하여 육안관찰이 가능한 색센서도 있다. 일본의 Nakazumi 교수는 bis(spiropyran) podand를 이용하여 Ca2+에 선택적으로 결합하는 환 경색센서를 제조하였다. 해당 물질은 Mg2+, Ca2+, Sr2+, Ba2+에도 반응을 하지만, 1가 이온 Li+, Na+, K+ 등에는 반응하지 않아서 2가 금속이온 검출용으로만 사용가능하다.

중금속 이외의 Ca2+, Na+, K+에 반응하여 육안관찰이 가능한 색센서도 있다. 일본의 Nakazumi 교수는 bis(spiropyran) podand를 이용하여 Ca2+에 선택적으로 결합하는 환 경색센서를 제조하였다. 해당 물질은 Mg2+, Ca2+, Sr2+, Ba2+에도 반응을 하지만, 1가 이온 Li+, Na+, K+ 등에는 반응하지 않아서 2가 금속이온 검출용으로만 사용가능하다.

이와는 반대로 1가 양이온에만 선택성을 보이는 염료도 개발가능하다. 아일랜드의 Gunnlaugsson 교수는 aromatic ring을 지닌 crown ether 염료를 개발하였다. 해당물질은 Na+, K+를 crown ether 내부에 complex 결합을 유도하여 빨강색에서 노랑색으로 변하게 만들어 육안관찰을 가능케 하고 있다.

인도의 Amitava Das 교수팀은 1-Zn라는 복합체를 합성하여 ATP 검지용 바이오 색센서를 개발하였다. 그러나 해당 물질을 음이온계 검지용으로 적용하여 H2PO4-를 선택적으
로 검지하는 것을 보았다. 즉, 7족의 F, Cl, Br에 대한 선택성이 없으며, CH₃COO⁻에 대해서도 반응하지 않고 오로지 H₂PO₄⁻에 대한 선택성을 보였다. 또한 동일 연구팀에서는 thiourea 결합기를 지닌 또다른 유도체를 만들어서 F-에 선택성을 보이는 섹센서를 개발한 바도 있다.

<그림 34> 1-Zn를 이용한 음이온계 검출용 환경색센서(Org. Lett., 9, 1979, 2007)

- 영국의 Gale 교수팀은 nitrophenyl 유도체를 합성하여 불소에 선택성을 보이는 섹센서를 제조하였다. 3개의 아민그룹이 있으며 그중 2개의 아민과 벤젠의 이중결합을 이용하여 대상물질을 붙잡는 것으로 생각되고 있다.
- 또한 미국의 Pavel Anzenbacher Jr. 교수팀은 indanedione 유도체를 합성하여 음이온계 검출용 색센서를 제조하였다. 4가지의 유도체의 기능기가 무엇이냐에 따라서 F-, Cl-, AcO -, H₂SO₄⁻에 대한 선택적인 색변화가 발생하여, 다중 분석이 가능한 환경색센서라고 할 수 있다.

(3) 바이오물질 검지용 색센서

○ 단백질과 같은 바이오물질 검지용 색센서는 바이오센서로 불리우며, 환경색센서와는 구분되므로 여기서는 최소한의 내용만 소개한다.

○ 금속나노입자와는 다르게 유기염료를 이용한 단백질 검지에는 chromogenic complex를 합성하여 사용한다. 인도의 Amitava Das 교수팀은 1-Zn이라는 복합체를 합성하여 ATP를 pH 7.2 조건에서 색상변화로 검지할 수 있음을 보였다. 반면 관련된 생물학적 음이온계인 AMP, ADP, PPI, phosphate는 검지하지 못하여, ATP에만 선택성을 보이는 것으로 판단되었다.

○ Medintz 교수는 HIV-1을 선택적으로 검지할 수 있는 antigenic peptide를 개발하여 색센서에 활용하기도 하였다.

3. 기타 방법

(1) 화학물질 검지용 색센서

○ 이스라엘의 Raz Jelinek 교수는 PDA에 ionophore, phospholipid를 결합하여 mixed vesicle을 제조하였다. 이를 이용하여 가시광에서도 용액내 존재하는 극미량의 Na+, K+ 등의 이온량을 파악할 수 있는 방법론을 제시하였다.

○ 기본 vesicle은 DMPC를 사용하였고, 염 료 역할은 PDA가 수행하도록 하였다. 물질 분석시, valinomycin을 이용한 mixed vesicle은 K+, Rb+에 대한 색상 변화를 보였으며, monensin의 경우는 Na+에 대하여 선택적인 색상변화를 나타냈다.

<그림 37> PDA를 이용한 mixed vesicle(JACS, 122, 776, 2000)

<그림 38> Valinomycin(A), monensin(B)를 이용한 PDA liposome의 색센서(JACS, 122, 776, 2000)
(2) 바이오물질 검지용 색센서

○ UC Santa Barbara의 H. Tom Soh 교수팀은 공액고분자인 PDA를 이용하여 bidentate aptamer를 가교시킨 liposome를 제조하였다. 해당 물질은 PDA를 포함하고 있어서 입자들이 서로 뭉치면 파랑색에서 빨강색으로 변하여 색변화가 뚜렷하게 나타나는 특징이 있다. BOCK, TASSET라는 서로 다른 aptamer를 PDA와 가교결합시켜서 liposome를 형성시켰을 때, 두가지 aptamer를 혼합한 경우(III)만 thrombin과 결합하여 색변화 나타남을 보고하였다.

제2절 국내 기술개발 동향

1. 나노입자 활용

(1) 중금속 검지용 색센서

○ 고려대학교의 김종식 교수팀은 AuNP 주변에 citrate ion과 dithioerythritol을 코팅시켜 COO와 SH 기능기를 동시에 지닌 물질을 개발하였다. 해당 물질에 EDTA와 수은 이온을 동시에 공급하게 되면, 붉은 색상에서 녹색으로 변하게 된다. AuNP의 SH 그룹간의 결합사이에 Hg 이온이 자리하게 되어 입자간의 응집을 유발하는 것으로, Pb, Cd, Cu와 동시에 존재하더라도 선택적으로 반응하는 것으로 나타나고 있다.

○ 검출 하한은 100 nM로서 극미량 검지가 가능하다. 단 반응하는데 걸리는 시간이 5분 정도가 소요된다는 단점이 있다.

<그림 40> AuNP를 이용한 수은 검지용 환경색센서(ACS Appl. Mater. Interfaces, 2, 292, 2010)

(2) 화학물질 검지용 색센서

○ 고려대학교 구만복 교수팀에서는 AuNP을 이용한 항생제 검지용 색센서를 개발하였다. 항생제는 가축을 사육하는 과정에서 사료와 함께 들어가기 때문에 우유, 고기, 달걀 등 음식물에 함유될 수 있다. 대표적인 항생제인 oxytetracycline(OTC)을 검지하기 위하여 aptamer로 코팅된 AuNP을 이용하였다.

○ 해당 항생제와 같은 유기화학물질을 선택적으로 검지하여 응집되는 원리를 이용하는 것으로 기존의 단백질 응집성 색변화와 동일하다. 그러나 해당 항생제와 결합하기 위하여 OTC binding DNA aptamer(OBA)를 직접 제조해야 하는 어려움이 있다.
(3) 바이오물질 검지용 색сен서

○ 국내 바이오물질 검지용 색센서 분야는 그렇게 많은 연구가 이루어지고 있는 것이 아니다. 바이오 분야 연구자와 화학, 화공을 하는 연구자와의 공동연구가 이루어져야 비로서 성과를 발휘할 수 있는 분야라서 그렇다고 판단된다. KAIST의 이상엽 교수팀은 polypeptide를 결합체로 사용한 AuNP 단백질 검지용 색센서를 개발한 바 있다. 또한 성균관대학교의 이경영 교수팀에서는 AgNP에 lysine를 고정시켜서 histidine과 histidine-tagged protein을 분리할 수 있는 색센서를 개발하기도 하였다. 이외 다른 연구결과도 보고되고 있지만 환경색센서에서 벗어나는 내용이므로 생략한다.

<그림 41> Aptamer-AuNP를 이용한 항생체 검지용 색센서(Biosen. Bioelect., 26, 1644, 2010)

<그림 42> AgNP를 이용한 histidine 검지용 색센서(Langmuir, 26, 2181, 2010)
2. 유기염료 활용

(1) 중금속 검지용 색센서

○ 유기염료를 이용한 중금속 이온 검지용 환경색セン서에 대한 연구결과는 많지 않다. 이화여대의 윤주영 교수팀은 Cu2+를 검지할 수 있는 4,5-disubstituted-1,8-naphthalimide를 합성하였다. 해당 물질은 다른 전이금속이 모두혼합되어 있더라도 오로지 Cu2+와만 결합하여 색변화를 발생시키는 것으로 보고되고 있어서, thiol계를 이용한 색센서 보다 선택성이 우수한 것으로 판단된다.

<그림 43> Naphthalimide 염료를 이용한 Cu 이온에 대한 환경색セン서(Tetrahedron, 66, 1678, 2010)

<그림 44> Azobenezen을 이용한 Zn2+ 검출용 환경색セン서(Tetrahedron, 65, 6959, 2009)
○ 부산대의 하창식 교수는 Zn2+를 검지할 수 있는 azobenzene 화합물은 합성하여 환경색 센서로 활용하였다. 합성된 벤조계열의 색센서는 Zn2+와 결합하면 갈색을 지니지만, 보 통때는 무색이며, Zn+EDTA와 혼합하면 무색이 되어 합성된 물질만이 결합을 통한 색변 화가 나타남을 보였다. 해당 물질은 DMF에 대해서도 선택성을 지니는 것으로 보고되고 있다.

(2) 화학물질 검지용 색센서
○ 부산대 하창식 교수팀은 Cu-dihydroxyazobenzene을 기반으로 한 음이온계 검출용 환경 색센서를 개발하였다. 기존에 azobenzene을 이용하여 양이온계 중금속 검지용 환경색센 서로도 활용하였으며, 이를 조금 변형시켜서 음이온계도 검출가능토록 하였다. 다양한 음이온중에서 CN, CO32-, HCO3-를 선택적으로 검출할 수 있음을 보였다. 해당 물질은 Cu2+을 먼저 결합하여 결합체 형태로 존재하다가, CN-과 결합하면 Cu2+가 차지하고 있던 자리로 내주어 색변화를 발생하게 된다. 따라서 해당 물질은 중금속도 잡지만 음이 온계도 잡을 수 있는 양쪽성 검지 시약이 될 수 있다는 장점이 있다.

<그림 45> Cu-Azobenezen을 이용한 음이온계 환경색센서(Tetrahedron, 66, 1846, 2010)

○ 연세대학교의 태진성 교수는 CN-을 검출할 수 있는 형광 센서를 보고한 바 있다. Acridinium 염을 이용하여 CN-과 결합시에 강한 형광반응을 일으켜 육안으로 관찰가능한 센서를 개발하였다.

(3) 바이오물질 검지용 센서

○ 한양대 김종만 교수팀은 PDA를 변형시켜 가장 기본적인 항원-항체 반응을 일으키는 streptavidin을 검출하는 biotin-PDA 센서를 개발하였다. PDA를 가교제로 하여 PCDA-biotin을 제조하였다. 단량체 형태로 제조가 가능하며, 농도를 높이면 liposome 형태로도 변형되며, biotin과 streptavidin과 결합하여 응집체를 이루는 것을 색갈 변화뿐만 아니라 TEM으로도 확인하였다.

<그림 47> Sterptavidin 검지용 biotin-PDA 센서의 TEM 사진(Biosen. Bioelect., 21, 1536, 2006)

3. 기타 방법

(1) 화학물질 검지용 센서

○ PDA로 알려진 polydiacetylene은 공액고분자(conjugate polymer)로서 색상변화를 발생시킬 수 있는 염료와의 가교역할을 할 수 있다는 장점이 있다. 이들은 sensing metrics로 불리우며, polypyrrole, polyaniline, polyphenylene, polyacetylene 등도 이에 포함된다.

○ PDA는 본래 적색이지만 흡수피크가 640 nm의 파랑색이지만 외부의 물리적 변화에 의해 550 nm의 빨강색으로 변하게 된다. 서로 보색관계의 색상변화로 즉각적인 감지가 가능하다는 장점이 있다. 외부조건중에서 열에 의한 thermochromism, 유기화학물질 감
지에 의한 solvatochromism, 기계적 스트레스로 인한 mechanochromism, 리간드-리셉터 상호작용에 의한 affinochromism 등에 모두 사용가능하다.

![Polydiacetylene](Image)

(2) 바이오물질 검지용 색센서

- 김종만 교수팀은 가교제인 PDA 고분자에 다양한 기능기를 부착하여 vesicle과 같은 이중층 구조를 제작한 바 있다. 해당 물질은 nucleic acid의 음전하를 띠고 있는 phosphate와 PDA의 양전하를 지닌 amine과의 결합력을 이용하는 기법에 사용되고 있다.
- 제조된 PDA liposome은 특정 oligonucleotide와 결합하여, 광학색에서 빨강색으로 변하게 된다. 색센서로 사용한 물질은 PCDA/PCDA-EDEA로 PDA가 공액고분자 역할을 하는 양쪽형 물질이라고 할 수 있다. 보고된 내용을 토대로 PDA를 단백질 센서로 활용 가능함을 판단할 수 있다.
제3절 기술 경쟁력 비교

1. 환경색센서 원천기술
 ○ 국내외 환경색센서의 논문 보고에 대한 결과를 비교해 보면, 국내 관련 분야 연구자들
 뿐만 아니라 옵용분야도 제한적인 것을 알 수 있다. 국내는 한양대의 김종만 교수팀이
 가장 선구적으로 PDA를 이용한 다양한 옵용 색센서를 개발하고 있지만, 유기염료를 이
 용한 색센서라 금속나노입자를 이용한 색센서에 대한 보고가 적은 것이 사실이다.
 ○ 보고된 결과들도 신약개발이나 약물전달용으로 나노입자를 개발하고 색변화를 관찰하려
 는 의약분야가 상당부분이었다. 즉 부가가치가 보다 높은 쪽을 선호하다보니 환경으로
 옵용가능한 색센서의 개발이 늦어지고 있다.
 ○ 국외 환경색센서 분야의 전문 국가로는 중국이 가장 앞서고 있으며, 미국과 일본 순서로
 가는 것으로 판단된다. 이는 논문의 교신저자 분석을 통하여 확인하였다.
 ○ 중금속에 대한 환경색센서는 이미 많이 보고되고 있으므로, VOC, 액상 음이온계, 유해화
 학물질 등에 대한 검출 가능성이 있는 환경색센서의 개발이 시급한 실정이다.

2. 환경색센서의 실용화 기술
 ○ 색센서용 원천기술인 염료나 금속나노입자의 코팅 기술이 어느정도 정해도 오르다면 반
 드시 실용화를 위한 어려이 기술이 따라가야 한다. 해당 분야는 Suslick 교수가 가장 앞
 선 것으로 파악된다.
Suslick 교수는 다중패터닝을 통하여 DNA 접형태로 다중 어레이를 구성하여, VOC, 음이온, 중금속 등 다양한 물질을 동시에 분석 가능토록 만들었다. 상용화를 위해서는 반드시 사용자의 편리성이 보장되어야 하며, 분석시 복합분석이 가능하게 만들면 더 높은 수익성을 보장할 수 있을 것으로 기대된다.
<표 4> 환경색센서 분야의 국내 기술수준 비교

<table>
<thead>
<tr>
<th>분석 방법론</th>
<th>대상물질</th>
<th>중요도</th>
<th>최고수준 대비 국내수준(%)</th>
<th>발전가능성</th>
</tr>
</thead>
<tbody>
<tr>
<td>나노입자</td>
<td>중금속</td>
<td>★★★</td>
<td>60</td>
<td>★★★</td>
</tr>
<tr>
<td></td>
<td>화학물질</td>
<td>★★</td>
<td>30</td>
<td>★</td>
</tr>
<tr>
<td>유기염료</td>
<td>중금속</td>
<td>★★</td>
<td>30</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>화학물질</td>
<td>★★★</td>
<td>50</td>
<td>★</td>
</tr>
<tr>
<td>Vesicle</td>
<td>중금속</td>
<td>★</td>
<td>30</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>화학물질</td>
<td>★★</td>
<td>60</td>
<td>★★★</td>
</tr>
<tr>
<td>어레이</td>
<td>중금속</td>
<td>★★★</td>
<td>10</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>화학물질</td>
<td>★★★</td>
<td>20</td>
<td>★★</td>
</tr>
</tbody>
</table>
제3장 산업체 동향

제1절 환경센서 산업의 기술동향

1. 선진국의 산업 기술동향

○ 최근 21세기 정보사회에서는 유비쿼터스 지능기반의 스마트한 사회로 발전하고 있어 현장 진단서비스에 대한 수요가 점진적으로 증가하고 있다. 다양한 현장 조건에서 인간 삶의 질적 향상을 위한 보건, 의료, 환경 및 안전에 대한 보다 나은 현장 진단서비스를 제공하기 위해서는 전통적 측정분석과정의 번거로움과 시간지연을 제거함으로써 실시간으로 측정되어야 하며, 개인적으로 휴대가 간편해야 하고, 사용이 편리해야 하며, 측정 결과에 대해 신뢰할 수 있는 특징을 갖춘 센서가 만들어져야 한다.

○ 이러한 센서는 일반인도 손쉽게 원하는 생물화학적 분석을 할 수 있게 만들어 주는 구조로서 현존하는 시장 및 잠재시장의 규모가 크고 의료, 환경, 산업 분야의 발전을 촉진하는 매개체이므로 그 연구개발을 위하여 각국의 산학연이 치열하게 경쟁하고 있다.

○ 미국의 조사기관인 FROST & SULLIVAN 전망에 의하면, 센서 시장 규모는 2000년 이전에는 세계적으로 약 50억불이며 연간 6~7%의 급속한 성장을 하여 2010년에는 약 100억불에 이르고 있다. 센서를 포함한 관련분석기나 시스템을 고려할 경우 400~500억불의 시장이 형성되어 있는 것으로 판단된다. 선진국에서는 센서산업을 첨단사업으로 분류하고 센서산업을 집중육성하고 있다.

○ 센서기술도 다른 공업분야와 유사하게 기술 선진국인 미국, 일본, 유럽에서 주로 발전하고 있다. 일본은 화학센서의 종주국으로서 각종 센서의 공급원으로 전 세계 센서시장을 석권하고 있으며, 과거에 축적된 기술과 현재의 노력을 바탕으로 신기술가 도약한 경쟁자세가 어우러져 계속적인 센서강국으로서의 위치를 고수하고 있다. 일본에는 센서에 관한 전문적인 모임이 다양하게 조직되어 있어 기술협력이나 정보 분석이 신속히 이루어지고 있다. 앞으로 일본은 세계 시장을 겨냥하여 고성능 마이크로 화학센서와 신기술 재료의 개발을 가속화하고 센서와 컴퓨터의 결합을 본격적으로 시도할 것으로 전망된다.

2. 국내 센서 산업 기술동향

○ 선진국 대비 대기오염 측정장비 기술은 30% 수준이며, 폐기물 관련 기술은 25%에 불과
한 것으로 파악되고 있다. 정부는 공공부문 환경기술개발 투자 증대와 Eco-Dream Project 등을 통하여 21세기 첨단산업인 환경산업 육성에 총력을 기울이고 있다.

○ 정보통신 산업과 더불어 21세기에 가장 유망한 산업으로 환경업계로 끌고 있으며, 페직한 생활을 지향하는 라이프스타일의 변화와 환경개선을 요구하는 사회적 압력의 증대로 인하여 이미 세계의 여러 나라에서는 각종 법규와 표준 지침을 제정하여 미래의 주도산업을 위하여 발 빠르게 대처하고 있다.

○ 국내 환경시장은 연평균 13.4%의 성장을 기록하여 2005년에는 20조 규모에 이르고 있으며, 이는 10년전(5조) 대비 4배의 시장규모 성장을 보이고 있다. 수질, 대기 정화 및 분석기기의 핵심인 센서는 5년마다 거의 100%의 성장률을 예상하고 있어서, 앞으로 환경계측 및 제어에 관련된 센서에 대한 수요가 증가할 것으로 판단된다.

○ 그러나 선진국 대비 국내 센서기술 현황은, 국내의 취약한 전기화학 분야를 볼 때 환경산업(수질 및 대기 분야)의 센서기술 분야는 너무나도 미흡한 실정이다. 또한 국내 센서기술은 아직 시작단계이거나 산학협력에서 개발의 열기는 높지만, 전반적으로 소재기술이 많이 취약하여 선진국 수준에 이르기 위해서는 많은 시간을 필요하다.

○ 최근 들어서 일부 분야에서는 산업화와 기술적인 진보가 눈에 띄게 일어나고 있지만 아직도 대부분의 센서개발수준이 선진국에 비해 너무나도 미미한 실정이다.

○ 센서기술수준 저하의 원인으로는 전문인력의 부족, 산학연의 협력적 협력의식 미약, 소재산업에 대한 기초의 결여, 개발투자 미흡, 합리적 개발전략 부재에 기인으로 보고 있다. 국내 센서 관련 기술은 지금까지 선진국의 과거 기술을 모방하여 제원시키는 과정에 불과하여 기술 보호의 벽으로 우리의 것으로 만드는데 많은 시일이 소요된다.

3. 나노바이오 센서 및 모니터링 기술

○ 나노공학이 접목된 바이오칩 및 바이오센서의 탄생은 화학/생명공학/진단의학에서의 요구로 기술화되고 있으며, 이의 플랫폼 기술이 점차적으로 타 기술 분야로 확장하게 전개되고 있다.

○ 특히 바이오칩은 임상진단뿐만 아니라 신약 개발, 환경모니터링 등의 분야에서 혁신적 변화를 일으킬 것으로 주목 받고 있으며, 그 시장성 또한 높게 평가되고 있다. 바이오칩은 현재 대부분 DNA 점보백질침과 Lab-on-a-chip제품이 비중이 높아져 2010년이면 이들 제품이 주종을 이룰 것으로 예상된다. 나노바이오센서는 나노공학이나 나노소자 기술을 이용하여 생화학반응에 의한 신호를 전기신호로 바꾸는 창이하, 전자공학/화학/생명학/제료공학/소프트웨어 등 과학 전반에 걸친 기술을 필요로하는 미래형 융합기술임은 자명하다. 또한 나노바이오센서는 기술개발에서 필요 시료량이
적고, 측정의 정확성이 높으며, 주변환경의 영향이 적고, 측정이 간편하며, 측정의 리얼타임화가 가능하다는 장점이 있다.

○ 그러나 센서시장은 독과점식 사업운영으로 빈 공간을 찾기가 쉽지 않다. 시장측면에서 시장진입 초기단계 제품이고, 용도분야가 다양하며, 높은 성장성이 전망되는 제품이나, 현재 세계 바이오센서 시장은 존스앤존슨, 바이엘, 로슈 등 다국적 업체들이 세계 시장의 80% 이상을 장악하고 있으며 국내에서도 이들 제품이 90% 정도 점유하고 있다.

○ 몇 개 업체가 세계적으로 독과점을 형성하고 있고, 500여개에 이르는 외국 특허들을 피하여 개발하기가 어렵다. 따라서 중소규모 국내 개발업체들의 자금능력 및 마케팅 능력 부족 등에도 불구하고, 최근 국내 대학과 기업들의 수년간에 걸친 연구개발 결과 부분적으로 우리나라라도 경쟁력을 갖추어 가고 있으며, 국내 업체들의 수입대체 및 경쟁력 강화를 위해서 국가차원에서의 관심과 육성이 필요한 산업이라 할 수 있다.

제2절 나노바이오 환경센서 동향

1. 나노기술 이용한 환경센서

○ 센서를 통한 현장 진단서비스는 이동통신단말기나 휴대 단말기 등의 형태와 같이 개인적으로 휴대하고 다닐 수 있는 고집적형, 고감도, 초소형의 혁신적인 모델로서 나노바이오센서(Nano-Bio Sensor)가 그 기술적 진화를 돕고 있다 할 수 있다.

○ 최근 나노기술의 급격한 발전은 기존의 바이오센서가 갖는 안정성 및 내구성 등의 기술적 한계를 극복하도록 성능을 향상시킬 수 있게 하였으며 다양한 나노구조체가 개발되면서 가속도를 붙이고 있으며, 적은 양의 시료만으로도 정밀한 분석이 가능하게 하여 개인 휴대가 가능한 크기의 모델로 개발이 될 수 있게 하는 상품화의 첨병 역할을 하고 있다.

○ 특히 나노바이오센서는 BT, NT, IT의 융합기술로 개발하고자 하는 유전자칩, 단백질칩, 접적센서칩, 미세유로(microfluidic)칩, 초소형의 효소촉매칩 등에 대한 개발의 집중이 크다. 이러한 휴대용 나노바이오센서는 환자의 생체신호를 감지하는 의료보건분야, 신약후보물질 개발을 위한 임상진단분야, 대기오염 및 수질오염을 감지하는 환경보전분야 등에 응용될 수 있다.

○ 또한 식품의 신선도를 유지하는 식재료 유통물류분야, 교량붕괴 감지 등의 방재재해분야, 탄저균등의 바이오테러를 감지하는 군사분야, 산업현장의 유해가스를 감지하는 산업분야 등 다양한 용도로 활용할 수 있다. 한편, 의료 및 환경용 연속측정, 식품 및 생화학무기 등의 휴대용센서는 상당수 개발 중이거나 이미 개발되어 실생활에 사용 중에 있다.
기술의 분야
광섬유 나노바이오센서 (Fiber Optic nanobiosensors)

기술의 특징
■ 생물학적, 화학적 감도층으로 구성된 나노미터 스케일의 측정소자
■ 수십 나노미터의 빛 경로가 변화를 감지하는 초고감도 센서
■ 전기자기장 간섭, 자기장, 표면전위 등의 영향을 받지 않음

제품적용분야
■ 살아있는 세포의 각 부위별 물리화학적 및 생물학적 기작의 상호감지: 싸이토크롬 C와 같이 세포 상호간 에너지 생산에 관여하는 단백질 모니터링
■ 단일세포내 특정 위치에 있는 물질분석 및 생체물질의 개별적인 움직임 및 기능구현을 실시간으로 모니터링: 단일세포 내 생화학적 타겟 검출
■ 벤조피렌테트롤, 벤조피렌 등

협력기술
■ 나노기술 + 광섬유기술 + 레이저기술 + 고정화기술

기술 동향

<table>
<thead>
<tr>
<th>기술의 분야</th>
<th>광섬유 나노바이오센서 (Fiber Optic nanobiosensors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술의 특징</td>
<td>■ 생물학적, 화학적 감도층으로 구성된 나노미터 스케일의 측정소자
 ■ 수십 나노미터의 빛 경로가 변화를 감지하는 초고감도 센서
 ■ 전기자기장 간섭, 자기장, 표면전위 등의 영향을 받지 않음</td>
</tr>
<tr>
<td>제품적용분야</td>
<td>■ 살아있는 세포의 각 부위별 물리화학적 및 생물학적 기작의 상호감지
 - 싸이토크롬 C와 같이 세포 상호간 에너지 생산에 관여하는 단백질 모니터링
 - 단일세포 내 특정 위치에 있는 물질분석 및 생체물질의 개별적인 움직임 및 기능구현을 실시간으로 모니터링
 - 단일세포 내 생화학적 타겟 검출
 - 벤조피렌테트롤, 벤조피렌 등</td>
</tr>
<tr>
<td>협력기술</td>
<td>■ 나노기술 + 광섬유기술 + 레이저기술 + 고정화기술</td>
</tr>
</tbody>
</table>

| 기술 동향 | 해외
 - 1987년도 미국 Oak Ridge National Lab에서 Von Dihn 그룹이 최초 개발
 - 싸이토크롬 C 활성도 정량 측정 센서 개발
 (세포자살과 에너지생산기작연구용)
 - 단일세포 내에 있는 단백질의 활성도 측정 센서 개발 |
| 국내 | 본 기술은 선진국에서 조차 완전기술로서 국내의 기술연구는 아직 접점을 없어지 않은 분야이다 |

| 산업체 통합 | 해외
 - 2004년 바이오마커인 카SizePolicy.9(Kapsaase-9)를 활성도 측정장치 개발 |
| 국내 | 연구실적 없음 |

2. 바이오기술 이용한 환경센서

기타 사항

○ 국내 신기술산업 중 NT 분야는 2010년까지 연평균 49.5%의 높은 증가율을 보이면서 국내 시장 규모는 2020년 1.9%에서 24.3%까지 확대로 증가하였다.

○ 우리나라에서의 나노기술 산업의 경제적 가치로 향후 2050년 현재 약 5조원(전체 산업규모의 2.4%)에 달할 것으로 추정되며, 2010년에는 14조원(전체 5.5%), 2020년에는 59조원(전체 17.7%)에 이르는 등 비약적으로 늘어날 전망이다.

○ 나노기술 산업화의 지속적인 고도성장은 나노기술 자체의 발전뿐만 아니라 제품이나 서비스 영역에서 나노기술을 채택하는 비율이 가속적으로 높아질 것이라는 데서 비롯된다고 보고 있다.

<표 5> 나노바이오센서 응용사례1

- 45 -
표 6 나노바이오센서 응용사례2

<table>
<thead>
<tr>
<th>기술의 분야</th>
<th>나노입자 나노바이오센서 (Nano-Particl based nanobiosensors)</th>
</tr>
</thead>
</table>
| 기술의 특징 | ■ 나노입자가 크기, 모양, 조성에 따라 다른 빛깔을 보이는 특성을 이용하여 DNA의 혼성화 (Hybridization)를 검출하는 센서
■ 나노입자에 특정의 분자가 흡착되면 굴절률이 변하므로 스펙트럼 변화를 측정하여 흡착분자를 검출
■ 2차원평면에 생체물질을 아래위로 이동시키는 방식으로 기존 기술의 한계를 극복
■ 나노입자의 색을 간단히 |
| 제품적용분야 | ■ 생체분자의 결합을 실시간으로 측정할 수 있고 소형화가 가능 |
| 협력기술 | ■ 나노기술 + 광섬유기술 + 레이저기술 + 고장학기술 |
| 기술 동향 | 해외
■ 1987년도 미국 Oak Ridge National lab에서 Von Dihn그룹이 최초 개발
■ 쌍토크롬 C 활성도 정량 측정센서 개발
(세포사멸과 에너지생산 기능연구용)
■ 단일세포내에 있는 항암 대사물을 분할 양분조직인 빌조피네트로 분석 |
| 국내 | 본 기술은 선진국에서 조차 완전기술로서 국내의 기술연구는 아직 접근이 용이하지 않은 분야이다 |
| 산업화 동향 | 해외
■ 2004년 바이오마커인 캅세이지9(Kapsease-9) dml 활성도 측정장치 개발 |
| 국내 | ■ 연구실적 없음 |
| 시장전망 | ■ 나노기술의 급속 발전과 다양한 기능을 가진 나노입자를 합성할 수 있는 기술이 개발 |

○ 이들 환경분야에 활용하는 경우도 보고되고 있다. 즉, 환경호르몬, 폐수의 BOD, 중금속, 농약 등과 같은 환경관련 물질을 검출하는데 사용되는 바이오센서이다. 현재 내분비 교란물질로 주목받고 있는 다이옥신과 같은 각종호르몬에 선택성을 지니며 초저농도도 감지할 수 있는 센서의 개발에 많은 노력을 기울이고 있다.

○ 산업용으로 생물발효공정에서 미생물의 성장 조건을 제어하기 위하여 바이오센서가 사용되며 화학공장, 정유공장, 제약회사에서의 각 공정에서 나오는 특정 화학물질에 대한 분석에 바이오센서가 사용되고 있다.

○ 바이오센서 제품 타입 중 다중분석 센서에 대한 수요가 가장 많이 늘어날 전망되며, 다중분석 센서 제품에서의 활용될 바이오센서 시장은 2011년 1억 달러 규모로 성장 예측하고 있다. 그 다음으로 광섬유와 형광면역 시험, 바이오-관리 검출기 제품에 대한 시장이 커질 것으로 보이며, 인체측정에 대한 바이오센서 기술 시장이 2001년과 2011년 사이 가장 큰 누적 연평균 성장률(9.8%)을 보이고 있다.

3. 나노바이오기술의 환경센서 응용사례

(1) 나노입자의 나노바이오 환경센서 및 모니터링 기술로의 활용
○ 나노입자는 바이오센서에서 많은 분야에 응용되고 있으며, 예를 들면 전자적, 광학적, 자석적 기능을 가지고 있는 나노입자들이 여러 가지 신호를 증폭시키고, 감지하는 바이오센서에 사용되기 위하여 개발
○ 나노입자 기반 센서들은 음향 바이오센서, 광학 바이오센서, 자석 바이오센서, 전기 화학적 바이오센서 등이 있음
○ 금속 나노입자는 생화학 반응을 촉매 시키는데 사용되어 왔으며, 이 능력은 바이오센서 설계에 유용
○ 촉매작용은 금속 나노입자의 화학적 응용에 널리 사용되며, 전이금속은 많은 유기물 반응에 대해서 대단히 높은 촉매능력을 갖고 있음
○ 나노입자들은 재래식 균질 촉매제가 작용하는 것처럼 반응매체로 작용하고, 반응 후에는 쉽게 원상회복됨
○ 효소-금 교상체(colloid)는 H2O2, 포도당, 크산틴(xanthine), 하이포크산틴(hypoxanthine)을 위한 바이오센서를 제작하는 전극표면에 사용
○ 나노크기의 반도체 결정을 이용한 고성능 화학 반응 센서로, 생물학적, 화학적 반응의 효율을 증가시키고, 효소와 같은 바이오분자 단위와 화학 전기화학 시스템을 생성하기 위하여 연결시키며, 금속 나노입자들은 나노 전자 장치에서 전자 전달을 촉진시키는데 이용
○ 나노입자들은 전극표면에서 자기-조립된 단일층 분자를 형성하여 전자의 이동하는 것을 관찰할 수 있음
○ 금 나노입자들은 전극표면에서 자기-조립된 단일층 분자를 형성하여 전자 이동하는 것을 관찰할 수 있음

(2) 나노섬유의 나노바이오 환경센서 및 모니터링 기술로의 활용
○ 생물과 화학의 종들을 위한 고감도, 실시간 전기기반 센서를 개발하기 위하여 붕소를 칠한 실리콘 나노와이어(SiNW)를 개발됨
○ 바이오센서의 사용화 SiNW는 적어도 피코몰(picomolar)의 농도 범위에서 스트렙트아비딘이 감소하는 것을 감지하는데 이용되며, 더욱이 항원 기능화 SiNW는 가역성 항체 결합을 나타내고, 실시간에서 농도의 감지를 가능
○ 화학 및 생물 종(species)의 광범위한 실시간 감지를 위한 반도체 나노선의 배열 기반 검색과 생체 내 진단면에서 연구되어야 함
○ 새로운 등급의 나노스케일의 이러한 센서는 개별적인 세포와 같은 최소 크기의 환경에서 측정을 가능하게 함
○ 이것은 생체 내에서 환경세포 안에 처리과정을 모니터링 하기 위한 기반을 마련

(3) 다공성 나노구조물의 나노바이오 환경센서 및 모니터링 기술로의 활용
○ 바이오센서에서 관 모양과 다른 다공성 나노구조물의 일반적인 용도는 고정화된 생체분자의 양과 활동을 증가시키는 데 있으나, 나노구조물의 특유의 성질을 보면 이러한 나노구조물이 바이오센서의 뛰어난 설계 개발에 기반이 마련함
○ 나노튜브가 발견된 이후 탄소 나노튜브는 마이크로 장치를 위한 나노스케일의 제조재료로서 큰 관심이 집중
○ 탄소 나노튜브의 전기적 성질과 나노크기가의 특유 표면 화학적 특성을 생화학 및 화학 센싱 응용에 이상적인 재료
○ 탄소 나노튜브의 적접 전자 전달 능력이 다른 응용에도 연구되어 왔으며, 예를 들면 SWNT의 이용은 흡수된 산화 활성 용액의 산화 환원 활동으로 직접 전지 전달을 가능하게 하며, 관 모양의 소섬유(fibril)는 효소의 특성을 많이 변화시키지 않고 보조인자의 통과거리 내에 위치함
○ 탄소 나노튜브 기반 전기화학 발광 바이오센서가 소개
○ 나노 결합의 다공성 실리콘은 나노센서를 위한 길이 연구되어 오래된 나노구조의 재료이며, 이것은 상온에서 아주 강한 흐름을 발생시키기 때문에 다공성 실리콘은 바이오센서 제작에서 널리 이용됨
○ 빛을 발사하는 능력은 2nm 적정 보다 작은 범위의 아주 작은 구멍 때문이며, 다공성 실리콘은 높은 밀도(500 m2/cm3)에서 많은 표면적을 지니고 있어 보통 실리콘 기술의 공정으로 제작이 가능

(4) 분자 자기조립을 이용한 나노바이오 환경센서 및 모니터링 기술
○ 분자 자기조립은 자연 시스템을 모방한 것이며, 물리, 화학, 생물 사이에 중요한 연결고리가 됨
분자 자기-조립은 바이오센서용도에서 중요한 구조물 재료, 장치를 만드는데 사용되며, 자기-조립 구조물중에 얇은 지방층 필름과 세포내 지방입자(liposome)는 바이오센서와 관련하여 매력적인 관심중의 하나임

세포막과 같은 지방층과 세포내 지방입자는 인지질로 구성되어 있으며, 이중층 지방층막에 기초를 둔 생체모방으로 만들어진 장치는 이온 채널 스위치 바이오센서임

가능성 비색 바이오센서(colorimetric biosensor)를 개발하기 위하여 고분자화된 지방층소낭(vesicle)이 연구됨

빠르게 색깔을 변화시키는 시약으로 특수 항체를 감지하는 방법은 AIDS와 폐병과 같은 질병을 즉시 진단 가능

4. 환경모니터링 기타 센서

(1) 중금속 센서: Nanoelectrode array

나노전극 어레이는 용해된 금속의 검출 및 정량화를 위하여 개발되었으며, 나노전극에 전기장을 인가하고 전류와 전압을 관찰함으로써 전극으로부터 신호를 얻게 됨

전자빔 식각기술 또는 화학 기상 증착법을 이용하여 약 100 만 개의 전극을 1in2 면적의 기판을 집적

감지 전극은 표준 전극과 함께 집적되기 때문에 표준 용액이 필요 없고 초순수를 오염시키지 않으면서 감지할 수 있으며, 고밀도로 집적된 작은 전극은 표준 전극에 비하여 신호 대 잡음비가 103배 좋은 신호를 발생

밀리 전극, 코팅 및 전기화합기를 사용하면 트리클로로에틸렌(trichloroethylene), 메틸-t-부틸에테르(methyl-t-butyl ether), 비소(arsenic), 납(lead) 및 크롬(chromium)과 같은 유독성 산업 화합물과 금속의 분석 가능

(2) 중금속 센서: Laser-induced breakdown spectroscopy(LIBS)

LIBS는 레이저를 이용하여 아주 좁은 영역을 급속 가열하여 플라즈마를 발생시키고, 고감도 분광분석기술을 이용하여 물질마다 다른 플라즈마의 방사성 감체(radiative relaxation)를 관찰함으로써 물질을 감지

LIBS는 laser spark spectroscopy(LASS)로도 알려져 있으며, LIBS는 수질, 토양, 환경 폐기물 지역 내의 유해 금속 및 무기 오염물을 신속히 분석하는데 이용될 수 있을 뿐만 아니라 대부분의 원소 감지에도 이용
감지 한계는 각각의 특정 금속 및 무기 오염물질을 신속히 분석하였는데 이용될 수 있을 뿐만 아니라 대부분의 원소 감지에도 이용될 수 있음.

감지 한계는 각각의 특정 금속, 분광분석기 및 감지기에 따라 달라지며, 샌디아 프로젝트에서 감지 목표로 한 원소는 As, Be, Hg, Se, Pb, Cd, Cu, Zn, Ag, Cr, Fe 및 Mn 등이 있음.

최근에 열처리 시설 폐수에서의 금속 배출을 측정하기 위하여 LIBS 시스템이 설치되었으며, 현재 현장에 배치시킬 수 있는 LIBS 시스템이 샌디아-리버모어에서 이미히 중폭 CCD 어레이를 채택하여 구성됨.

LIBS 는 Ca, Na, K 원소의 존재 하에서 신속하게 생물학적 감지에까지 확대 적용

(3) 휘발성 유기화합물 센서: Evanescent fiber–optic chemical sensor

Evanescent wave는 전자기적 방사선이 총 내부 반사 조건하에서 유전체 표면에 침투하는 에너지로써 침투 깊이 범위에서 물질과 상호작용하며, 광섬유 클래딩 (cladding)에 특별한 코팅을 사용함으로써 화학물질이 기지로부터 evanescent 상호작용하도록 할 수 있음.

수용액에 낮은 ppm 의 농도로 존재하는 유기화합물 감지에 고분자 광 도파로 (optical wave guide)를 이용 가능

센서 응용을 위하여 근적외선 분광분석기가 정량 분석에 이용

(4) 휘발성 유기화합물 센서: Grating light reflection spectroelectrochemistry

Grating light reflection spectroelectrochemistry (GLR) 는 투과 회절 격자를 분석하려는 액체 시료에 접촉하도록 위치시키고, 입사법을 격자위로 조사하며, 특정 입사각도일 때 특정 회절차수에서 traveling wave가 evanescent wave로 변화됨.

이러한 현상은 격자 주기와 시료의 복소 굴절율의 함수인 특정 파장에서 발생되며, 이론식의 실수부는 물질 내에서 빛의 속도에 대응되고, 허수부는 빛의 홀수에 대응됨.

이 기술은 샌디아랩에서 금으로 코팅된 금속성 분광분석 격자의 전기화학적 변조와 조합하여 방향성 탄화수소의 양을 검출하는데 사용되었으며, 소량의 TNT 와 염료가 첨가된 물을 포함하는 전기화학 셀에서 격자는 작동 전극을 형성함.

주기적인 전기화학적 변조에 의하여 백만분의 50 및 10 억분의 50 의 낮은 검출한계를 나타냄.
(5) 휘발성 유기화합물 센서: Miniature chemical flow probe sensor
○ 반투과성 막을 통하여 분석 대상 유기 물질의 확산을 측정하며, 분석대상 물질은 시약과 반응하여 스펙트럼이 명확한 반응물을 생성시킴
○ 플래시 램프로부터의 흡수 밴드는 빛을 양방향으로 보내주는 광섬유를 이용하여 관찰되며, 대기 또는 수중의 휘발성 유기화합물(특히 염소화 할로카본)과 용해된 금속(구리는 특히 강한 반응을 보임)을 분석할 수 있음

(6) 휘발성 유기화합물 센서: Gold nanoparticle chemiresistors
○ 금 나노 입자 화학저항체 (chemiresistor)는 다른 화학저항체와 약간의 차이점이 있지만 일반적인 옴 센서 원리를 이용함
○ 금 나노입자가 전도성 고분자 사슬에 의하여 전기적으로 연결되며, 분석대상물과 분극 가능한 고분자 사슬 사이의 상호 작용으로부터 안정성 및 재현성 있고, 민감한 신호가 얻어짐
○ 박막을 극도로 얇게 하면 감도가 향상되어 더 낮은 농도를 감지할 수 있으며, 최근에는 이 센서를 이용하여 액상에서 pH 와 이온 농도를 측정
○ 외국의 연구자들은 주로 기체상의 VOC 의 감지에 집중하고 있으며, 샌디아랩의 다음에 개발할 목표가 되는 센서임

(7) 휘발성 유기화합물 센서: Electrical impedance of tethered lipid bilayers on planar electrodes
○ 이중 지질의 매우 얇은 층으로 구성되며, VOC 가 흡착되면 구조 내의 이온 이동도가 변화됨
○ 기존의 고분자 전해질이 코팅된 정전용량 화학저항체 센서보다 훨씬 우수한 민감도를 나타냄
○ 민감도의 향상은 분석대상 분자에 결합하는 황제와 같은 분자 인식 요소를 사용하기 때문에
제4장 기술 시장동향

제1절 환경센서 시장 동향

1. 시장예측

- 지난 10년 동안 환경산업 분야에서 가장 성공적이었던 아이템은 청청 에너지 시스템과 공정/공해 방지 기술이었다. 청청 에너지(100억 달러)가 전체 시장 성장의 65%를 차지했고, 공정 및 공해 방지 기술 생산액은 연간 13억 달러이며, 앞으로도 지속적인 성장이 예상된다.

- 환경오염관리와 관련된 장비산업은 38억 달러 규모로 연 성장률이 약 4%이며, 물 관련 설비(39억 달러), 폐수 처리(288억 달러) 및 물 관련 장비/화학물질 (203억 달러)로 구성되는 미국의 물 관련 산업은 환경 산업의 38%를 차지하고 있다. 또한 고체 폐기물 처리(408억 달러), 대기오염 제어 장비(183억 달러) 및 자문/엔지니어링(180억 달러) 등도 환경 산업의 주요 구성 분야이다.

- 현장장비의 성능은 실험실 장비의 성능에 더욱 가까워질수록 기술적 도약이 이루어질며, 장기적인 감시에 있어서 앞으로 가능성이 높은 응용분야는 수질 감시 분야로 주목하고 있다.

- 환경용 장비 시장은 현장 분석에 따른 비용 절감, 개선된 규제, 고객의 현장감시법 수용 등으로 인하여 확대되고 있다. 또한 환경 관련 현장감시법 수용 등으로 인하여 현장 장비의 사용이 확대되는 것으로 나타났으며, 환경 관련 현장장비 시장은 향후 연 평균 성장률이 약 7%로 예상되고 있다.

- 현재 주어진 규제환경에서는 현장 장비가 실험실 분석을 완전히 대체하지는 못할 것이기 때문에 잠재 시장의 최대 크기는 예측 불가.

- 환경센서중 이미지 센서(CCD 등)와 자동차 배기 센서는 일상화 되어 있다. 글루코스 센서 또한 혈당측정용으로 대중화 되어있으며, 이와 관련된 바이오 및 화학센서는 환경호
르몬, 미생물 등을 저농도로 검지할 수 있는 특징을 지닌다. 특히 optoelectronic sensor의 경우 2010년 미국 내 시장규모는 22.5 billion 달러에 달하며, 2015년은 28 billion 달러에 이르 것으로 전망되고 있다. 미국의 경우 2012년 5 billion 달러가 넘는 예산을 나 노바이오(화학) 센서에 투자할 예정이며, 이와 같은 전폭적인 지원은 환경분야에 활용가능한 센서에도 영향을 주게 된다. 환경분야를 포함한 미국 내 비6 센서 업체(Johnson be Johnson, New Brunswick, N.J.; Roche, Basel, Switzerland; Abbott Laboratories, Abbott Park, Ill.; NGK Spark Plug, Irvine, Calif.; Robert Bosch, Farmington Hill, Mich.; and Bayer, Tarrytown, N.Y.)가 시장의 2/3를 차지하고 있다.

![그림 53] 2012년 미국내 센서관련 투자 비율(Weetall 자료)

○ 우리나라의 바이오센서 시장은 도입기 초기단계로 2001년 50억원, 2002년 70억원, 2005년 3000억원 시장을 형성하여 년 평균 56%의 높 은 성장을 보이고 있다. 그러나 우리나라 시장규모에서 국내 공급이 10% 해외공급이 90%를 차지하고 있는 실정이다.
○ 시장규모가 큰 범용센서의 경우 제품 차별화가 어렵기 때문에 업체 간 경쟁 및 가격 경쟁이 치열하여 일반적으로 제품가격이 낮고 마진율도 낮다. 현재까지는 경쟁이 상대적으로 심하지 않으면서 향후 높은 성장률이 기대되는 틈새시장 분야인 환경용 바이오센서 기술개발에 국가의 정책적 지원이 집중된다면 향후 경쟁이 치열해질 환경용 바이오센서 시장에서 국내 기업이 선점할 수 있을 것으로 평가된다.

2. 산업발전전망

○ 미국은 2001년도 환경산업생산액은 2,130억 달러로 2.1%의 성장률과 11%의 수출 증대를 기록하였으며, 현재까지도 환경산업은 지속적인 발전단계에 있다. 환경 개선/산업 서
비스 시장은 정점을 지나 감소 추세에 있으며, 유해 폐기물 관리 기금의 감소는 1993년부터 계속되는 추세이다.

○ 유해 폐기물 처리 기술에 대한 투자 수익은 당분간 낮을 것이기 때문에, 미국 내에서 DOE (Department of Energy)가 환경 처리 시장에 가장 큰 투자원으로서의 역할을 계속 하고 있다.

○ 환경개선이라는 개념이 점점 줄어드는 대신 페이로 내 감시 등 장기적이 개념으로 대체될 것이며, 이러한 대체가 가능해지려면 새로운 장비 및 측정 기술, 원칙 정보 관리 시스템이 갖춰져야 한다.

○ 이에 따른 환경시장은 수익 가능성이 높은 응용 분야에서 형성될 것이고, 다양한 기술의 발전에 의해 가능해질 것으로 예상된다.

○ 환경 감시가 미국 DOE 만의 유일한 정책은 아니며, 미국 EPA에서도 최근 Federal Facilities Restoration and Reuse Office를 통하여 환경 감시가 결정되었으며, EPA Region IV와 X은 연방 설치에 대한 환경 규제 정책을 마련하고 있다.

○ 몇몇 센서들은 국산화에 개발이 되어있지만 아직까지는 선호도에 밀려 있어 국내에 알려지지 않은 상태이다. 센서 제품에 좀 더 기능이 보완되어지고 국내에 제품 선호도의 인식이 바뀌다면 외산에 못지않은 제품으로 거듭날 것으로 전망된다.

○ 그러나 단가 측면이나 유지보수관계를 볼 때 국산이 우수하며 제일 중요한 것은 국내 현장의 조건에 적합하게 제작이 되어있어야 한다는 점이다. 단지 수십 년 동안 외산을 쓰다 보니 그 조건에 현장 조건이 맞추어져 있는 현실이 국내 환경 분석 센서 산업의 문제점으로 지적되고 있다.

○ 우리나라가 선진 기술에 비해 기초 학문이 미흡하여 소재 분야에 취약하다보니 센서 제조 기술에도 많은 여론 사항이 존재한다. 현재 개발 되어진 분석용 센서가 국내 현장 사용자에게 인지도가 높아지만 절로 선진 기술에 뒤쳐지지 않는 제품으로 거듭날 것으로 기대된다.

○ 센서는 산업현장에 적용됨으로써 비로소 그 의미가 있으며 가장 적합한 센서를 적용함으로써 공장에서는 100% 효율을 기대하고, 판매회사에서는 양질의 제품과 무형의 기술 서비스를 제공함으로써 더불어 발전해 나가는 것이 바람직하다.

○ 센서 그 자체가 다목적 소량 생산이라는 업종의 성격상 중소업체가 주류를 이루고 있으 며, 낙후된 기술로 인해 아직은 독자적 기술 구축보다는 선진외국의 기술을 도입, 판매 하고 있는 국내 현실을 감안하여 정부 및 관련 연구소 업계도 국산화 개발에 앞장서야 할 것이다.
3. 환경오염물질 검지 방법론

○ 환경오염물질을 시각적으로 검지하는 기술은 산도를 측정하는 리트머스부터 사용되어 일반화 되었다. 이외에도 기상 및 액상에 존재하는 다양한 유기화학물질에 대한 시각적 정성분석을 위한 기술 시장들이 공개되고 있다.

○ 튜브나 칩형태의 환경색센서부터, 다중 가스 분석기, pH 측정용 레이저까지 다양하다. HazCat Kit, HazMat Kit, APD-2000과 같은 장치도 포함되어 있다. INL의 보고서에 의하면, 현장에서 즉각적으로 사용가능한 환경색센서의 이용빈도는 다중 가스분석기(36%)가 가장 많으며, 방사능 오염 분석기(21%), 산도분석용 레이저-환경색센서(17%)가 사용되고 있다. 그 외 액상내 존재하는 오염물질 검지에는 튜브형태나 화학염료를 이용한 검출법(15%)가 사용되고 있다.

<그림 54> 현장에서 즉각적으로 사용가능한 환경색센서 이용빈도(INL 2007 보고서)

○ 이러한 결과를 보더라도 아직까지도 액상 및 기상에 대한 소형, 비장치형 환경색센서의 개발이 활발히 진행되고 있지 않는다는 것을 알 수 있다. 또한 미국내 조사에 의하면 인구분포에 따라서 사용가능한 색센서 기술 장비의 한계성도 보이고 있다. 따라서 환경오염물질 검지와 관련된 전 국민의 개인적 알권리 실현을 위해서도 폐기물의 색센서가 일반화되거나 가정용 제품에 일체화 된다면, 해당 기술에 대한 시장 확대가 가능하리라 본다.
<표 7> 1차 오염물질 검지용 사용되는 환경색센서 기술(INL 2007 보고서)

<table>
<thead>
<tr>
<th>Colorimetric Detector</th>
<th>Population less than 100K</th>
<th>Population 100K to 500K</th>
<th>Population 500K to 1,000K</th>
<th>Population greater than 1,000K</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH Strips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8/M9 Papers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HazCat® MicroCat/WMD Kit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M256A1 Chemical Agent Detector Kit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorimetric Tubes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Measurement System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HazMat Smart-Strip™</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Classifier Strips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastewater Classifier Strips</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chameleon® Chemical Detection Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heinz 5-Step™ Field Identification Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Use extensively
- Limited use or do not use
- Use often
- Do not have or have no comments on usage
제2절 환경색센서 기술시장 동향

1. 색센서 검출 방식

- 색센서가 시장에 등장하게 된 것은 페이퍼형태의 pH 검지용 리트머스가 처음이었을 것이다. 2007년 INL(Idaho National Lab)에서 Emergency First Responders' Experience With Colorimetric Detection Methods를 발간하였다. 해당 내용은 미국 DHS(Department of Homeland Security)의 지원으로 조사도니 내용으로, 다양한 환경오염물질을 검지할 수 있는 색센서 시제품을 제공하고 있다.

- 환경색센서 기술시장에 등장한 색센서 형태는 페이퍼, 튜브, 칩 등의 형태를 지니고 있다. 가장 저렴한 형태는 페이퍼 형태로 종이에 흡수된 대상 오염물질에 의한 색상 변화를 감지한다.

1) Paper 형태

- 가장 기본적인 환경색센서는 리트머스, pH 페이퍼라고 할 수 있다. 가장 기본적인 대상물질에 대한 산도측정 방법론으로, 수용성 염료가 혼합된 종이를 사용한다. pH 4.6보다 낮은 경우는 빨강색, 8.4 이상에서는 파랑색을 지니고 있다. 색변화도 즉각적으로 나타나서 현장에서 대상 오염물질에 대한 시각적 확인이 가능하다는 장점이 있다. 또한 가격도 $10 이하로 저렴하다.

![그림 55] 페이퍼 형태의 색센서(Health Hound Inc.)

- 시제품으로 나와 있는 제품은 다음과 같다. a)~c)까지는 단순히 용액의 산도만을 측정한다면, d)이후의 제품은 용액내 다양한 환경오염물질을 검지할 수 있는 제품군이다.

a) pH-Fix : pH-Fix(unmatched pH test strips), pH-Fix 0~14 PT(convenient PlopTop
Tubes) 등 두 종류의 제품을 판매하고 있다. 원하는 pH 범위에 따라서 제품이 다양화 되어 있으며, pH의 구분 높이(0.5, 1.0 단위)에 따라서도 제품이 다양하다. 해당 제품은 전영역의 pH를 측정할 수 있다는 장점이 있다.

<그림 56> pH-Fix에서 판매하고 있는 페이퍼 형태의 환경색센서

b) PEHANON: pH-Fix의 띠형태의 색센서와 동일하며, 측정범위를 pH 1~14 전체로 구분하지 않고 있다. 즉 해당 제품의 장점은 전영역 pH 검사가 아닌 특정 영역의 pH를 정확히 분석 가능한다는 장점이 있다.

<그림 57> PEHANON과 pH indicator paper

c) pH indicator paper: 스카치 테이프 형태로 분석용 종이를 뽑아 사용가능한 형태로 제조되었으며, 전영역 분석용(universal indicator)과 특정영역 분석용(special
d) QUANTOFIX: 단순히 용액의 산도를 측정하는 것이 아니라, 용액내 금속이온이나 유기화합물의 존재여부를 판정할 수 있다. Al, NH₃, As, Ca, Cl, Co, Cu, EDTA, Fe, Ni 등 다양한 중금속 및 유기오염물질을 검출할 수 있는 환경색센서라고 할 수 있다. 분석할 수 있는 농도 범위는 ppm 수준이지만 색상변화가 명확하여 종이형태의 환경색센서로서 가장 대표적인 제품이라 할 수 있다. 단점이라면, 다양한 물질을 동시에 분석이 어렵고 해당 물질 하나에 한 종류만 분석이 가능하다는 점이다.
표면 형태의 환경색센서가 산도 측정을 넘어가기 위해서는 종이에 대상물질과 결합하여 색상변화를 일으킬 수 있는 기능성 염료나 금속입자가 혼합되어야 한다. 즉 SCI 논문에 보고된 다양한 유기염료와 금속나노입자를 펄프와 혼합하여 색상을 지닌 종이로 제작한 다음, 해당 대상용액에 노출시켰을 때 다양한 색상변화가 발생되는 것으로 판단할 수 있을 것이다. 또한 색상변화시 색의 contrast 변화 정도에 따라서 정성분석도 어느 정도 가능하다고 판단된다.

따라서 종이형태의 색센서가 가장 현실적이고 소모품 판매에 따른 수익성이 가장 높다고 판단된다.
(2) Tube 형태

○ 색센서의 또다른 형태는 튜브형태이다. 튜브는 양쪽이 밀봉되어 있으며, 내부에는 기능성 물질로 코팅된 고체 구형분말이 들어 있다. 주로 기상 오염물질을 정성 분석하는 데 사용되며, 양쪽의 유리관을 개봉하여 공기를 빨아들여서 색의 변화를 관찰하게 된다. 보통 2분 이내의 색변화를 나타낸다. 가격은 $35 정도로 페이퍼 형태보다는 비싸지만, 기상 분석이 가능하다는 장점이 있다.

![튜브형태의 환경색센서](EnviroSupply & Service Inc.)

○ 분석 물질로는 CO2, HCHO, SOx, H2S, CO, HCN 등 상당히 다양한 환경오염물질을 분석할 수 있다. 해당 제품은 Macherey-Nagel, RAE Systems에서 주로 제작하고 있다. 적응범위는 0.1~1000 ppmv까지 다양하며, 물질의 종류도 수십종에 이른다. 적응온도는 주로 0~40°C 정도로 일반적인 상온분석이 가능하다는 장점이 있다.

![다양한 종류의 유해가스 검출용 환경색센서](RAE Systems)
<table>
<thead>
<tr>
<th>Type</th>
<th>Part Number</th>
<th>Standard Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone (C3H6O)</td>
<td>10-111-40</td>
<td>0.1 - 2%</td>
</tr>
<tr>
<td>Amines (RNH2)</td>
<td>10-132-10</td>
<td>0.5 - 10 ppmv</td>
</tr>
<tr>
<td>Ammonia (NH3)</td>
<td>10-100-05</td>
<td>1 - 30 ppmv</td>
</tr>
<tr>
<td>Benzene (C6H6)</td>
<td>10-101-01</td>
<td>0.5 - 10 ppmv selective</td>
</tr>
<tr>
<td>Butane (C4H10)</td>
<td>10-137-30</td>
<td>25 - 1400 ppmv</td>
</tr>
<tr>
<td>Carbon Dioxide (CO2)</td>
<td>10-104-30</td>
<td>300 - 5000 ppmv</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>10-102-18</td>
<td>5 - 100 ppmv selective</td>
</tr>
<tr>
<td>Chlorine (Cl2)</td>
<td>10-106-10</td>
<td>0.5 - 8 ppmv</td>
</tr>
<tr>
<td>Chlorine Dioxide (ClO2)</td>
<td>10-130-10</td>
<td>0.25 - 15 ppmv</td>
</tr>
<tr>
<td>Diesel Fuel &Jet Fuel</td>
<td>10-143-10</td>
<td>0.5 - 25 ppmv</td>
</tr>
<tr>
<td>Ethanol (C2H6O)</td>
<td>10-141-30</td>
<td>100 - 2000 ppmv</td>
</tr>
<tr>
<td>Formaldehyde (CH2O)</td>
<td>10-121-05</td>
<td>0.1 - 5 ppmv</td>
</tr>
<tr>
<td>Gasoline (CnHm)</td>
<td>10-138-30</td>
<td>30 - 1000 ppmv</td>
</tr>
<tr>
<td>Hydrocarbons (HC)</td>
<td>10-110-30</td>
<td>50 - 1000 ppmv</td>
</tr>
<tr>
<td>Hydrogen Chloride (HCl)</td>
<td>10-108-09</td>
<td>1 - 20 ppmv</td>
</tr>
<tr>
<td>Hydrogen Cyanide (HCN)</td>
<td>10-126-10</td>
<td>2.5 - 60 ppmv</td>
</tr>
<tr>
<td>Hydrogen Fluoride (HF)</td>
<td>10-105-10</td>
<td>0.5 - 20 ppmv</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>10-103-04</td>
<td>0.2 - 3 ppmv</td>
</tr>
<tr>
<td>MEK - Methyl Ethyl Ketone (C4H8O)</td>
<td>10-113-20</td>
<td>0,02 - 0.6%</td>
</tr>
<tr>
<td>Mercaptans (RSH)</td>
<td>10-129-20</td>
<td>5 - 120 ppmv</td>
</tr>
<tr>
<td>Methyl Bromide (CH3Br)</td>
<td>10-131-10</td>
<td>1 - 18 ppmv</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO2)</td>
<td>10-117-10</td>
<td>0.5 - 30 ppmv</td>
</tr>
<tr>
<td>Nitrogen Oxides (NOx)</td>
<td>10-109-20*</td>
<td>1 - 50 ppmv</td>
</tr>
<tr>
<td>Ozone (O3)</td>
<td>10-133-03</td>
<td>0.05 - 0.6 ppmv</td>
</tr>
<tr>
<td>Phenol (C6H6O)</td>
<td>10-139-05</td>
<td>1 - 25 ppmv</td>
</tr>
<tr>
<td>Phosphine (PH3)</td>
<td>10-116-10</td>
<td>5 - 50 ppmv</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO2)</td>
<td>10-107-15</td>
<td>2 - 30 ppmv</td>
</tr>
<tr>
<td>Toluene (C7H8)</td>
<td>10-114-20</td>
<td>10 - 300 ppmv</td>
</tr>
<tr>
<td>Trichloroethylene (C2HCl3)</td>
<td>10-119-20*</td>
<td>5 - 100 ppmv</td>
</tr>
<tr>
<td>Vinyl Chloride (C2H3Cl)</td>
<td>10-128-10*</td>
<td>1 - 20 ppmv</td>
</tr>
<tr>
<td>Water Vapor (H2O)</td>
<td>10-120-10</td>
<td>2 - 10 lbs/MMCF</td>
</tr>
<tr>
<td>Xylene (C8H10)</td>
<td>10-112-20</td>
<td>10 - 200 ppmv</td>
</tr>
</tbody>
</table>
튜브 형태의 환경색센서는 기상 물질 분석에 용이하게 제작 되어 있다. 그러나 해당 제품을 액상에 대해서도 적용 가능토록 변형을 시켜야 할 것이며, 수계뿐만 아니라 유기계에 존재하는 물질 분석을 위해서도 튜브나 실리카나 알루미나 granular 분말의 표면을 개질할 필요가 있다. 또한 기능성 유기염료를 단 한가지만 사용하지 말고 다기능성 유기염료를 사용하면 두가지 이상 동시 분석가 가능하리라 판단된다.

그림 62> 튜브형태의 환경색센서 제조 방법

(3) Chip, device 형태

페이지 형태나 튜브형태는 시각적인 정보로 확인하여 편의성이 있지만 야간 분석시에는 어려울 수 있다. 이를 해결하기 위하여 chip이나 장치형태로 개발된 휴대용 환경색센서 기기가 시판되고 있다. Drager Safety사의 제품으로 Chip Measurement System(CMS)라는 제품명으로 판매하고 있다.

현장에서 유해물질을 측정할 수 있는 가장 정밀하고 신뢰성있는 휴대형 가스 광학 칩 분석기로 소개하고 있다. 시약이 충전된 측정칩은 10개씩 구성되어 있으며, 55여 종류의 환경오염물질 측정이 가능하다.

아세트산, 아세톤, 염소니아, 벤젠, CO2, CO, 에탄올, HCl, MTBE 등 다양한 유기용매의 가스성을 분석 가능하며, ppm 수준으로 분석한다. 분석조건은 튜브형태와 유사하게 상온 분석이 가능하다. 해당 제품은 튜브형 환경색센서를 조금 더 편리하게 만들었다는 것에 그치고 있다.

Chameleon이라는 화학물질 검출용 armband도 시판중이다. 10개의 화학물질은 감지할 수 있으며, 화학물질 취급 작업장에서 작업자가 즉각적으로 노출된 농도를 감지할 수 있다는 장점이 있다. 산소, Cl, F, H2S, I, P, SO2 등의 기상 및 중기상 물질을 시각적으로 생성한다.
2. 환경색센서 적용을 위한 컬레이트 예시

○ 환경색센서에 기능성을 부여하기 위해서는 어떠한 기능성을 물질을 금속나노입자에 코팅할 것인지 아니면 유기염료를 사용할 것인지를 결정해야 한다. 문헌조사 결과를 통하여 해당 내용을 표와 같이 정리하였다. 이를 바탕으로 중금속 이온을 검지할 것인가 아니면 유기화학물질을 검지할 것인가에 따라서 대상 기능기를 선택할 수 있게 된다.
<table>
<thead>
<tr>
<th>Target</th>
<th>Probe</th>
<th>Selectivity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-mercaptoundecanoic acid, MUA</td>
<td></td>
<td>Pb²⁺, Cd²⁺, Hg²⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>Mercaptopropionic acid, MPA</td>
<td></td>
<td>Hg²⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>Azacrown ether-terminated alkanethiolate</td>
<td></td>
<td>Pb²⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>Dithioerythritol</td>
<td></td>
<td>Hg²⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>4-mercaptopunaol</td>
<td></td>
<td>Hg²⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>2-mercaptoethanol</td>
<td></td>
<td>Pb²⁺, Ag⁺, Cu²⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>Dithio nitrobenzoic acid</td>
<td></td>
<td>Cr³⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>tetramethylmalonamide</td>
<td></td>
<td>Eu³⁺ elo, Ln³⁺ elo</td>
<td>AuNP</td>
</tr>
<tr>
<td>Cysteine</td>
<td></td>
<td>As³⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>Glutathione</td>
<td></td>
<td>As³⁺</td>
<td>AuNP</td>
</tr>
<tr>
<td>Triazole carboxyl</td>
<td></td>
<td>Co²⁺</td>
<td>AgNP</td>
</tr>
<tr>
<td>Target</td>
<td>Probe</td>
<td>Figure</td>
<td>Selectivity</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>4,5-disubstituted-1,8-naphthalimide</td>
<td></td>
<td></td>
<td>Cu²⁺</td>
</tr>
<tr>
<td>Azobenzene compound</td>
<td></td>
<td></td>
<td>Zn²⁺</td>
</tr>
<tr>
<td>rhodamine derivative</td>
<td></td>
<td></td>
<td>Hg²⁺</td>
</tr>
<tr>
<td>Heavy metal</td>
<td>Terpyridine 유도체</td>
<td></td>
<td>Hg²⁺</td>
</tr>
<tr>
<td></td>
<td>Merocyanine</td>
<td></td>
<td>Cu²⁺</td>
</tr>
<tr>
<td></td>
<td>bis(spiropyran) podand</td>
<td></td>
<td>2가 금속이온</td>
</tr>
<tr>
<td></td>
<td>diaminonaphthalimide</td>
<td></td>
<td>Cu²⁺</td>
</tr>
<tr>
<td>Target</td>
<td>Probe</td>
<td>Figure</td>
<td>Selectivity</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Phenylurea</td>
<td></td>
<td></td>
<td>H$_2$PO$_4^-$</td>
</tr>
<tr>
<td>cyanuric acid derivative</td>
<td></td>
<td></td>
<td>Melamine</td>
</tr>
<tr>
<td>Cycloexetrin</td>
<td></td>
<td></td>
<td>Aromatic isomer</td>
</tr>
<tr>
<td>sulfonatocalix[4]arene</td>
<td></td>
<td></td>
<td>Pesticide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Probe</th>
<th>Figure</th>
<th>Selectivity</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
<td>1-Zn (합성)</td>
<td></td>
<td>H$_2$PO$_4^-$</td>
<td>Dye</td>
</tr>
</tbody>
</table>
3. 다기능성 환경색센서 시제품 예시

다양한 형태의 색센서가 등장하고 있지만, 가장 이상적인 환경색센서는 BeeWell Company에서 제작한 Heavy Metal Screen이라는 개인 휴대용 색센서라고 할 수 있다. 해당 제품은 dithizone이라는 물질을 기능성 물질로 사용하고 있으며, Cu, Zn, Hg, Pb, Cd, Mg, Ni, Co 등을 검지 대상으로 하고 있다.

<그림 65> Dithizone을 이용한 중금속 이온 검지 방법

Dithizone은 diphenylthiocarbazone으로 1925년 Helmut Fischer에 의해 개발되었으며, 그 이후 다양한 연구 그룹에 의해 여러 중금속 검지 시약으로 사용되어 왔다. 특이하게도 해당 물질은 특정 중금속과 결합하면 색깔이 명확하게 변하여, 특정 중금속의 존재를 알리는 능력을 제공한다.
여부를 명확히 구분 가능하다는 장점이 있다. 최소 검지 농도는 ppb까지 가능하다고 설명되고 있다.

○ Zn의 경우는 자주색, Cu는 갈색, Hg는 노란색의 색상 차이를 보여서 명확한 정성분석이 가능하다. 기존 환경색센서는 단 한 가지의 대상물질에 대해서만 반응을 나타내어 색센서 Kit를 여러개를 만들어야하는 단점이 있었지만, 해당 제품은 최소 5개의 중금속을 검지할 수 있다는 장점이 있다.

<그림 66> 중금속 검지용 개인 휴대용 페이지-색센서(Bee Well Company)

○ 또다른 업체는 Vitality Plus Australia로서 튜브형태의 test kit를 제조하여 판매하고 있다. 판매가격은 $32로, 페이퍼 형태의 Bee Well 제품($12)보다 비싼편이다. 그러나 페이지가 튜브형태의 색센서보다 농도변화에 따른 색상 차이가 나타나서 정량분석과 어느정도의 정성분석(농도가 높다, 낮다)이 가능하다는 장점이 있다.

○ 이상의 제품들은 모두 개인 사용자를 대상으로 개발되었다. 즉 가정에서 벽면 페인트로 인한 Pb, Zn의 호흡, 카펫의 먼지에서 발생되는 Cd, 치아 치료물질이 아교감에서 발생되는 Hg 등 개인활동중에서 섭취할 수 있는 물질을 대상으로 하고 있다.

○ 앞으로 개발되어야 할 환경색센사는 이상의 시제품과 유사한 형태로 개발되어야 할 것이며, 중금속 뿐만 아니라 VOC, POPs 등에 대한 기상 오염물질도 검지 가능한 환경색센서가 개발되어야 한다. 이는 프린터의 잉크 카트리지를 판매하는 사업과 같이 상당한 수요를 발생시킬 것으로 판단되며, 개인사용자 뿐만 아니라 수환경관련 업체에서도 현장 분석용으로 충분히 사용가능하다.
<그림 67> 중금속 검지용 개인 휴대용 튜브-색센서(Vitality Plus Australia)
제5장 파급효과 및 전망

제1절 기대효과

○ 기존 환경센서는 장치위주의 기술로서 주로 해외 수입에 의존해 왔다. 따라서 원천기술이 없고 단순히 가공하여 제품화하는 것에 그치고 있다. 반면 환경색센서는 현장분석이 가능하고 휴대가 간편하며 실시간 분석이 가능하다는 장점이 있다. 또한 색센서를 반드는 원료물질은 금속나노물질과 기능성 유기염료에 대한 원천기술은 해당 물질별로 특화시킬 수 있다는 장점이 있다.

○ 따라서 물질별로 원천기술만 확보한다면 특화된 환경색센서로 개발 가능하다. 즉 중금속도 현재는 Hg, Cu, Pb 등과 같은 2가 중금속에 대하여 감지 가능한 색센서가 대부분이며, 1개 종에 대하여 1개 기능기만 반응하므로 이를 복합 다기능성화 할 수 있는 물질을 발굴하면 기존 환경색센서 시장에서 우위를 차지할 수 있을 것으로 기대된다.

○ 환경색센서는 휴대가 용이하고 잉크 카트리지처럼 소모성 제품이므로 시장성도 좋은 것으로 판단된다. 리트머스나 페이퍼 형태, 튜브형태로 보급된다면 개인 사용자 뿐만 아니라 가정에서 쉽게 환경오염물질에 대한 노출정도를 쉽게 판단할 수 있게 된다. 따라서 보다 안전하고 적절한 삶을 영위할 수 있을 것으로 기대된다.

○ 환경색센서의 상업화는 기존 환경센서 시장에 새로운 강자로 대두될 수 있으며, 스마트폰에 소켓형 kit를 만드다면 정성분석뿐만 아니라 정량분석도 가능하다. 환경색센서와 전기화학센서를 결합하고, 여기에 무선통신을 결합하면 기존의 TMS 시스템과 동일한 효과를 발휘하면서도 부피가 초소형화 되는 효과를 가져올 수 있다.

○ 색센서에 대한 원천 물질은 일단 개발되면 변형이 용이하고 다양한 물질(중금속, 음이온계, 양이온계, VOC, 바이오물질 등)에 적용 가능하므로, 다양한 물질에 대한 평가 중에 새로운 색센서의 활용 가능성도 찾아 볼 수 있다.

○ 이는 단순히 환경용으로 센서를 사용하는 것이 아닌 의약용과 같은 더욱 고부가가치 사 업으로의 전환도 가능하다라 판단된다.

○ 이상의 기대효과를 통하여 신진 연구인력을 창출 할 수 있으며, 나아가 융복합기술을 바탕으로한 환경색센서 전문가를 양성할 수 있을 것으로 기대된다.
제2절 파급효과

- 국가나 기업 차원에서 경쟁력을 확보하기 위해서는 다양한 분야의 유기적 연구 네트워크 구축 및 연구 성과의 공유, 장기적 관점에서 이를 뒷받침하고 올바른 연구방향을 제시할 수 있는 강력한 연구 구심체의 확립이 중요하다. 기업 입장에서 나노테크놀로지는 단기적 성과를 기대하기 보다는 장기적 안목에서 기존 사업의 경쟁력을 강화하기 위한 수단으로 접근하는 자세 필요하다.
- 환경오염은 범위가 넓어 이를 신속하고 비용측면에서 효율적으로 측정하는 방법의 필요성이 대두되고 있어, 환경분야에서 바이오센서가 상당히 중요한 기능을 할 가능성이 높다. 궁극적으로 환경 분야의 바이오 센서는 환경 요소의 분석을 목적으로 하는 데 있으며, 환경 시료의 분석에 있어 대상 시료를 생체 분자 및 생물체를 활용하여 소형화되고 집적화 된 칩 및 센서 시스템을 활용하는 것을 의미한다.
- 보다 구체적으로 환경색센서에 국한한 파급효과를 살펴보면, 환경색센서는 기존 환경모니터링 및 나노바이오센서, 환경센서 시장에 새로운 분야로 자리매김할 수 있다. 즉 휴대성, 간편성, 실시간 분석, 저가격 등의 장점으로 정량분석에서는 어렵지만 현장에서 정성분석이 가능하다는 면에서 1차 스크린용 환경센서로 충분히 시장 파급성을 지니고 있다.
- 고비용의 정량분석전에 스크린용으로 저비용의 정성분석(존재여부)이 가능하다면 추가적인 시간소모나 비용소모가 발생하지 않게 된다.
- 장치 위주의 시장은 기존 센서업체들이 이미 장악한 분야라서 블루오션이라고 할 수 없지만, 환경색센서는 중소업체, 벤처기업도 자리할 수 있는 틈새시장이라고 할 수 있다. 엄청난 경제적 이익을 가져올 수 없을지라도 임신진단체외테스터기처럼 일상화되면, 하나의 생필품형태로 자리를 잡을 수 있을것이고 지속적인 소비를 유발할 수 있다.

제3절 환경색센서 분야의 연구전략

1. 기존 환경색센서의 문제점

- 환경색센서는 중금속, 유해화학물질, 바이오물질 등을 선택적으로 결합하여 육안으로 그 존재여부를 정성분석할 수 있게 해주는 장점이 있다.
- 그러나 기존 환경색센서는 비가역적인 경우가 대부분이다. 특히 바이오물질 검지용 색센서는 단백질이나 DNA와 결합하여 색변화를 일으키지만 다시 원래대로 회복하지 못하고
파기하는 경우가 주를 이룬다. 실용화되어 있는 제품이 바로 임신진단체외테스터기이다.

- 두 번째 문제점은 1개의 물질만을 선택적으로 감지하고, 다른 용도에 사용하기가 어렵다는 점이다. 즉, 중금속을 검출할 수 있는 환경색센서였다면, CN-와 같은 음이온계를 검출하기에 적응이 불가능하였다.

- 세 번째 문제점은 색센서의 상당부분이 페이퍼나 튜브형태로 구성되어 있어서 복합 분석이 어렵다. 즉, 어레이화 하는 것이 중요하지만 쉽지가 않은 실정이다.

2. 환경색센서의 연구방향

(1) 가역적인 환경색센서 개발

- 첫 번째로는 가역적 환경색센서로의 활용 가능성을 확대해야 한다. 즉, 단순히 1회용으로 그치지 않고, 원래 염료물질이나 금속나노입자 형태로 회구할 수 있도록 대상물질에 대한 탈이온화 또는 탈화학물질화가 가능도록 기능성을 부여해야 한다.

- 최근 보고된 바에 의하면, 수은 검지용 유기염료의 경우 EDTA를 이용하여 가역적인 반응을 유도하였다. 즉, 일단 수은을 감지하여 색변화를 유발한 다음, 보다 강한 칼리에팅제인 EDTA와 수은과의 반응을 유발시켜 염료는 원래상태로 돌아가게 한다. 이러한 과정이 최소 3~4회 이상 반복되며 색변화도 안정적으로 나타날 수 있다면 상업성이 높은 환경색센서로 발굴 가능하다고 판단된다.
(2) 다기능성 환경색센서 개발

중금속을 감지하는 색센서는 음이온계를 감지하기 어렵다. 즉 2가 양이온에 반응하는 경우는 음이온에 반응하지 못한다는 문제점을 지닌다. 그러나 Tetrahedron에 보고된 바에 의하면 단일 중금속에 반응하여 complex를 이루어 색변화를 유발시키고 여기에 다시 CN-을 부여하면 Cu2+가 떨어져 나와 complex가 아닌 공유결합 또는 수소결합을 이룬다는 결과가 보고되었다.

즉 중금속을 감지할 때는 complex를 이루고, 음이온을 감지할 때는 공유결합을 유도할 수 있도록 대상 유기염료에 기능성을 부여하는 방식이다. 해당 기술은 서로 상반되는 이온계 오염물질을 동시에 분석가능하다는 면에서 dual 색센서로 개발될 수 있다.

(3) 색센서 어레이 개발

가역적 반복사용, dual 기능화도 좋지만 이를 넘어서 시제품화하기 위해서는 복합 환경 색센서가 개발되어야 한다. 어레이화하여 다양한 물질을 다양한 색변화의 contrast 차이

<그림 69> 중금속과 음이온계 환경오염물질을 동시에 감지 가능한 화합물(Tetrahedron, 66, 1846, 2010)
로 확일 할 수 있도록 하는 방식이다. 이에 대한 시제품으로 김종만 교수팀에서 PDA를 이용한 환경색센서 이래 이를 보고하였다.

(4) 환경색센서 색변화 contrast 감도 증폭

○ 추가적으로 필요한 연구분야는 색변화에 대한 감도를 증폭시키는 기술이다. 육안으로 봤을 때는 파랑색과 남색의 구분이 쉽지 않다. 이를 보다 색변화를 두텁게 하면서, 즉 빨강색이면 파랑색으로 변하게 만들 수 있다면 보다 우수한 환경색센서로 거듭날 수 있다.

○ 이를 위하여 중금속 검출에 주로 사용되는 금속나노입자 주변에 유기화학물질 검출에 사용되는 유기염료를 고정시키면 복합적인 색상 변화를 유도할 수 있을 것으로 기대된다. 이에 대한 연구는 추가적으로 진행되어야 한다.
제4절 발전방향 및 전망

○ 산업이 고도화, 다양화됨에 따라 일반가정으로부터 산업의 각 분야에서 센서에 대한 수요가 크게 증가
○ 소형화, 집적화되어 가는 전자부품의 기능향상으로 수요의 계속적인 증가가 예상
○ 각종 센서 관련 기술도 지속적으로 발전
○ 산업의 발전은 각종 정보의 감지(sensing) 및 이의 변환기술을 크게 필요로 하게 되어, 각 산업에서 침단센서는 매우 중요한 위치 차지
○ 센서 시장은 매년 꾸준히 성장되어 현재 세계 시장규모는 300∼400억 달러에 이르는 것으로 전문가들은 판단
○ 미국, 일본, 독일 등 선진국이 시장을 주도
○ 주요국의 생산업체수는 미국 1,500사, 일본 1,200사, 독일 500사, 영국 350사 등으로 경쟁이 매우 심한 상황
○ 우리나라의 센서생산업체는 약 450개사이고, 시장규모는 2000년 현재 4,044억 원으로 세계시장에서 차지하는 비중은 약 1.4%정도이며, 수입비중이 54%정도로 매우 높은 실정
○ 선진국들의 기술개발 동향
○ 소형화, 고신뢰성, 고감도의 센서개발에 집중
○ 선진국은 기술을 독점하면서 기술적 노하우의 공개 및 이전을 기피
○ 우리나라의 업체들은 협소한 국내 시장여건, 원재료의 국내조달 어려움, 성능평가 설비의 미비 등으로 주로 중저급 센서를 생산하거나 요소부품의 수입에 의한 단순조립 형태의 생산방식이 주를 이룬다
○ 틈새시장으로 환경센서 기술의 미래 전망
○ 시장규모가 큰 의료용 바이오칩 및 바이오센서의 경우 대부분의 기반 기술에 대한 특허권을 이미 선진국에서 선점
○ 현재까지는 경쟁이 상대적으로 심하지 않으면서 향후 높은 성장률이 기대되는 틈새시장 분야인 환경용 바이오칩 및 바이오센서 분야는 국가의 정책적 지원을 통해 기술선진국과의 격차를 줄이고 향후 치열해질 환경 모니터링 시장에서 충분한 경쟁력을 확보할 수 있을 것으로 평가
제6장 참고문헌

[Review]

[Array]
2. W. U. Malik et al., Colorimetric Determination of Copper, Nickel and Cobalt in their respective Soaps. (1962)

[NP-sensors : heavy metal]

13. X. Xu et al., Colorimetric detection of mercury ion(Hg²⁺) based on DNA Oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range, *Biosensors and Bioelectronics*, **24**, 3153, (2009)

17. F. Chai et al., L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg²⁺ induced by ultraviolet light, *Nanotechnology*, **21**, 25501, (2010)

19. A. Alizadeh et al., Rapid and selective lead (II) colorimetric sensor based on azacrown

[NP-sensors : chemicals]

27. X. Chen et al., β-Cyclodextrin-Functionalized Silver Nanoparticles for the Naked eye Detection of Aromatic Isomers, *ACS Nano*, 4, 6387, (2010)

[NP-sensors : biomass]

46. A. Baeissa et al., DNA-Functionalized Monolithic Hydrogels and Gold Nanoparticles for colorimetric DNA Detection, *Applied Materials & Interfaces*, in press
[Vesicle-sensor]

[Chemosensor : heavy metal]

Chemosensor : chemicals

[Chemosensor : biomass]
환경오염물질 검지용 색센서 개발을 위한 NT/BT/ET 융합기술
기술 동향 보고서

저자
전문위원 김준석
녹색기술개발실장 최성수
환경기술이사 윤문섭
원장 김상일

집필진
광운대학교 한춘
광운대학교 김영훈
드림바이오스 픽무영
University of Toledo 김동식
서울과학기술대학교 박진원
한국과학기술연구원 이상협
에너지기술연구원 김재호

간행물 등록번호 2011-19