공사장 환경분쟁사건
소음·진동도 산출방법
개선 연구

2007. 11.

연구기관 : 한국환경정책·평가연구원

중앙환경분쟁조정위원회

National Environmental Dispute Resolution Commission
제출문

중앙환경분쟁조정위원회 위원장 귀하

본 보고서를 「공사장 환경분쟁사건 소음·진동도 산출방법 개선 연구」의 최종보고서로 제출합니다.

연구책임자: 선효성 책임연구원
연구참여자: 박영민 연구위원

이지현 연구원
김영하 연구원
방준철 연구원

2007. 11.

한국환경정책·평가연구원
원장 정회성
요 약

공사장의 소음·진동 환경문제와 관련하여 건설장비 및 발파에 따른 소음·진동의 정도를 예측하기 위한 기법과 아울러 이러한 소음·진동을 저감하기 위한 방법들의 효과를 정량적으로 산정하기 위한 방안을 마련하기 위해서 공사장 소음·진동 예측기법과 관련한 자료들의 수집 및 분석을 바탕으로 적절한 예측식을 선정하고 공사장 소음·진동 측정데이터와의 비교를 통한 검증을 수행하였다. 연구의 주요 내용으로는 항타공사를 포함하는 건설장비 및 발파에 따른 소음·진동의 예측과 아울러 건설공사장에서 발생하는 소음의 전파경로를 차단하여 소음을 감소시키는 가설방음판넬을 포함한 방음시설에 의한 소음저감효과를 예측하는 방법의 개선방안을 포함하고 있다.

이러한 연구내용에 따른 결론적인 사항은 다음과 같다.

▶ 건설공사장의 건설기계에서 발생하는 소음·진동을 산정하는 경우에 거리감쇠식을 적용한 예측결과에서 건설장비 소음·진동의 예측치와 실제치의 분포를 통한 회귀식을 적용하여 보정을 고려하는 방법을 취하였으며 이러한 사항을 바탕으로 건설장비 소음·진동 예측을 포함하는 건설공사장 환경문제 평가프로그램을 개선하였다.

▶ 발파에 따른 소음영향을 평가할 경우에 미광무국 추정식을 적용한 예측결과에서 발파로 인한 소음의 예측치와 실제치의 분포를 통한 회귀식을 적용하여 보정을 고려하는 방법을 적용하거나 시험발파의 소음측정자료를 바탕으로 하여 현장에 적합한 발파소음 예측식을 추정하여 사용한다. 발파진동의 예측은 실제 건설공사장에서의 일반발파 측정자료에 기반한 발파진동도 추정식과 더불어 발파에 따른 진동속도와 진동레벨의 상관관계를 보여주는 회귀식의 적용을 통하여 발파시 진동속도와 진동레벨을 구한다. 또한, 이러한 사항을 바탕으로 발파공사에 의한 소음·진동 예측...
을 포함하는 건설공사장 환경분쟁 평가프로그램을 개선하였다.

◼ 건설공사장의 방음시설에 대한 소음저감효과를 예측하기 위해서 방음벽의 삽입손실치를 계산하는 예측식과 환경부의 건설공사장 소음 간이 예측 프로그램을 참조하여 방음벽 설치와 관련된 환경분쟁 평가프로그램을 개선하였으며 방음시설에 의한 소음저감효과 예측을 위해 참고하기 위하여 방음시설의 설치에 따른 기본적인 조건들(방음시설 높이, 음원과 방음시설 사이의 거리, 방음시설과 수음점 사이의 거리, 수음점 높이 등)에 따른 삽입손실치의 분포를 그림 및 도표를 이용하여 제시하였다.
제목차례

제1장 서 론
1. 연구의 배경 및 필요성 1
 2. 연구의 목표 및 주요 내용 6

제2장 건설장비에 의한 소음·진동 예측방법의 개선 7
1. 건설장비에 의한 소음·진동의 특성 7
 2. 건설장비에 의한 소음·진동 예측 11
 (1) 공사장 환경분쟁에서 건설장비 소음·진동의 예측현황 11
 (2) 건설장비 소음·진동 예측방법의 개선 12
 (3) 건설장비 소음·진동 평가의 개선방안 21

제3장 발파공사에 의한 소음·진동 예측방법의 개선 26
1. 발파공사에 의한 소음·진동의 특성 26
 2. 발파공사에 의한 소음·진동 예측 28
 (1) 공사장 환경분쟁에서 발파공사 소음·진동의 예측현황 28
 (2) 발파공사 소음·진동 예측방법의 개선 30
 (3) 발파공사 소음·진동 평가의 개선방안 33

제4장 방음시설에 의한 소음저감 예측방법의 개선 37
1. 방음시설의 종류 및 특성 ... 37
 2. 방음시설에 의한 소음저감 예측 37
 (1) 공사장 환경분쟁에서 방음시설의 소음저감효과 예측현황 38
 (2) 가설방음벽에 의한 소음저감 예측방법의 개선 38
 (3) 방음시설에 의한 소음저감예측의 개선방안 44
제5장 결론 .. 57

참고문헌 .. 59

<부록 1> 건설기계류 소음・진동레벨 자료 .. 61

<부록 2> 국외의 건설공사장 소음예측 사례 ... 67
표 차례

<표 1-1> 환경분쟁 처리현황 ... 1
<표 1-2> 외국의 건설공사장 소음정책 현황 .. 3
<표 2-1> 주요 건설기계 작업소음의 분류 ... 8
<표 2-2> 공중별 건설기계의 모습 .. 9
<표 2-3> 진동형태와 건설기계의 종류 .. 10
<표 2-4> 건설장비의 일정거리에 대한 전주과수대역 소음도 13
<표 2-5> 건설장비의 일정거리에 대한 진동레벨 14
<표 2-6> 실제 공사장의 건설기계 종류 및 규격에 따른 소음레벨 분포 … 23
<표 2-7> 건설장비에 적용된 소음방지장치의 소음저감효과 분포 24
<표 2-8> 소음기 및 강철덮개 부착에 따른 소음레벨 비교 25
<표 3-1> 이격거리 및 장약량에 따른 발파소음 예측결과 30
<표 4-1> 공사장 방음시설의 설치기준 ... 39
<표 4-2> 다양한 종류의 가설방음벽에 대한 특징의 비교 41
<표 4-3> 가설방음벽의 투과손실치 비교 .. 42
<표 4-4> 가설방음벽의 삽입손실치 예측결과 48
<표 4-5> 건물에 의한 삽입손실치 예측결과 50
<표 4-6> 방음벽에 의한 삽입손실치 예측결과 53
<표 4-7> 방음벽에 의한 도로소음의 충분 소음저감효과 54
<표 4-8> 지하공사장 경계벽에 의한 삽입손실치 예측결과 55
<부록표 1-1> 국내 제작 신규 건설기계류의 음향파워레벨 및 거리별 소음
도 .. 61
<부록표 1-2> 일본 건설기계류의 음향파워레벨 및 거리별 소음을 62
<부록표 1-3> 홍콩 건설기계류의 음향파워레벨 및 거리별 소음을 63
<부록표 1-4> 일본 건설기계류의 거리별 진동레벨 65
그림차례

<그림 1-1> 오염원인별 분쟁조정 현황 ... 2
<그림 1-2> 피해내용별 분쟁조정 현황 ... 2
<그림 1-3> 기존의 건설공사장 소음 및 진동 평가프로그램의 내용 5
<그림 2-1> 기존 프로그램에서의 건설장비 소음 및 진동 예측 11
<그림 2-2> 건설장비에 의한 소음예측과정 .. 15
<그림 2-3> 건설공사장 소음 간이 예측 프로그램의 화면 16
<그림 2-4> 방음벽 미 설치시 합성소음 레벨의 화면 17
<그림 2-5> 건설장비에 의한 소음예측 프로그램의 비교 18
<그림 2-6> 건설공사장 소음 간이 예측 프로그램의 장비종류 화면 19
<그림 2-7> 거리감쇠식에 의한 건설장비소음 예측치와 실측치의 비교 20
<그림 2-8> 거리감쇠식에 의한 건설장비진동 예측치와 실측치의 비교 20
<그림 2-9> 개선된 평가프로그램의 적용(건설장비소음) 22
<그림 2-10> 개선된 평가프로그램의 적용(건설장비진동) 23
<그림 2-11> 소음대책 전·후의 소음레벨 비교 ... 25
<그림 3-1> 시험발파자료에 의한 기존 프로그램의 발파진동 예측 29
<그림 3-2> 미광무국 실험식에 의한 발파소음 예측치와 실측치의 비교 ... 31
<그림 3-3> 발파진동속도와 진동레벨의 상관 관계식 33
<그림 3-4> 개선된 평가프로그램의 적용(발파소음) 36
<그림 3-5> 개선된 평가프로그램의 적용(발파진동) 36
<그림 4-1> 건설공사장 방음시설의 모습 ... 37
<그림 4-2> 가설방음벽에 의한 소음전파 ... 40
<그림 4-3> 가설방음벽 설치에 따른 소음저감효과의 예측결과 43
<그림 4-4> 방음벽에 의한 삼임슨설치의 예측치와 실측치 비교 45
<그림 4-5> 개선된 평가프로그램의 적용(가설방음벽) 47
<그림 4-6> 가설방음벽에 의한 소음저감량 예측 47
제1장 서 론

1. 연구의 배경 및 필요성

선진국에서는 환경오염에 의한 환경피해의 급증에 따라서 많은 환경분쟁이 발생되어지고 있기 때문에 예전부터 이를 해결하기 위해서 관련된 법과 제도를 도입하여 시행하는 등 많은 노력을 기울여 왔다. 이러한 목적을 달성하기 위한 하나의 제도적인 방안으로서 환경분쟁조정제도가 도입되었으며 현재 환경분쟁을 해결하는 주요한 제도로서의 역할이 점점 확대되는 추세에 있다. 우리나라에서도 1990년 ‘환경오염피해분쟁조정법’을 제정하여 단행법화하면서 환경분쟁조정제도가 본격적으로 시행되었으며 1997년 ‘환경분쟁조정법’으로 전문 개정하는 등 수 차례의 법개정을 실시하였고 소음·진동 등 관련분야의 환경피해에 대한 배상액 산정기준을 재정하여 시행하고 있다. 2006년에 환경 피해 구제 범위의 확대를 위한 법을 개정하여 새로운 환경피해 유형(일조방해, 통풍방해, 조망저해 등)을 분쟁조정대상 범주에 추가하는 동시에 기존의 건강상·재산상 피해뿐 아니라 정신적 피해도 환경피해의 범위에 포함시키고 있다.[1]

<표 1-1> 환경분쟁 처리현황[2]

<table>
<thead>
<tr>
<th>구분</th>
<th>접수현황</th>
<th>처리현황</th>
<th>처리중(여월)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>접수</td>
<td>전년이월</td>
<td>접수</td>
</tr>
<tr>
<td></td>
<td>계</td>
<td></td>
<td>계</td>
</tr>
<tr>
<td>합계</td>
<td>-</td>
<td>1,706</td>
<td>-</td>
</tr>
<tr>
<td>2005</td>
<td>266</td>
<td>166</td>
<td>100</td>
</tr>
<tr>
<td>2004</td>
<td>372</td>
<td>195</td>
<td>177</td>
</tr>
<tr>
<td>2003</td>
<td>550</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td>2002</td>
<td>493</td>
<td>440</td>
<td>53</td>
</tr>
<tr>
<td>2001</td>
<td>184</td>
<td>154</td>
<td>30</td>
</tr>
<tr>
<td>2000</td>
<td>100</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1999</td>
<td>119</td>
<td>82</td>
<td>37</td>
</tr>
<tr>
<td>1998이전</td>
<td>249</td>
<td>249</td>
<td>-</td>
</tr>
</tbody>
</table>
중앙환경분쟁조정위원회가 설립된 1991년부터 2005년까지 총 1,706건의 환경분쟁사건이 접수되었고 이 중 1,413건이 처리(재정, 조정, 중재합의)되었다.(표 1-1) 처리된 1,413건 중 소음·진동으로 인한 피해가 전체의 86%인 1,216건으로 가장 많았으며 대기와 수질오염이 각각 116건(8%), 55건(4%)으로 분포되어져 있다.(그림 1-1) 처리된 1,413건을 내용별로 살펴보면 정신적 피해가 571건(40%)으로 가장 많고 건축물 피해와 정신적 피해를 함께 신청한 사건이 320건(23%), 축산물 피해 210건(15%), 농작물 피해 80건(6%), 건축물 피해 53건(4%), 수산물 피해 45건(3%), 기타 134건(9%)이다.(그림 1-2)

<그림 1-1> 오염원인별 분쟁조정 현황[2]

<그림 1-2> 피해내용별 분쟁조정 현황[2]

<그림 1-1>에서 보여지는 것과 같이 환경분쟁사건의 대부분을 차지하고 있는 것이 소음·진동 분야이며 그 중에서도 건설공사에 따른 물질적 및 정신적 피해분쟁이 많이 발생하고 있다.
<표 1-2> 외국의 건설공사장 소음정책 현황[3]

<table>
<thead>
<tr>
<th>구분</th>
<th>관련법률/규제법안</th>
<th>비규제정책</th>
<th>소음저감정책</th>
</tr>
</thead>
</table>
| 일본 | 소음규제법, 1968 | · 환경기준을 달성하기 위해 소리차단을 위한 소음벽
 · 대중인식 제고 | · 소음저감시설이 경제적이지 못할 경우 다소음 산업시설을 주거지역으로부터 분리한 제입지
 · 시범마을을 기초로 대중의 인식증가와 이웃소음제거를 위해 조용한 마을제도실시 |
| 미국 | Noise Control Act, 1972 | · 소음노출에 대한 주야 평균 소음기준을 제정
 · 공중보건, 사회복지 및 안전문제와 결부
 · 환경기준 및 영향예측법 개발 | |
| EU | Green Paper, 1996 | · 일반적으로 규제법률은 없음
 · 7가지 규제를 간략화하고 건설장비 등으로 폭을 넓힘
 · 환경기준의 통일
 · 소음저감기술 개발 및 예산배정 | |
| 네덜란드 | 소음피해법, 1979 | · 차음과 소음스크린에 대한 재정조조금
 · 연구개발비 지원 | · 저소음제품 구매정책
 · 철도, 산업부지, 도로와 공항 주변지역의 용도지역 구분과 차음을 위한 보상
 · 자연지역내에 정온지대 |
| 독일 | 교통과 산업공장에 의한 소음배출 보호에 관한 법, 1974 | · 저소음제품을 장려하기 위한 경제적유인책
 · 저소음제품의 연구개발을 위한 보조금
 · 환경라벨링
 · 소음문제에 대한 소비자교육 | · 기계와 건설장비 등의 환경라벨링
 · 산업단지 허가시 자동차소음 고려 |
| 프랑스 | 없음 | · 공공정보와 인식
 · 소음벽과 차음 | · 장은시범마을
 · 환경부는 소음지도 작성, 대중인식, 차음과 소음벽에 의한 소음을 줄이기 위해 3년동안 계약사업에 대해 보조금 50% 제공 |
| 스위스 | 연방환경보호법 | · 주변 속도 제한
 · 신규건물 차음의무 권고 | |
| 호주 | 환경보호법, 1970 DoTRS, 1999 | · 라벨링 시간과 공간의 제한
 · 대중교육 캠페인
 · 도로에 접한 신규건물 차음의무 | · 소음테스트
 · 라벨링
 · 고소음제품의 제한 |
이러한 원인은 서울 등 도심지역에서의 공사장 증가와 아울러 국민의 웰빙 의식 확대와 쾌적한 주거환경에 대한 관심의 고조 때문이라고 할 수 있다. 또한, 건설공사의 시행에 따른 방음시설 설치가 미비한 현장들이 많고 설치된 방 음시설의 소음감소효과도 기대 이하를 보여주고 있으며 공사의 종류와 공종을 고려하지 않으면서 일률적인 기준을 적용하는 것도 하나의 원인이라고 할 수 있다.[3]

외국의 경우에도 건설공사장에 대한 소음·진동의 중요성을 인식하고 각 나라의 상황에 맞는 소음저감정책을 마련하여 추진하고 있는 경향을 보여주고 있으며([표 1-2]) 국내에서도 공사장에서 발생하는 소음·진동의 영향을 파악하고 환경분쟁으로 인한 민원을 최소화하기 위한 방안을 마련하기 위해 많은 투자와 노력을 기울여야 한다. 이에 대한 선행적인 연구로서 공사장의 소음·진동과 관련한 환경분쟁을 평가하기 위한 방법을 개선할 필요가 있다. 현재 공사장의 환경분쟁사건에서 평가되는 소음·진동도는 1997년 이전에 사용된 건설장비를 기초로 산출되어지고 있는 실정이며 다양화된 건설장비와 저 소음·저진동 장비의 적용 등의 변화를 고려한 소음·진동도 평가방법의 개발과 아울러 장비특성, 이격거리, 방음시설 설치 등을 고려한 평가 소음·진동도를 산출하여 현장여건에 적절하게 활용될 수 있는 가이드라인을 마련하는 것이 중요하다고 볼 수 있다.

공사장과 관련한 환경분쟁사건의 소음·진동도를 예측하기 위해서 기존의 평가프로그램을 많이 활용하는데 이러한 프로그램은 크게 일정거리(7m, 7.5m, 15m)에서 건설장비 소음·진동레벨의 자료, 진동속도와 진동레벨의 변환, 이격거리의 산정, 적용되어진 건설장비 소음·진동의 예측, 발파에 의한 진동속도의 추정에 대한 내용 및 계산결과를 포함하고 있다.([그림 1-3]) 공사장 환경분쟁사건의 소음·진동도를 평가하기 위해서 기존의 프로그램의 활용도가 높은 점을 감안하여 기존의 프로그램의 내용을 바탕으로 수정 및 추가적인 연구를 통해 프로그램을 개선할 필요가 있으며 이러한 개선방안을 바탕으로 공사장 소음·진동 환경분쟁 해결의 효율성을 향상시킬 수 있을 것이다.
제1장 서 론

(a) 건설장비목록, 진동레벨변환, 이격거리산정

(b) 건설장비에 의한 소음예측

(c) 건설장비에 의한 진동예측

(d) 발파에 의한 진동속도 예측

<그림 1-3> 기존의 건설공사장 소음·진동 평가프로그램의 내용
2. 연구의 목표 및 주요 내용

본 연구의 목표는 공사장의 소음⋅진동과 관련한 환경분쟁을 평가하기 위한 선행적인 과정으로 건설장비 및 발파에 따른 소음⋅진동도를 예측하기 위한 방법과 아울러 이러한 소음⋅진동을 저감하기 위한 방음시설 등의 효과를 정량적으로 산정하기 위한 방안을 마련하는 것이다. 이러한 목표를 달성하기 위해 공사장 소음⋅진동 예측기법과 관련한 자료들 수집 및 분석을 통하여 적절한 예측식을 선정하고 공사장 소음⋅진동의 측정데이터와의 비교를 바탕으로 검증을 하는 방법을 포함하고 있다. 제2장에서는 항바공사를 포함하는 건설장비의 운용으로 인해 발생하는 소음⋅진동 예측의 개선내용을 다루고 있으며 제3장에서는 건설공사장의 발파작업에 따른 소음⋅진동도의 예측방법 개선을 포함하고 있다. 그리고 제4장에서는 건설공사장에서 발생하는 소음의 전파경로를 차단하여 소음을 감소시키는 가설방음판넬을 포함한 방음시설에 의한 소음저감효과를 예측하는 방법의 개선내용을 보여주고 있으며 제5장에서는 상기의 연구내용에 따른 결론을 명시하고 있다.
제2장 건설장비에 의한 소음·진동 예측방법의 개선

1. 건설장비에 의한 소음·진동의 특성

건설소음은 공장소음, 도로교통소음, 철도소음 및 항공기소음 등과는 달리 발생하는 소음정도가 매우 많은 특정을 가지고 있지만 건설소음이 다른 소음과 다르게 나타나는 차이점으로서는 다음 사항을 들 수 있다.[4]

- 건설소음은 건설공사의 기간내에만 발생하고 다른 소음과 같이 영속적이지 않는다.
- 건설소음은 서로 다른 음색을 갖는 음원에서 발생하는 음이 복합된 소음이며 충격소음을 포함하는 경우가 많다.
- 건설공사는 보통 공사공정의 진척에 따라 소음레벨과 스펙트럼이 다른 여러 종류의 건설기계를 투입함으로 인하여 다양하게 변한다.
- 건설소음의 음원은 보통 위치가 고정되어 있지 않고 현장부지내에 이동하는 음원과 덤프트럭처럼 공사현장 음원을 출입하는 음원이 있으며 현장을 출입하는 음원의 경우 소음의 영향권을 더욱 넓히는 경향이 있다.
- 건설공사는 보통 주간에 행하여지지만 때로는 도로보수공사 등의 일부공사는 야간에 행하여진다.
- 건설공사는 가끔 주변에 다른 종류의 공해들(진동, 오수, 지반침하 등)을 동시에 수반하기도 한다.

건설소음은 시간내의 특성과 관련되어 <표 2-1>과 같이 정상음, 변동음, 간헐음, 충격음, 분리충격음, 준정상충격음의 6종류로 분류한다. 이러한 분류는 건설기계의 작업소음을 가상하여 분류한 것인데 공기압축기나 발동발전기는 작업기계에 부하변동이 있으면 변동소음이라 볼 수 있고 콘크리트 브레이크나 타격중의 소음에만 주안점을 두면 준정상충격소음이라 볼 수 있다.
<table>
<thead>
<tr>
<th>소음의 분류</th>
<th>소음변동 특성</th>
<th>건설기계의 종류</th>
<th>특 성</th>
</tr>
</thead>
<tbody>
<tr>
<td>정상소음</td>
<td></td>
<td>콘크리트 절단기, 공기압축기, 발동발전기, 아스팔트 피니셔</td>
<td>레벨변동이 적고, 대부분 일정한 소음</td>
</tr>
<tr>
<td>변동소음</td>
<td></td>
<td>굴삭기, 불도우저, 트레터서블, 유압서블, 로우더, 로울리 그레이다, 압쇄기</td>
<td>레벨이 불규칙하고 연속적으로 일정한 범위로 변화하며 발생하는 소음</td>
</tr>
<tr>
<td>연속성</td>
<td></td>
<td>진동 항티항받기, 착암기, 브레이커, 람마, 콤팩터, 드릴마스터(공압식)</td>
<td>계속시간이 극히 짧은 소음</td>
</tr>
<tr>
<td>반복성</td>
<td></td>
<td>항타기, 유압식, 디젤식, 드롭식</td>
<td></td>
</tr>
<tr>
<td>간헐소음</td>
<td></td>
<td>콘크리트 브레이커, 항타기</td>
<td>간헐적으로 발생하고 계속시간이 수초 이상의 소음</td>
</tr>
<tr>
<td>분리간헐소음</td>
<td></td>
<td>디젤파일헤머, 포장판파쇄기, 람마</td>
<td>발생하는 소음이 각각 독립적으로 분리되어 있는 소음</td>
</tr>
<tr>
<td>준정상 간헐소음</td>
<td></td>
<td>진동파일드라이버</td>
<td>대부분 일정한 레벨의 소음이 각각 극히 짧은 시간간격에 휴지되어 발생하는 소음</td>
</tr>
<tr>
<td>공종</td>
<td>건설기계</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>지반정지공사</td>
<td>굴삭기, 불도저</td>
<td></td>
<td></td>
</tr>
<tr>
<td>기초공사</td>
<td>로우더, 로울리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>콘크리트공사</td>
<td>항타기, 천공기</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>콘크리트 믹서, 콘크리트 펌프카</td>
<td></td>
<td></td>
</tr>
<tr>
<td>기타</td>
<td>아스phalt 피니셔, 지게차</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 2-2: 공종별 건설기계의 모습
건설진동에서 문제가 되는 것은 지면, 특히 건설장비로부터 그다지 멀지 않은 지역의 지면진동이다. 실제로는 지면의 진동보다 건물의 진동이 문제이지만 건물내의 진동은 충수, 설의 위치, 주변 설치물의 유무 등에 따라 현저한 차이가 발생하므로 보통 지표면상의 진동을 문제로 하는 것이 보통이다. 건설장비에 의해서 발생된 가진력은 기초를 진동시키고 지반을 통해 건축물을 진동시키므로 우리의 생활공간에 진동을 발생시켜 인간에게 진동을 느끼게 한다. 건설공사에서 발생하는 진동은 발생원의 장소가 이동한다는 점과 비교적 단기간에 진동이 종료된다는 특징을 가지고 있고 각종 건설장비의 엔진가동과 주행으로 인해 유발된 장비자체의 진동, 장비와 재료의 상호작용으로 유발된 충격이 지반에 가해지면 충격파가 건반으로 전파되어 주변지역에 진동의 영향이 미치게 되며 주변의 건물, 인체, 가축 등에 지속적으로 작용할 경우 건축물 균열, 정신적 및 신체적 불안감, 가축의 생산성 저하 및 유사한 증가 등의 영향을 미칠 수 있다. 일반적으로 건설현장에서 발생하는 건설진동의 형태와 건설기계의 종류를 살펴보면 <표 2-2>와 같다.

<표 2-3> 진동형태와 건설기계의 종류[4]

<table>
<thead>
<tr>
<th>진동의 분류</th>
<th>진동 형태</th>
<th>움직임이 적음</th>
<th>움직임이 많음</th>
</tr>
</thead>
<tbody>
<tr>
<td>연속 규칙 진동</td>
<td>신호와 구조한</td>
<td>공기압축기</td>
<td>고정식 공기압축기</td>
</tr>
<tr>
<td>연속 불규칙 진동</td>
<td>대형</td>
<td>공기압축기</td>
<td>진동파일 드라이버</td>
</tr>
<tr>
<td>순시간 진동</td>
<td>대형</td>
<td>디젤펌프</td>
<td>펌프드럼</td>
</tr>
</tbody>
</table>

건설공사장의 공종으로는 크게 지반정비공사, 기초공사, 콘크리트공사, 포장공사, 파괴해체공사, 기타공사 등으로 크게 구분할 수 있으며 건설공사장의 유형으로는 크게 대규모 백지개발 및 소규모 재건축 등과 같은 건축물공사와 도로 및 철도 등의 노선공사로 나뉘어질 수 있다. 건축물공사의 경우에는 지반
정지공사, 기초공사, 콘크리트공사, 파괴해체공사 등의 공종이 주를 이루고 있으며 노선공사의 경우에는 건축물공사와 유사한 공종과 아울러 교량설치에 따른 항공공사와 터널발파를 포함하는 발과공사가 더해지게 된다.

2. 건설장비에 의한 소음·진동 예측

(1) 공사장 환경분쟁에서 건설장비 소음·진동의 예측현황

<table>
<thead>
<tr>
<th>장비</th>
<th>건설장비</th>
<th>개요</th>
<th>기본소음(대기별)</th>
<th>기준소음(예정치)</th>
<th>감소량</th>
<th>합성소음(예정치)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>건설장비</td>
<td></td>
<td>70 dB(A)</td>
<td>65 dB(A)</td>
<td>5 dB(A)</td>
<td>60 dB(A)</td>
</tr>
<tr>
<td>2</td>
<td>건설장비</td>
<td></td>
<td>75 dB(A)</td>
<td>70 dB(A)</td>
<td>5 dB(A)</td>
<td>70 dB(A)</td>
</tr>
</tbody>
</table>

(2) 건설장비에 의한 소음예측

공사장 환경분쟁에서 건설장비에 의한 소음·진동 예측은 공사일지에 의한 장비투입내역서, 수평 및 수직거리를 감안한 이격거리 등을 기초로 하여 최대 소음·진동도를 추로 적용하고 있다. 건설장비의 운용에 따른 소음레벨을 예측하기 위한 기존 평가프로그램의 적용에서는 사용되어지는 건설장비의 명칭, 대수, 기준소음도(기준거리의 변환 가능), 이격거리에 의한 개별적인 소음레벨과 두 종류 이상의 건설장비 적용에 따른 합성소음도를 예측하게 되어 있으며 건설장비에 의한 진동예측에서는 기준진동도, 감쇠계수, 이격거리를 고려한 개별적인 진동레벨과 대수의 건설기계 운용에 따른 합성 진동도를 보여주고 있다.
기존의 평가프로그램에서 적용되어지는 건설장비에 의한 소음·진동의 예측식은 건설장비의 일정거리에서의 기준 소음·진동레벨과 이격거리를 고려한 점음원의 소음·진동 거리감쇠식과 두 종류 이상의 건설기계를 포함하는 합성 소음·진동도 산출식을 사용하고 있다.

(2) 건설장비 소음·진동 예측방법의 개선

건설공사장에서 건설공종별로 투입되는 건설장비에 의한 소음·진동의 영향은 장비로부터 일정한 거리에서 발생되는 장비별 소음·진동도를 기준으로 해서 [6] 음원(건설장비)과 수음점의 이격거리를 바탕으로 점음원의 거리감쇠식과 합성소음도 산출식을 적용하여 예측할 수 있다. [7] 건설공사장의 건설장비에 따른 소음·진동 환경문제에서 건설장비의 운용에 따른 최대 소음·진동도를 평가하고 있기 때문에 건설장비의 운용범위를 고려하여 건설장비 소음·진동의 영향을 받는 정온시설의 가장 가까운 이격거리를 적용하여야 하며 실제적인 이격거리는 건설장비와 영향지점 사이의 수평 및 수직적인 이격거리를 모두 고려하여 산정하는 것이 필요하다. 장비로부터 일정한 거리(7.5m, 15m)에서 발생되는 장비별 소음과 진동레벨의 분포는 <표 2-4>와 <표 2-5>에 제시되어 있다. 음향파워레벨(sound power level, PWL)의 계산은 건설장비에서 일정한 거리에 대한 음압레벨(sound pressure level, SPL)을 이용하여

\[
PWL = SPL + 20 \log (r) + 8\]

의 식을 적용한다. 건설공사장에서 건설장비에 의한 소음·진동도의 산출은 건설장비 및 영향을 받는 정온시설의 위치와 표고를 나타내는 이격거리를 고려한 거리감쇠식을 사용한 후 합성을 하는 방법을 적용할 수 있다. (<그림 2-2>)
제2장 건설장비에 의한 소음-진동 예측방법의 개선

<표 2-4> 건설장비의 일정거리에 대한 전주파수대역 소음도[8]

<table>
<thead>
<tr>
<th>공종</th>
<th>기계</th>
<th>동력(HP)</th>
<th>가동상태</th>
<th>거리별 소음도, dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5m(대수평균)</td>
</tr>
<tr>
<td>굴삭기</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75-140</td>
<td>무부하</td>
<td>74.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75-140</td>
<td>작업</td>
<td>72.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140-280</td>
<td>무부하</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>140-280</td>
<td>작업</td>
<td>75.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>280이상</td>
<td>무부하</td>
<td>78.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>280이상</td>
<td>작업</td>
<td>79.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70미만</td>
<td>무부하</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 미만</td>
<td>작업</td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>무부하</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>83.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>로우더</td>
<td>140이상</td>
<td>작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>그레이더</td>
<td>120-170</td>
<td>작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>탎덤로울러</td>
<td>75이상</td>
<td>작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>진동로울러</td>
<td>75이상</td>
<td>무전동작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>탱평로울러</td>
<td>75이상</td>
<td>진동작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td>기초공사</td>
<td>스로시러지</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>120-140</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160이상</td>
<td>작업</td>
<td>78.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>작업</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>작업</td>
<td>83.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>브레이커</td>
<td>140이상</td>
<td>작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>로우더</td>
<td>140이상</td>
<td>작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>그레이더</td>
<td>120-140</td>
<td>작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>탎덤로울러</td>
<td>75이상</td>
<td>작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>무전동작업</td>
<td>78.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>진동로울러</td>
<td>75이상</td>
<td>진동작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>탱평로울러</td>
<td>75이상</td>
<td>무전동작업</td>
</tr>
<tr>
<td></td>
<td></td>
<td>진동작업</td>
<td>82.1</td>
<td>77.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>범면다짐기</td>
<td>180</td>
<td>무부하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>작업</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140이상</td>
<td>작업</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>무부하</td>
<td>63.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-140</td>
<td>무부하</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
공사장 환경분쟁사건 소음-진동도 산출방법 개선 연구

<table>
<thead>
<tr>
<th>기기</th>
<th>작업</th>
<th>95.7</th>
<th>88.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>핸드브레이커</td>
<td>작업</td>
<td>81.8</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>발전기</th>
<th>75미만</th>
<th>개방</th>
<th>77.9</th>
<th>69.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>폐쇄</td>
<td>72.7</td>
<td>66.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75이상</td>
<td>개방</td>
<td>78.3</td>
<td>72.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>소형발전기</th>
<th>75미만</th>
<th>작업</th>
<th>77.4</th>
<th>69.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>압축기</td>
<td>무부하</td>
<td>무부하</td>
<td>74.4</td>
<td>-</td>
</tr>
<tr>
<td>(10-30m³/분)</td>
<td>작업</td>
<td>77.3</td>
<td>73.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>기타</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>공회전</td>
<td>65.8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>무부하</td>
<td>67.8</td>
<td>61.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>작업</td>
<td>78.2</td>
<td>70.1</td>
<td></td>
</tr>
<tr>
<td>고압수압장</td>
<td>작업</td>
<td>80.3</td>
<td>70.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>작업</td>
<td>75.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>작업</td>
<td>74.7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>작업</td>
<td>84.7</td>
<td>74.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>작업</td>
<td>74.8</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<표 2-5> 건설장비의 일정거리에 대한 진동레벨[8]

<table>
<thead>
<tr>
<th>공종</th>
<th>기계</th>
<th>동력(HP)</th>
<th>가동상태</th>
<th>거리별 진동도, dB(V)</th>
<th>7.5m(대수평균)</th>
<th>15m(대수평균)</th>
</tr>
</thead>
<tbody>
<tr>
<td>지반정지공사</td>
<td>공작기</td>
<td>75미만</td>
<td>무부하</td>
<td>36.7</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75-140</td>
<td>무부하</td>
<td>33.5</td>
<td>31.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140-280</td>
<td>무부하</td>
<td>39.9</td>
<td>21.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>280이상</td>
<td>무부하</td>
<td>34.6</td>
<td>28.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>무도저</td>
<td>50-240</td>
<td>무부하</td>
<td>38.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>작업</td>
<td>55.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>로우디</td>
<td>140이상</td>
<td>주행</td>
<td>37.9</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>그레이터</td>
<td>120-170</td>
<td>작업</td>
<td>36.6</td>
<td>30.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>탄덤로울리</td>
<td>75이상</td>
<td>작업</td>
<td>34.6</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>전동로울리</td>
<td>75이상</td>
<td>무전동작업</td>
<td>36.1</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전동작업</td>
<td>73.8</td>
<td>70.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>타이어로울리</td>
<td>75이상</td>
<td>작업</td>
<td>26.3</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>텔핑로울리</td>
<td>75이상</td>
<td>무전동작업</td>
<td>42.9</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>전동작업</td>
<td>71.7</td>
<td>53.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>법면다짐기</td>
<td>180</td>
<td>무부하</td>
<td>45.3</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>작업</td>
<td>66.5</td>
<td>59.9</td>
<td></td>
</tr>
<tr>
<td>기초공사</td>
<td>이스오거</td>
<td>-</td>
<td>무부하</td>
<td>45.9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>작업</td>
<td>61.1</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>장타</td>
<td>54.7</td>
<td>52.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>항공기</td>
<td></td>
<td>작업</td>
<td>73.9</td>
<td>69.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>전동항공기</td>
<td></td>
<td>작업</td>
<td>67.9</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소구경 장공기</td>
<td></td>
<td>작업</td>
<td>48.7</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>천공기</td>
<td>무부하</td>
<td>24.9</td>
<td>18.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>작업</td>
<td>44.6</td>
<td>27.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>콘크리트공사</td>
<td>콘크리트 펌프카</td>
<td>305-340</td>
<td>공회전</td>
<td>26.2</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>무부하</td>
<td>29.9</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>작업</td>
<td>33.3</td>
<td>26.1</td>
<td></td>
</tr>
</tbody>
</table>
제2장 건설장비에 의한 소음-진동 예측방법의 개선 15

![표 2-1 건설장비에 의한 소음 예측결과](image)

<table>
<thead>
<tr>
<th>작업</th>
<th>소음원 거리감쇠식</th>
<th>콘크리트 피니셔</th>
<th>작업</th>
<th>33.8</th>
<th>27.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>포장공사</td>
<td></td>
<td>아스팔트 피니셔</td>
<td>무부하</td>
<td>25.4</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>작업</td>
<td>32.6</td>
<td>32.4</td>
</tr>
<tr>
<td>파괴 및 해체공사</td>
<td>브레이커</td>
<td>500kg미만</td>
<td>작업</td>
<td>57.9</td>
<td>45.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500kg이상</td>
<td>무부하</td>
<td>37.8</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>작업</td>
<td>68.4</td>
<td>60.0</td>
</tr>
<tr>
<td>기타</td>
<td>크레인</td>
<td></td>
<td>무부하</td>
<td>27.2</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>작업</td>
<td>31.4</td>
<td>24.0</td>
</tr>
</tbody>
</table>

■ 점음원 거리감쇠식

\[
SPL = SPL_o - 20 \log \left(\frac{r}{r_o} \right)
\]

\(SPL\) : 예측지점에서의 장비소음도, dB(A)

\(SPL_o\) : 소음원으로부터 일정거리(7.5m, 15m) 떨어진 지점에서의 장비소음도, dB(A)

\(r\) : 소음원으로부터 예측지점까지의 거리(m)

\(r_o\) : 소음원으로부터 기준 측정지점까지의 거리(7.5m, 15m)

![그림 2-2 건설장비에 의한 소음예측과정](image)
\[SPL = 10 \log (10^{SPL_{1/10}} + 10^{SPL_{2/10}} + \cdots + 10^{SPL_{n/10}}) \]

\(SPL \) : 합성소음도, dB(A)
\(SPL_{1,2,\ldots,n} \) : 각 장비별 발생소음도, dB(A)

■ 진동 거리감쇠식

\[VL = VL_0 - 20 \log \left(\frac{r}{r_o} \right)^n \]

\(VL \) : \(r \) (m) 떨어진 지점의 진동레벨, dB(V)
\(VL_0 \) : \(r_o \) (m) 떨어진 지점의 진동레벨, dB(V)
\(r \) : 진동원으로부터 예측지점까지의 거리(m)
\(r_o \) : 진동원으로부터 기준 측정지점까지의 거리(7.5m, 15m)
\(n \) : 기하감쇠정수(평균값 : 0.81)

항타기 : 0.75, 브레이커 : 1.2, 굴착기 : 0.36, 천공기 : 1.8, 디센기 : 0.35, 발전기 : 0.42

<그림 2-3> 건설공사장 소음 간이 예측 프로그램의 화면[8]

건설공사장 환경분쟁에서 건설장비에 의한 소음·진동의 예측방법 및 평가 프로그램을 개선하기 위하여 2007년도에 환경부의 ‘공사장 소음·진동 관리지
제2장 건설장비에 의한 소음진동 예측방법의 개선 17

침서’에 포함되어져 있는 건설공사장 소음 간이 예측 프로그램을 참조하였 다.[8] 건설공사장 소음 간이 예측 프로그램은 소음 간이 예측 프로그램 실행, 장비종류 관리(조회 및 등록), 프로그램 종료, 저장데이터 선택조회(예측 및 저장된 데이터 보기 및 선택), 저장데이터 전체조회를 포함하는 5개의 세부화면으로 구성되어져 있다. (<그림 2-3>) 소음 간이 예측 프로그램 실행을 누르게 되면 방음벽 미 설치시 합성소음 레벨, 방음벽 설치시 합성소음 레벨, 기준치 만족 방음벽 높이 계산의 세 파트가 나오게 되며 여기에서 건설장비에 의한 소음예측은 방음벽 미 설치시 합성소음 레벨의 문야에서 다루어지게 된다. (<그림 2-4>)

<그림 2-4> 방음벽 미 설치시 합성소음 레벨의 화면[8]

건설장비에 따른 소음·진동의 분야에서 공사장 환경분쟁의 소음·진동 평가프로그램과 환경부의 건설공사장 소음 간이 예측 프로그램을 비교해 보면 건설공사장 소음 간이 예측 프로그램에서 건설장비에 의한 진동예측부분이 포함되어 있지 않은 것과 예측위치와 장비위치의 3차원 좌표(x,y,z)의 입력을 통한 이격거리의 산정을 제외하고는 점음원 거리감쇠식을 통하여 건설장비에 따른 개별적인 소음레벨을 계산하고 합성소음도 산출식을 적용한 합성소음레벨을 산정하는 방식은 똑같다고 볼 수 있다. 예측위치와 장비위치의 3차원 좌표
의 적용은 건설장비와 영향지점의 정확한 위치좌표를 입력함으로써 이격거리 산정의 정확성을 높일 수 있으나 공사장 환경분쟁에서 도면이나 현장의 파악을 통해 다양한 종류의 건설장비와 영향지점의 3차원 좌표를 구하는 것이 상대적으로 어려울 수 있으므로 건설장비와 영향지점 사이의 수평 및 수직거리를 고려한 이격거리의 직접적인 입력이 건설장비 소음·진동레벨을 예측하기 위해서 더 효율적일 수가 있으므로 기존의 소음·진동 평가프로그램의 방식을 따르도록 한다.

(a) 공사장 환경분쟁의 기존 평가프로그램

<table>
<thead>
<tr>
<th>구분</th>
<th>기호</th>
<th>거리</th>
<th>대수</th>
<th>방향소음도</th>
<th>적합소음도</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.5m</td>
<td>100</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>블록기(5포함)</td>
<td>100</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>블록기(5포함)</td>
<td>100</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) 건설공사장 소음·진동 예측 프로그램

<그림 2-5> 건설장비에 의한 소음예측 프로그램의 비교[8]

공사장 환경분쟁에서 사용되어지는 기존의 평가프로그램과 환경부의 건설공사장 소음·진동 예측 프로그램에 의한 건설장비의 소음예측결과를 비교한 것.
이 <그림 2-5>에 제시되어져 있으며 유사한 예측결과를 보여주는 것을 확인할 수 있다.

환경부의 건설공사장 소음 간이 예측 프로그램의 장비종류 관리(조회 및 등록)와 관련한 화면에는 <그림 2-6> 개별적인 건설기계의 과피레벨 및 7.5m에서 측정된 대수평균의 소음레벨이 표시되어져 있으며 2003년도 국립환경과학원의 연구에 의한 건설장비 기준 소음레벨을 포함했을 뿐만 아니라 개별적인 측정자료에 의한 건설기계의 소음레벨의 분포를 추가시켰다는 것을 알 수 있다.

표

![표](표보다는 간결한 설명]

<그림 2-6> 건설공사장 소음 간이 예측 프로그램의 장비종류 화면[8]

접음원 거리감쇠식의 적용을 바탕으로 건설장비에 의한 소음의 예측결과와 건설공사장에서의 비교적 평탄한 지역에 대한 측정데이터를 명시한 것이 <그림 2-7>에 제시되어져 있고 건설장비에 의한 소음의 예측치와 실측치의 분포를 통한 회귀식, $SPL_{Exp.} = 0.89SPL_{Calv.} + 5.87$을 구할 수 있으며 이러한 회귀식의 적용을 통하여 공사장 환경분쟁의 건설장비에 의한 소음예측의 보정을 고려할 수 있다. 그리고, 거리감쇠식과 기하감쇠정수 평균효시 적용을 바탕으로 한 건설장비에 의한 진동의 예측결과와 측정자료를 비교한 것이 <그림 2-8>에 제시되어져 있고 건설장비에 의한 진동의 예측치와 실측치의 분포를 통한
회귀식, $V L_{Exp.} = 0.98 V L_{Cal.} - 1.35$을 기반으로 하여 공사장 환경분쟁의 건설장비에 의한 진동측의 보정을 고려할 수 있다.

<그림 2-7> 거리감쇠식에 의한 건설장비소음 예측치와 실측치의 비교 (Calculation value : 예측치, Experimental value : 실측치, Distribution of calculation and experimental values : 예측치와 실측치의 분포, Regression formula : 회귀식, $S P L_{Exp.} = 0.89 S P L_{Cal.} + 5.87$)

<그림 2-8> 거리감쇠식에 의한 건설장비진동 예측치와 실측치의 비교 (Calculation value : 예측치, Experimental value : 실측치, Distribution of calculation and experimental values : 예측치와 실측치의 분포, Regression formula : 회귀식, $V L_{Exp.} = 0.98 V L_{Cal.} - 1.35$)
(3) 건설장비 소음·진동 평가의 개선방안

건설공사장의 건설기계에서 발생하는 소음을 산정하는 경우에 점음원 거리감쇠식을 적용한 예측결과에서 건설장비 소음의 예측치와 실측치의 분포를 통한 회귀식을 적용하여 보정을 고려하는 방법을 적용할 수 있으며 건설기계에 의한 진동레벨을 산정하는 경우에도 진동의 발생에 따른 거리감쇠와 기하감쇠정수의 평균치를 적용한 예측결과에서 건설장비 진동의 예측치와 실측치의 분포를 통한 회귀식을 적용하여 보정을 적용하는 방법을 고려할 수 있다.

■ 점음원 거리감쇠식의 보정

\[SPL_1 = SPL_0 - 20 \log (r/r_o) \]
\[SPL_2 = 0.89SPL_1 + 5.87 \]

\(SPL_1 \) : 점음원 거리감쇠식의 적용을 통한 예측지점에서의 장비소음도, dB(A)

\(SPL_2 \) : 건설장비 소음의 예측치와 실측치의 분포를 통한 회귀식을 적용한 보정된 예측지점에서의 장비소음도, dB(A)

\(SPL_0 \) : 소음원으로부터 일정거리 (7.5m, 15m) 떨어진 지점에서의 장비소음도, dB(A)

\(r \) : 소음원으로부터 예측지점까지의 거리 (m)

\(r_o \) : 소음원으로부터 기준 측정지점까지의 거리 (7.5m, 15m)

■ 진동 거리감쇠식의 보정

\[VL_1 = VL_0 - 20 \log (r/r_o)'' \]
\[VL_2 = 0.98VL_1 - 1.35 \]

\(VL_1 \) : 진동 거리감쇠식의 적용을 통한 \(r \) (m) 떨어진 지점의 진동레벨, dB(V)
VL₂ : 건설장비 진동의 예측치와 실측치의 분포를 통한 회귀식을 적용한 보정된 r(m) 멀어진 지점의 진동레벨, dB(V)
VL₀ : r₀(m) 멀어진 지점의 진동레벨, dB(V)

r : 진동원으로부터 예측지점까지의 거리(m)

r₀ : 진동원으로부터 기준 측정지점까지의 거리(7.5m, 15m)

n : 기하감쇠정수(평균값 : 0.81)

<table>
<thead>
<tr>
<th>구분</th>
<th>장비종류</th>
<th>기본소음(68(A))</th>
<th>이격거리(㎞)</th>
<th>고정소음(68(A))</th>
<th>합성소음(68(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>1</td>
<td>콜리거(채광)</td>
<td>75</td>
<td>10</td>
<td>26.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>콜리거(채광)</td>
<td>75</td>
<td>10</td>
<td>26.4</td>
<td></td>
</tr>
</tbody>
</table>

<그림 2-9> 개선된 평가프로그램의 적용(건설장비소음)

건설장비 소음·진동 예측에 사용되는 거리감쇠식의 보정을 바탕으로 건설공사장 환경분쟁 평가프로그램을 개선하였으며 건설장비 소음·진동 예측과 관련한 프로그램의 내부에 포함되어져 있는 각각의 항목에 대한 설명 및 내용은 다음과 같다.

① 장비종류 및 기준 소음·진동레벨
건설공사의 소음·진동을 발생시키는 장비의 종류 및 기준거리를 선택하면 소음·진동원으로부터 일정거리(7.0m, 7.5m, 15.0m) 멀어진 지점에서의 건설장비 소음·진동도(단위 : dB(A), dB(V))가 자동적으로 표시된다.

② 이격거리
음원(건설장비)과 수음점(영향지점) 사이의 수평 및 수직거리(단위 : m)를 포함한 실제 이격거리를 입력한다.

③ 기하감쇠정수
건설장비진동의 기하감쇠정수를 건설장비의 종류에 따라 입력한다.

4. 추정소음 • 진동레벨
건설장비의 종류, 기준 소음 • 진동레벨, 기하감쇠정수, 이격거리의 입력에 따른 개별적인 소음 • 진동레벨(단위 : dB(A), dB(V))을 자동적으로 계산한다.

5. 합성소음 • 진동레벨
정온시설에 영향을 미치는 다양한 건설장비에 의한 개별적인 소음 • 진동레벨을 합성한 소음 • 진동레벨(단위 : dB(A), dB(V))을 자동적으로 계산한다.

표 2-6

<table>
<thead>
<tr>
<th>건설기계명</th>
<th>규격</th>
<th>소음레벨, dB(A) (15m)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>백호우</td>
<td>0.6㎥</td>
<td>61.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2㎥</td>
<td>65.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6㎥</td>
<td>69.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0㎥</td>
<td>71.3</td>
<td></td>
</tr>
<tr>
<td>불도저</td>
<td>8.5ton</td>
<td>66.7</td>
<td>공사현장 측정자료</td>
</tr>
<tr>
<td></td>
<td>19.0ton</td>
<td>72.5</td>
<td></td>
</tr>
<tr>
<td>PBD(연약지반처리공)</td>
<td>38.5ton</td>
<td>71.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63.5ton</td>
<td>76.8</td>
<td></td>
</tr>
<tr>
<td>항려기</td>
<td>50.0ton</td>
<td>95.5</td>
<td></td>
</tr>
<tr>
<td>골재선별기</td>
<td>60-80㎥/hr</td>
<td>81.4</td>
<td></td>
</tr>
</tbody>
</table>

건설공사장 환경분쟁에서 건설장비에 의한 소음 • 진동의 평가는 국립환경과 학원에서 제시한 장비로부터 일정한 거리(7.5m, 15m)에서 발생되는 장비별 소음으로부터 진동을 추정하고, 이를 각장 비별로 구분하여 정의한 소음 • 진동레벨을 사용하여 건설장비의 소음 • 진동 레벨을 계산한다.
공사장 환경문제간 소음·진동도 산출방법 개선 연구

음·진동도의 평균값을 기준으로 예측되어지고 있으며 장비별 소음·진동레벨 평균값의 적용으로 인하여 실제 운용되는 건설기계에서 발생되는 소음·진동레벨과의 차이를 나타낼 수 있다. 이러한 차이를 해결하기 위해서는 실제 공사장에서 운용되는 건설기계의 종류 및 상태(동력이나 규격 등)에 따른 일정한 거리에서의 소음·진동레벨을 측정한 이후에 보정이 이루어진 소음·진동거리감쇠식 및 합성 소음·진동레벨 산출식을 적용하면 되고 <부록 1>에서 보여지고 있는 국내 및 외국의 건설기계에 대한 소음·진동레벨의 자료를 활용할 수 있다. <표 2-7>은 실제 건설공사장에서 사용되는 건설기계의 종류 및 용량에 따른 일정한 거리(15m)에서의 소음레벨의 분포를 나타내는 일례를 보여주고 있으며 건설현장에서 많이 적용되는 다양한 건설기계의 종류 및 상태에 따른 소음·진동레벨의 자료를 축적하여 데이터베이스화하는 연구를 통하여 건설장비에 의한 소음·진동 예측의 정확성을 향상시킬 수 있다.

〈표 2-7〉 건설장비에 적용된 소음방지장치의 소음저감량 분포

<table>
<thead>
<tr>
<th>소음방지장치</th>
<th>저감량, dB(A)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>엔진이나 팬부위를 완전히 밀폐</td>
<td>10.0</td>
<td><그림 2-9> 참조</td>
</tr>
<tr>
<td>소음기</td>
<td>4.0</td>
<td>소음기를 부착할 경우에 약 4-5dB(A)의 저감효과가 있으므로 최소값 적용(<표 2-9> 참조)</td>
</tr>
<tr>
<td>강철덮개</td>
<td>5.0</td>
<td>강철덮개를 설치할 경우에 약 5-10dB(A)의 저감효과가 있으므로 최소값 적용(<표 2-9> 참조)</td>
</tr>
<tr>
<td>이동식 대형 방음천막(덮개형)</td>
<td>10.0</td>
<td><표 4-2> 참조</td>
</tr>
<tr>
<td>부직포</td>
<td>0.8</td>
<td>공사현장 측정자료</td>
</tr>
</tbody>
</table>

건설공사시 건설장비에 의한 소음발생을 저감하기 위한 대책으로서 일반적으로 발생원에서의 대책, 전달경로에서의 대책, 수음점에서의 대책 등 3가지로 구분되어지고 있으며 건설공사에 있어서의 소음대책은 발생원에서 적극적으로 제어하는 방법이 가장 우선이 되고 있다. 건설장비 소음발생원을 저감하기 위한 하나의 방안으로서 건설장비나 건설장비 근처에 소음방지장치를 추가하는 방법이 널리 사용되어지고 있으며 건설공사장 환경문제간에서 건
설장비에 의한 소음을 평가할 경우에 소음방지장치를 장착한 건설장비에 대해서 소음을 감효과를 고려한 평가가 필요하다. <표 2-8>은 건설장비에 적용되는 다양한 소음방지장치의 소음을 감량량을 나타내고 있으며 이러한 데이터를 기반으로 하여 소음방지장치가 결합된 건설장비의 운영으로 인한 건설소음의 분포를 정확하게 예측할 수 있다.

<그림 2-11> 소음대책 전·후의 소음을비교[9]

<표 2-8> 소음기 및 강철덮개 부착에 따른 소음을비교[8]

<table>
<thead>
<tr>
<th>향태방법</th>
<th>소음레벨 (dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>휴대용 공압식 브레이커(표준형)</td>
<td>90-104</td>
</tr>
<tr>
<td>휴대용 공압식 브레이커(소음기 부착)</td>
<td>85-100</td>
</tr>
<tr>
<td>휴대용 공압식 브레이커(소음기 및 강철덮개 부착)</td>
<td>80-90</td>
</tr>
</tbody>
</table>
제3장 발파공사에 의한 소음·진동 예측방법의 개선

1. 발파공사에 의한 소음·진동의 특성

일반적으로, 발파에 의한 소음은 공기를 매질로 하여 전파되는 파동 중에서 사람의 귀에 들리는 극가청영역의 주파수를 가지는 파동을 말한다. 그러나, 가청영역이 아닌 저주파의 진동도 사람의 귀에는 들리지 않지만 건물을 진동시켜 이차적 소음을 발생시키거나 균열을 전파시키게 되므로 가청영역의 진동보다 오히려 더 위험할 수도 있다.[4] 그러므로, 발파로 인해 발생하는 소음의 피해를 기술할 때 저주파의 파동도 포함시켜야 한다. 가청영역의 소음과 저주파의 파동을 일컬어 발파풍압으로 표현하는데 사람에 따라 폭풍압으로 부르기도 한다. 엄격한 의미에서 가청영역의 소음과 저주파의 진동을 구별하여 기술하기도 하지만 이를 일컬어 발파소음 또는 발파풍압으로 명명하기도 한다. 발파시 폭약이 자유롭게 균처에서 폭발할 때 발파에 의한 에너지의 일부가 암반중으로는 탄성파로서 또는 공기중으로 발파풍압으로 주위에 전파되면서 소비된다. 이 경우 공기중에서 발생하는 파동은 발파원 근처에서 180dB 이하의 음으로 전파된다. 일반적으로, 발파풍압은 넓은 범위의 주파수를 가지고 있으나 0.1㎐에서 200㎐ 범위의 주파수가 중심이 된다. 이러한 범위중에서 20㎐ 이상의 발파풍압은 사람이 들을 수 있는 가청영역의 소음이 된다. 20㎐ 이하의 저주파는 사람의 가청영역을 벗어나 사람이 들을 수는 있지만 비교적 멀 곳까지 에너지의 손실이 없이 전파하는 특성이 있으며 가옥 등 구조물을 진동시켜 2차의 소음을 발생시킨다. 이 저주파의 발파풍압이 구조물 피해의 주요한 원인이다. 발파작업과정에서 발파풍압의 생성원인은 다음과 같이 4가지로 분류할 수 있다.

발파지점에서의 직접적인 압박의 변위로 인한 공기압력파(air pressure
pulse, APP)
· 발파지점에서 약간 떨어진 곳에서의 지반진동에 의해 공기로 전달되는 파 (rock pressure pulse, RPP)
· 격쇄된 암반의 틈을 통해서 나오는 가스의 분출 (gas release pulse, GRP)
· 불완전한 전색에 의해 전색물이 분출되면서 나오는 가스의 분출 (steaming release pulse, SRP)

일반적으로, 발파에서 발생되는 저주파음의 대부분은 공기압력파 (APP)에 의한 것이다. 그러나, 소규모 발파나 부적절하게 설계된 발파에서는 GRP, SRP의 영향도 크게 나타나지만 이것들은 적절한 발파설계에 의해 비교적 손쉽게 제어할 수 있다.

발파에 있어 진동은 매우 중요한 부분이다. 폭약이 폭발하여 그 가스압력이 주변 암반체에 큰 응력을 일으키고 충격을 주어 혼들리게 된다. 이와 같이 진동은 폭원을 중심으로 퍼져 나가며 특히 지반을 따라 전파된다. 즉, 진원지로부터 점점 멀어짐에 따라 기하급수적으로 확대되며 물질 즉 매질을 거친에 따라 점차 에너지의 위력이 감소한다. 진동과 충격은 시간에 따른 물체의 운동과 같은 방식으로 수학적으로 표현될 수 있고 물리학적인 척도로는 진동하는 매질의 변위 (particle displacement), 속도 (particle velocity) 및 가속도 (particle acceleration)를 사용할 수 있다. 서방의 여러 국가에서는 거의 발파진동의 크기를 속도단위로 표시하고 일본은 데시벨 (dB) 단위로 표시하고 있으며 국내에서는 보통 속도단위로 나타낸다. 따라서, 발파진동의 크기는 진동의 가속도, 속도 및 변위량으로 모두 표현할 수 있으며 구조물에 미치는 영향은 1차적으로 진동의 세기가 될 것이므로 진동허용수준 역시 가속도, 속도 및 변위량을 이용한 표현이 가능하다. 발파진동의 전파특성을 결정하는 주요한 조건은 입지조건과 발파조건의 두 가지로 크게 나누어질 수 있으며 입지조건은 발파장소와 인근 구조물의 기하학적 형태, 대상 암반의
지질학적 특성 및 역학적 성질을 들 수 있고 발파조건은 사용되는 폭약의 종류, 장약량, 기폭방법, 전색의 상태, 자유면의 수, 폭발원과 계측위치 사이의 거리 등이 있다. 그러나, 지반내의 불연속면과 지질적 구조의 복잡성 때문에 진동전파에 관해서는 이론적으로 접근하는 데에는 많은 어려움이 따르고, 동일한 암반일지라도 현장의 발파조건 등에 따라 전파특성이 크게 달라지므로 오히려 현장에서 동일 조건으로 30~50회의 시험발파(test blasting)를 실험하여 그 결과로 그 현장의 진동관리방안을 수립하는 것이 가장 이상적이 다.

2. 발파공사에 의한 소음·진동 예측

(1) 공사장 환경분쟁에서 발파공사 소음·진동의 예측현황

공사장 환경분쟁에서 발파공사에 의한 소음·진동의 예측은 발파작업일지, 시험발파보고서 등의 자료를 바탕으로 이격거리와 지발당량약량에 따른 최대 소음·진동도를 주로 적용하고 있다.[5] 발파에 따른 소음·진동을 예측하기 위한 기존 평가프로그램의 적용에서는 장약량과 이격거리간의 상관관계식으로 표현되어지는 미량무국의 일반적인 추정식을 바탕으로 시험발파보고서에 나타나 있는 입지상수, 장약지수, 감쇠지수의 값을 입력하여 이격거리 및 장약량에 따른 발파진동속도를 예측하고 있으며 발파진동속도를 진동레벨로 환산하기 위하여 \[VL = 20 \log V_{peak} + 91 \] \((VL: \text{진동레벨, dB(V), } V_{peak}: \text{발파진동속도 최대값, cm/sec(kine)})\)을 적용하고 있다. 기존의 프로그램에서는 발파에 대한 소음예측의 내용이 포함되어 있지 않으므로 이러한 부분을 고려하는 것이 필요하며 또한 발파진동속도를 발파진동레벨로 환산할 경우에 적용되어진 예측식, \[VL = 20 \log V_{peak} + 91 \] 이 충격진동파형에 대해서 진동레벨이 과대평가되는 경향을 보여주는 연유로[10] 발파진동 측정데이터를 바탕으로 발파공사에 따른 진동속도와 진동레벨의 상관관계를 고려한 환산
제3장 발파공사에 의한 소음-진동 예측방법의 개선 29

식을 적용하는 것이 필요하다.

발파에 의한 소음·진동 추정치 계산식

(a) 발파에 의한 진동속도 예측

(b) 발파진동속도에서 진동레벨로의 환산

(c) 시험발파에 의한 발파진동 추정식

<그림 3-1> 시험발파자료에 의한 기존 프로그램의 발파진동 예측
(2) 발파공사 소음・진동 예측방법의 개선

발파로 인한 소음・진동의 영향을 예측할 경우에 지반의 특성(암반의 종류, 층의 두께, 암반의 밀도, 지반의 성층상태 등) 및 사용화약의 종류, 지발당 장약량 등의 많은 변수들이 작용하므로 어느 조건에서나 통용할 수 있는 보편적이면서 타당한 관계식을 구할 수는 없으나, 발파공법에 따라 지발당 장약량 및 화약의 종류가 다르므로 발파가 확정된 지역은 시험발파를 실시한 이후에 시험발파 결과에 따라 발파에 의한 소음・진동 예측식을 결정하여 소음・진동의 규제기준에 만족하는 장약량 및 발파공법 등의 적합한 발파패턴을 선정토록 되어 있다. 그러나, 발파공사에 따른 환경분쟁의 소음・진동 산출단계에서는 이러한 절차수행이 현실적으로 적용하기에는 무리가 있다. 따라서, 측정데이터의 회귀분석방법을 기반으로 하여 발파공사에 의한 소음・진동의 영향을 예측하는 식을 적용하는 방안을 고려할 수 있으며, 통상적으로 발파에 따른 소음・진동 예측식은 장약량과 이격거리간의 상관관계식으로 표현되어진다.

■ 발파소음 예측식(미광무국 실험식)

\[P = 186.36 \left(\frac{D}{W^{1/3}} \right)^{1.2} \]
\[SL = 20 \log \left(\frac{P}{P_o} \right) \]

\(P \) : 발파원에서 D(m) 떨어진 지점에서의 폭풍압(dyne/cm²)
\(D \) : 발파원으로부터 예측지점까지의 거리(m)
\(W \) : 지발당 총장약량(kg)
\(SL \) : 소음레벨, dB(A)
\(P_o \) : 최저가청음압, \(2 \times 10^{-4} \)(dyne/cm²)

건설공사장의 발파에 따른 소음을 예측하기 위하여 미광무국(USBM)에서 측정자료의 분석을 바탕으로 이격거리와 지발당 장약량을 고려한 경험식을 적용
용하였다. 건설공사장의 발파에 따른 소음·진동 환경문제에서 발파작업에 따른 최대 소음·진동도를 평가하고 있기 때문에 발파지점과 발파로 인한 소음·진동의 영향을 받는 정축시설의 가장 가까운 이격거리 비용하여야 하며 실제적인 이격거리는 발파지점과 영향지점 사이의 수평 및 수직적인 이격거리 를 모두 고려하여 산정하는 것이 필요하다.

<그림 3-2> 미광무국 실험식에 의한 발파소음 예측치와 실측치의 비교
(Calculation value : 예측치, Experimental value : 실측치, Distribution of calculation and experimental values : 예측치와 실측치의 분포, Regression formula : 회귀식, \(SL_{Exp.} = 0.94SL_{Cal.} + 3.42 \))

미광무국 추정식의 적용을 바탕으로 발파작업에 의한 소음의 예측결과와 비교적 평탄한 지역에 대한 측정데이터를 명시한 것이 <그림 3-2>에 제시되어져 있고 발파공사에 의한 소음의 예측치와 실측치의 분포를 통한 회귀식, \(SL_{Exp.} = 0.94SL_{Cal.} + 3.42 \)을 구할 수 있으며 이러한 회귀식의 적용을 통하여 공사장 환경문제의 발파작업에 의한 소음예측의 보정을 고려할 수 있다.

발파진동속도를 발파진동레벨로 환산하기 위해서 발파진동속도의 최고치와 진동레벨의 관계로부터 진동 수, 8Hz 이상의 조화진동일 때 다음과 같은 변환
이 가능하다.

\[VL = 20 \log V_{\text{peak}} + 91 \]

여기에서, \(VL \)은 진동레벨(dB(V)), \(V_{\text{peak}} \)는 발파진동속도의 최대값(kine)을 의미한다. 이 식은 평균예상식이 아니고 사인파에 근사하는 연속진동의 경우 가능하다. 그러나, \(VL = 20 \log V_{\text{peak}} + 91 \)은 진동파형의 연속시간(sec)을 의미한다. 그러나, Vanmarcke 환산식이 Vanmarcke 환산식보다 정확도가 높은 것은 사실이지만 Vanmarcke 환산식에 의한 진동레벨을 산정하기 위해서는 연속적으로 발파에 따른 진동파형의 연속시간인 \(T_d \) 값을 구해야 하는데 발파공사의 종류, 형식, 횟수 등과 발파지역의 특성 등의 차이로 인하여 다양한 분포를 보여주고 있기 때문에 발파에 따른 환경분쟁의 소음-진동 평가에 적용하기에는 어려움이 있을 수 있다. 따라서, 발파에 따른 진동속도와 진동레벨을 동시에 측정한 결과를 바탕으로 상관관계를 도출하는 방법을 생각할 수 있으며(\(<\text{그림 3-3}>\) 그에 따른 예측식은 그 다음과 같다.

\[VL = 13.54 \log V_{\text{peak}} + 72.33 \]
여기에서, VL은 진동레벨(dB(V)), V_{peak}는 발파진동속도의 최대값(kine)을 의미한다.

![그림 3-3] 발파진동속도와 진동레벨의 상관 관계식[10,11]
(Vibration velocity : 진동속도, Vibration level : 진동레벨, Experiment : 실측치, Regression formula : 회귀식, $VL = 13.54\log V_{peak} + 72.33$)

(3) 발파공사 소음·진동 평가의 개선방안

발파에 따른 소음영향을 평가할 경우에 미광무국 추정식을 적용한 예측결과에서 발파로 인한 소음의 예측치와 실측치의 분포를 통한 회귀식을 적용하여 보정을 고려하는 방법을 적용할 수 있으며 발파가 수반되는 공사현장 주변 소음영향의 정확성을 향상시키기 위해서는 시험발파의 소음측정자료를 바탕으로 하여 현장에 적합한 발파소음 추정식을 적용하는 것이 필요하다.

■ 발파소음 예측식(미광무국 실험식)의 보정

$$ P = 186.36 \left(\frac{D}{W^{1/3}}\right)^{-1.2} $$
\[SL_1 = 20 \log \left(\frac{P}{P_o} \right) \]
\[SL_2 = 0.94 SL_1 + 3.42 \]

\(P \): 발파원에서 \(D \) (m) 떨어진 지점에서의 폭풍압 (dyne/cm^2)
\(D \): 발파원으로부터 예측지점까지의 거리 (m)
\(W \): 지발당 총장약량 (kg)
\(P_o \): 최저가정음압, \(2 \times 10^{-4} \) (dyne/cm^2)

\(SL_1 \): 발파소음 예측식 (미광무국 실험식)의 적용을 통한 소음레벨, dB(A)
\(SL_2 \): 발파소음의 예측치와 실측치의 분포를 통한 회귀식을 적용한 보정된 예측지점에서의 소음레벨, dB(A)

■ 시험발파에 의한 발파소음레벨 예측식

\[dB(A) = K(D/W^b)^n \]

\(dB(A) \): 발파에 따른 소음레벨
\(K \): 자유면 상태, 폭약종류, 암질 등에 따른 상수
\(D \): 폭원으로부터의 이격거리 (m)
\(W \): 지발당 최대 장약량 (kg)
\(b \): 장약지수 (1/2 또는 1/3)
\(n \): 감쇠지수

발파진동의 예측은 실제 건설공사장에서의 시험발파 측정자료에 기인한 발파진동속도 추정식과 더불어 발파에 따른 진동속도와 진동레벨의 상관관계를 보여주는 환산식, \(VL = 13.54 \log V_{peak} + 72.33 \)의 적용을 통하여 발파시 진동속도와 진동레벨을 구할 수가 있다.

■ 시험발파에 의한 발파진동레벨 예측식

\[dB(V) = K(D/W^b)^n \]
$dB(V)$: 발파에 따른 진동레벨
K : 자유면 상태, 폭약종류, 암질 등에 따른 상수
D : 폭원으로부터의 이격거리(m)
W : 지발당 최대 장약량(kg)
b : 장약지수(1/2 또는 1/3)
n : 감쇠지수

발파공사 소음예측에 사용되는 미광무국 실험식의 보정과 건설공사장에서의 시험발파 측정자료에 기인한 발파진동속도 추정식 및 발파에 따른 진동속도와 진동레벨의 상관 관계식을 바탕으로 발파공사장 환경분쟁 평가프로그램 개선하였으며 발파공사의 소음·진동 예측과 관련한 프로그램의 내부에 포함되어 있는 각각의 항목에 대한 설명 및 내용은 다음과 같다.

① 이격거리
음원(발파지점)과 수음점(영향지점) 사이의 수평 및 수직거리(단위 : m)를 포함한 실제 이격거리를 입력한다.

② 지발당 장약량
발파공사를 시행하게 되는 지발당 장약량(단위 : kg)을 입력한다.

③ 추정소음레벨
미광무국 실험식의 보정과 이격거리 및 지발당장약량의 입력에 따른 개별적인 발파소음(단위 : dB(A))을 자동적으로 계산한다.

④ K, b, n
건설공사장의 시험발파 및 실제 발파측정자료에 기인한 입지상수, 장약지수, 감쇠지수의 값을 입력한다.

⑤ 추정진동속도 및 추정진동레벨
시험발파 및 실제발파에 의한 입지상수, 장약지수, 감쇠지수와 더불어 이격거리 및 지발당장약량의 입력에 따른 발파공사의 개별적인 진동속
도(단위: kine)와 진동속도 및 진동레벨의 환산식에 의한 개별적인 진동레벨(단위: dB(V))을 자동적으로 계산한다.

6. 합성소음레벨・합성진동속도・합성진동레벨

정온시설에 영향을 미치는 다양한 발파공사에 의한 개별적인 소음레벨・진동속도・진동레벨을 합성한 소음레벨・진동속도・진동레벨(단위: dB(A), kine, dB(V))을 자동적으로 계산한다.

<table>
<thead>
<tr>
<th>구분</th>
<th>이력거리(m)</th>
<th>지반달달억수(kg)</th>
<th>주파수 레벨 (dB(A))</th>
<th>합성소음레벨 (dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0.1</td>
<td>65.8</td>
<td>88.8</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.2</td>
<td>61.0</td>
<td></td>
</tr>
</tbody>
</table>

<그림 3-4> 개선된 평가프로그램의 적용(발파소음)

<table>
<thead>
<tr>
<th>구분</th>
<th>이주거리(m)</th>
<th>발파량력량(kg)</th>
<th>일산지수, k</th>
<th>건설지수, k</th>
<th>발파진동속도(kine)</th>
<th>조정진동속도(kine)</th>
<th>조정진동레벨 (dB(V))</th>
<th>조정진동레벨 (dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>0.1</td>
<td>180</td>
<td>0.5</td>
<td>-1.6</td>
<td>-0.8</td>
<td>-1.6</td>
<td>-1.6</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>0.2</td>
<td>180</td>
<td>0.5</td>
<td>-1.6</td>
<td>-0.3</td>
<td>-1.6</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

<그림 3-5> 개선된 평가프로그램의 적용(발파진동)
제4장 방음시설에 의한 소음저감 예측방법의 개선

1. 방음시설의 종류 및 특성

건설공사장에서 발생하는 소음을 저감하기 위해서 소음이 전달되는 경로에 방음시설을 설치하여 건설현장 내의 소음의 전파를 차단하는 방법이 많이 적용되어지고 있으며 건설현장에서 많이 사용되는 방음시설로는 가설방음벽, 이동식 방음벽, 방음커버 등이 있다.

![그림 4-1] 건설공사장 방음시설의 모습[8]
(왼쪽부터 가설방음벽, 이동식방음벽, 방음커버)

가설방음벽은 주로 공사부지 경계선에 공사기간동안 설치하는 방음시설로서 비교적 얇거나 경량물인 강판이나 플라스틱 재질이 많이 사용되고 있고 이동식 방음벽은 공사장내 발생소음을 극대화시킬 목적으로 주로 사용되는 방음시설이며 방음커버는 소음유발이 큰 건설기계를 전체 또는 일부를 둘러싸는 방음시설로서 가설 및 이동식 방음벽에 비해 소음저감효과가 뛰어난 경우가 많다. (그림 4-1)[8]

2. 방음시설에 의한 소음저감 예측
(1) 공사장 환경분쟁에서 방음시설의 소음저감효과 예측현황

건설공사장에서 발생하는 소음을 저감하기 위해서 많이 적용되어지고 있는 것이 가설방음벽의 설치이며 이러한 경향으로 인하여 건설공사장의 환경분쟁에서 가설방음벽의 설치로 인한 소음저감효과의 적용은 음원(건설장비)과 수음점(영향지점) 사이의 이격거리, 방음벽의 높이 및 설치위치 등을 감안하여 5-10dB(A) 정도를 고려하고 있는 실정이다.[12,13] 그러나, 음원, 방음벽, 수음점의 상대적인 수평 및 수직적인 위치의 변화에 따라서 가설방음벽(이동식 방음벽 포함)의 소음저감효과는 다양하게 변동되어질 수 있으므로 이러한 사항을 고려하여 가설방음벽의 소음저감효과를 예측하는 것이 필요하다. 또한, 가설방음벽을 제외한 다른 방음시설(방음커버, 건물, 방음둑, 방음림)에 의한 건설공사장의 소음저감을 기대할 수 있기 때문에 이와 관련한 소음저감효과를 고려하는 것도 필요하다고 볼 수 있다.

(2) 가설방음벽에 의한 소음저감 예측방법의 개선

건설공사장에서 소음저감방안으로 많이 적용하고 있는 가설방음벽(이동식 방음벽 포함)에 의한 소음저감효과를 산정할 경우에 방음벽의 설치로 인한 삽입손실치의 개념을 주로 적용하고 있으며 소음·진동규제법의 시행규칙(제 21조 제5항 관련 별표 10)에서는 공사장 방음시설의 설치기준으로 삽입손실과 최소 설치높이를 규정하고 있다.(<표 4-1>)

소음원(건설장비)과 수음점(영향지점) 사이에 가설방음벽을 설치할 경우 이 구조물에 의해 삽입손실치가 발생하여 수음점에서의 소음도가 저감되는 데 삽입손실치는 회절감쇠치와 투과손실치의 대수합으로 구해지게 된다.

\[\Delta L = -10 \log_{10} \left(10^{-\Delta L_w/10} + 10^{-\Delta L_t/10} \right) \]
여기에서, ΔL_d는 가설방음벽의 높이에 의한 회절감쇠치이며 ΔTL은 가설방음벽의 재질 및 접합상태에 따른 투과손실치를 의미한다.

<표 4-1> 공사장 방음시설의 설치기준

| 1. 방음벽시설 전후의 소음도 차이(삽입손실)는 최소 7dB 이상 되어야 하며 높이는 3m 이상 되어야 한다. |
| 2. 공사장 인접지역에 고층건물 등이 위치하고 있어 방음벽시설로 인한 음의 반사피해가 우려되는 경우에는 흡음형 방음시설을 설치하여야 한다. |
| 3. 방음벽시설에는 방음판의 파손, 도장부의 손상 등이 없어야 한다. |
| 4. 방음벽시설의 기초부와 방음판·지주 사이에 틈새가 없도록 하여 음의 누출을 방지하여야 한다. |

참고
1. 삽입손실 측정을 위한 측정지점(음원 위치, 수음자 위치)은 음원으로부터 5m 이상 떨어진 노면 위 1.2m 지점으로 하고 방음벽시설로부터 2m 이상 떨어져야 하며 동일한 음량과 음원을 사용하는 경우에는 기준위치(reference position)의 측정은 생략할 수 있다.
2. 그 밖의 경우에 있어서의 삽입손실 측정은 "음향-외방음벽의 삽입손실 측정방법"(KS A ISO 10847) 중 간접법에 따른다.

음원과 수음점 사이에 가설방음벽을 설치하게 되면 음원에서 발생하는 소음은 방음벽의 상단을 회절하거나 방음벽을 투과하여 전달되어진다. (<그림 4-2>) 방음벽의 회절감쇠치는 방음벽이 있을 때와 없을 때의 차이로 나타내어지기 때문에 밝은 회절이론에 의한 근사계산이 가능하며 방음벽에 의하여 음은 음원, $S(X_s, Y_s, Z_s)$로부터 방음벽 상부의 지점, $C(X_c, Y_c, Z_c)$에서 회절하여 수음점, $O(X_o, Y_o, Z_o)$에 입사하게 되고 회절감쇠치, ΔL_d는 Kurze와 Anderson의 Fresnel number, N에 따라 계산이 이루어진다. Fresnel number, N은 전달경로차, δ로부터 아래와 같이 구해지며 전달경로차, δ과 Fresnel number, N에 따른 회절감쇠치, ΔL_d의 분포는 다음과 같이 산정되어진다.[8]
\[
\delta = A + B - d = (X_a - X_s)^2 + (Y_a - Y_s)^2 + (Z_a - Z_s)^{1/2} \\
+ (X_o - X_s)^2 + (Y_o - Y_s)^2 + (Z_o - Z_s)^{1/2} \\
- (X_o - X_s)^2 + (Y_o - Y_s)^2 + (Z_o - Z_s)^{1/2}
\]

\[
N = \frac{2 \cdot \delta}{\lambda} = \frac{2 \cdot \delta \cdot f}{340} = \frac{\delta \cdot f}{170}
\]

\[
\Delta L_d = 5 \pm 20 \times \log \frac{\sqrt{2\pi} |N|}{\tanh \sqrt{2\pi} |N|}
\]

여기에서, \(\lambda\)는 음의 파장, \(f\)는 음의 주파수를 의미하며 ±의 부호는 \(N > 0\) 일 경우에는 +, \(N < 0\) 일 경우에는 −, \(N = 0\) 일 경우에는 5를 나타낸다.

\[<\text{그림 4-2}>\] 가설방음벽에 의한 소음저감

건설공사장에서 설치되는 가설방음벽은 비교적 얇거나 경량물인 강판이나 플라스틱 등이 사용되는 예가 많으므로 가설방음벽의 투과손실에 따른 소음 저감의 영향을 미치게 된다. 가설방음벽의 특징과 차음성능 및 경제성을 비교・분석한 자료(\<표 4-2\>)를 보면 가설방음벽의 시제품에 대한 재질의 차이로 인하여 투과손실치는 13–37dB(A)의 분포를 나타내고 있다.
표 4-2 다양한 종류의 가설방음벽에 대한 특성의 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>장점</th>
<th>단점</th>
<th>투과손실(500Hz, dB(A)) (소음레벨 저감량)</th>
</tr>
</thead>
<tbody>
<tr>
<td>알미늄 방음벽</td>
<td>· 흡음성, 차음성, 내구성 우수</td>
<td>· 경제성 측면에서 불리</td>
<td>30.0</td>
</tr>
<tr>
<td>경량 콘크리트 방음벽</td>
<td>· 내구성, 내후성 우수</td>
<td>· 투과성이 없음</td>
<td>37.0</td>
</tr>
<tr>
<td>부직포</td>
<td>· 설치비용 저렴</td>
<td>· 미관상 좋지 못함</td>
<td>-</td>
</tr>
<tr>
<td>차음시트</td>
<td>· 중량이 가벼움</td>
<td>· 차음성, 내구성 측면에서 불리</td>
<td>25.0</td>
</tr>
<tr>
<td>피복성형강판(EGI판)</td>
<td>· 흡음성, 차음성 우수</td>
<td>· 차음성 측면에서 불리</td>
<td>25.0</td>
</tr>
<tr>
<td>플리프로필렌 방음판</td>
<td>· 흡음성, 차음성 우수</td>
<td>· 경제성 측면에서 다소 불리</td>
<td>26.0</td>
</tr>
<tr>
<td>공기주입형 이동식 방음벽</td>
<td>· 중량이 가벼움</td>
<td>· 지면이 평탄하지 않은 경우 설치가 어려움</td>
<td>13.0 (약 8.0dB(A) 저감효과)</td>
</tr>
<tr>
<td>이동식 대형 방음천막 (덮개형)</td>
<td>· 국지적 소음저감에 효과</td>
<td>· 좋은 공간에서 이동식 크레인 불편</td>
<td>(7.5m 거리에서 약 10dB(A) 저감효과)</td>
</tr>
<tr>
<td>CPP시스템 (합판 슬라이딩, 외벽부착형)</td>
<td>· 외벽밀폐로 고층 내부공사 소음저감</td>
<td>· Guide rail 설치 필요</td>
<td>-</td>
</tr>
<tr>
<td>중산형 방음벽</td>
<td>· 보이어 소음 및 분진 저감</td>
<td>· CPP시스템 감색물 성능, 감색물 소음경감 현장</td>
<td>(50.0m 거리에서 약 10dB(A) 저감효과)</td>
</tr>
</tbody>
</table>

이와 같이 가설방음벽의 시제품들이 높은 투과손실치를 보여주고 있으나 실제 현장에서는 방음벽 사이의 틈새나 방음벽과 지주부분 사이의 틈새 등에 의해 차음성능의 저하가 나타날 수도 있기 때문에 환경부의 건설공사장
소음관리요령에서는 방음벽의 설치방법에 대한 투과손실치를 제시하고 있다. (표 4-3) 따라서, 공사를 시행할 경우에 가설방음벽의 접합상태를 약호하게 하여 틈새를 최대한 줄이고 파손 및 왜손시 즉각적인 수리 및 교체 등을 포함하는 가설방음벽의 전체적인 관리를 철저히 하여 방음효과를 향상시키는 노력이 필요하다.

표 4-3 가설방음벽의 투과손실치 비교[14]

<table>
<thead>
<tr>
<th>구분</th>
<th>설치방법</th>
<th>투과손실, dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경부 건설공사장의 소음관리요령</td>
<td>두꺼운 콘크리트벽 또는 흙둑 등</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>방음판넬을 약한 상태로 접합한 경우</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>방음판넬을 보통의 상태로 접합한 경우</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>방음시트 등을 약한 상태로 접합한 경우</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>방음시트 등을 보통의 상태로 접합한 경우</td>
<td>5</td>
</tr>
</tbody>
</table>

공사장 환경분쟁의 기존 소음·진동 평가프로그램에서는 가설방음벽의 소음저감효과에 대한 예측부분이 포함되어 있지 않으므로 가설방음벽의 소음저감효과를 산정할 수 있는 예측방법을 개선하기 위하여 2007년도에 환경부의 ‘공사장 소음·진동 관리지침서’에 포함되어 있는 건설공사장 소음 간이 예측 프로그램을 참조하였다.[8] 건설공사장 소음 간이 예측 프로그램의 소음 간이 예측 프로그램 실행부분에서 방음벽 미 설치시 합성소음 레벨 및 방음벽 설치시 합성소음 레벨의 두 파트를 사용하여 가설방음벽 설치에 따른 소음저감량이 계산되어진다. 그에 따른 예측결과의 예시를 <그림 4-3>에 제시하였으며 음원과 방음벽 사이의 수평거리자는 5m, 방음벽과 수음점 사이의 수평거리는 20m, 방음벽의 높이는 3m를 적용하였다.

가설방음벽에 의한 소음저감효과를 검증하기 위하여 평탄한 지역에 대하여 실제 공기주입형 이동식 방음벽 설치를 통해 충실평판레벨 측정자료를 적용하였다.[8]
제4장 방음시설에 의한 소음저감 예측방법의 개선 43

(a) 방음벽 미 설치시 합성소음 레벨의 계산

(b) 방음벽 설치시 합성소음 레벨의 계산

<그림 4-3> 가설방음벽 설치에 따른 소음저감효과의 예측결과[8]

음원과 방음벽 사이의 수평거리는 2m, 4m, 6m, 방음벽과 수음을 사이의 수평거리는 20m, 방음벽의 높이는 4m를 사용하며 방음벽의 투과손실치는 8dB(A)를 이용하였다. 건설공사장 소음 간이 예측 프로그램을 적용하여 가설방음벽의 설치위치에 따른 삼업손실치의 변화를 예측한 결과와 측정데이터에 기반한 실험치를 비교한 것이 <그림 4-4>에 제시되어져 있다. 가설방음벽 소음저감예측의 정확성을 향상시키기 위해서 실제 공사현장의 건설장비에 대한 소음·진동레벨 및 음원, 방음벽, 수음을의 위치에 대한 정확한
자료와 더불어 공사현장에 설치되어 있는 방음벽의 실제 투과손실 데이터를 활용하는 방안을 고려할 수 있다.

(3) 방음시설에 의한 소음저감예측의 개선방안

공사장 환경분쟁의 기존 평가프로그램에서는 가설방음벽의 소음저감효과에 대한 예측부분이 포함되어 있지 않으므로 가설방음벽의 소음저감효과를 산정할 수 있는 예측방법을 개선하기 위하여 2007년도에 환경부의 ‘공사장 소음·진동 관리지침서’에 포함되어져 있는 건설공사장 소음 간이 예측 프로그램을 참조하였다.[8] 음원과 수음점 사이에 가설방음벽을 설치하게 되면 방음벽에 의하여 음은 음원, \(S(X_s, Y_s, Z_s) \)로부터 방음벽 상부의 지점, \(C(X_c, Y_c, Z_c) \)에서 회절하여 수음점, \(O(X_o, Y_o, Z_o) \)에 입사하게 되고(<그림 4-2>) 회절감쇠치, \(\Delta L_d \)는 Kurze와 Anderson의 Fresnel number, \(N \)에 따라 계산이 이루어진다. Fresnel number, \(N \)은 전달경로차, \(\delta \)로부터 아래와 같이 구해지며 전달경로차, \(\delta \)와 Fresnel number, \(N \)에 따른 회절감쇠치, \(\Delta L_d \)의 분포는 다음과 같이 산정되어진다.[8]

\[
\delta = A + B - d = (X_c - X_s)^2 + (Y_c - Y_s)^2 + (Z_c - Z_s)^{1/2} \\
+ (X_o - X_c)^2 + (Y_o - Y_c)^2 + (Z_o - Z_c)^{1/2} \\
- (X_o - X_s)^2 + (Y_o - Y_s)^2 + (Z_o - Z_s)^{1/2}
\]

\[
N = \frac{2 \cdot \delta}{\lambda} = \frac{2 \cdot \delta \cdot f}{340} = \frac{\delta \cdot f}{170}
\]

\[
\Delta L_d = 5 \pm 20 \times \log\frac{\sqrt{2\pi \cdot |N|}}{\tanh \sqrt{2\pi \cdot |N|}}
\]

여기에서, \(\lambda \)는 음의 파장, \(f \)는 음의 주파수를 의미하며 \(\pm \)의 부호는 \(N > 0 \)일 경우에 +, \(N < 0 \)일 경우에는 -, \(N = 0 \)일 경우에는 5를 나타낸다.
제4장 방음시설에 의한 소음저감 예측방법의 개선 45

(a) 음원과 방음벽 사이의 거리 : 2m

(b) 음원과 방음벽 사이의 거리 : 4m

(c) 음원과 방음벽 사이의 거리 : 6m

<그림 4-4> 방음벽에 의한 삽입손실치의 예측치와 실측치 비교[8]

(Insertion Loss : 삽입손실치, Floor Number : 층수, computation : 예측치, experiment : 실측치)
가설방음벽에 의한 삽입손실치의 산정은 방음벽 설치에 따른 회절감쇠치와 투과손실치의 대수합을 적용하고 방음벽 설치에 따른 소음레벨은 방음벽 설치전 소음레벨에서 삽입손실치를 제외한 값으로 계산되어진다.

\[\Delta L = -10 \log \left(10^{-\Delta L_a/10} + 10^{-\Delta TL/10}\right) \]

여기에서, \(\Delta L\)은 삽입손실치를 나타내고 \(\Delta L_a\)는 가설방음벽의 높이에 의한 회절감쇠치이며 \(\Delta TL\)은 가설방음벽의 재질 및 접합상태에 따른 투과손실치를 의미한다.

가설방음벽의 삽입손실치를 계산하는 예측식과 환경부의 건설공사장 소음 간이 예측 프로그램을 참조하여 방음벽 설치와 관련한 환경문정 평가프로그램을 개선하였으며 가설방음벽의 소음저감효과 예측과 관련한 프로그램의 내부에 포함되어있는 각각의 항목에 대한 설명 및 내용은 다음과 같다.

① 장비종류 및 기준 소음·진동레벨

건설공사의 소음·진동을 발생시키는 장비의 종류 및 기준거리의 선택

② 음원-방음벽 및 방음벽-수음점 수평거리, 방음벽 높이

음원-방음벽 및 방음벽-수음점 사이의 수평거리(단위 : m)와 방음벽의 높이(단위 : m)를 입력한다.

③ 투과손실

가설방음벽의 재질 및 접합상태에 따른 투과손실(단위 : dB(A))의 값을 입력한다.

④ 방음벽 설치전 및 설치후 개별적인 소음레벨
개별적인 건설장비에 대한 방음벽 설치전 및 설치후의 소음레벨(단위: dB(A))을 층별에 따라 자동적으로 계산한다.

⑤ 방음벽 설치전 및 설치후 합성소음레벨

정온시설에 영향을 미치는 다양한 건설장비에 의한 방음벽 설치전 및 설치후의 개별적인 건설장비의 소음레벨을 합성한 소음레벨(단위: dB(A))을 자동적으로 계산한다.

표 4-10
기준거리(m)별 방음지수표

<table>
<thead>
<tr>
<th>거리(m)</th>
<th>미터</th>
<th>60</th>
<th>23</th>
<th>15</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>28</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>28</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

함성소음계
충수 값

<table>
<thead>
<tr>
<th>충수</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65.7</td>
<td>65.9</td>
<td>66.1</td>
<td>66.3</td>
<td>66.5</td>
<td>66.7</td>
<td>66.9</td>
<td>67.1</td>
<td>67.3</td>
<td>67.5</td>
<td>67.7</td>
<td>67.9</td>
<td>68.1</td>
<td>68.3</td>
</tr>
<tr>
<td>1</td>
<td>64.7</td>
<td>64.9</td>
<td>65.1</td>
<td>65.3</td>
<td>65.5</td>
<td>65.7</td>
<td>65.9</td>
<td>66.1</td>
<td>66.3</td>
<td>66.5</td>
<td>66.7</td>
<td>66.9</td>
<td>67.1</td>
<td>67.3</td>
</tr>
<tr>
<td>2</td>
<td>63.7</td>
<td>63.9</td>
<td>64.1</td>
<td>64.3</td>
<td>64.5</td>
<td>64.7</td>
<td>64.9</td>
<td>65.1</td>
<td>65.3</td>
<td>65.5</td>
<td>65.7</td>
<td>65.9</td>
<td>66.1</td>
<td>66.3</td>
</tr>
<tr>
<td>3</td>
<td>62.7</td>
<td>62.9</td>
<td>63.1</td>
<td>63.3</td>
<td>63.5</td>
<td>63.7</td>
<td>63.9</td>
<td>64.1</td>
<td>64.3</td>
<td>64.5</td>
<td>64.7</td>
<td>64.9</td>
<td>65.1</td>
<td>65.3</td>
</tr>
<tr>
<td>4</td>
<td>61.7</td>
<td>61.9</td>
<td>62.1</td>
<td>62.3</td>
<td>62.5</td>
<td>62.7</td>
<td>62.9</td>
<td>63.1</td>
<td>63.3</td>
<td>63.5</td>
<td>63.7</td>
<td>63.9</td>
<td>64.1</td>
<td>64.3</td>
</tr>
</tbody>
</table>

그림 4-5
개선된 평가프로그램의 적용(가설방음벽)

그림 4-6
가설방음벽에 의한 소음저감량 예측

건설공사장의 방음시설로서 많이 사용되고 있는 가설방음벽의 소음저감효과를 참고하기 위해서 평탄한 지역에 대해서 방음벽 높이(2, 4, 6m), 음원과 방음
벽 사이의 거리(10, 20m), 방음벽과 수음점 사이의 거리(15, 30, 45, 60m), 수음점 높이(층간 높이는 2.5m 적용), 방음벽의 두께(방음벽을 보통의 상태로 접합한 경우 15dB(A)를 적용)에 따른 방음벽의 삽입손실치의 분포를 <표 4-4>에 제시하였다.

<표 4-4> 가설방음벽의 삽입손실치 예측결과

<table>
<thead>
<tr>
<th>음원-방음벽 거리 (m)</th>
<th>수음점 높이 (층)</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>21</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>6.6</td>
<td>6.8</td>
<td>6.9</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>24</td>
<td>4.4</td>
<td>5.2</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>2.2</td>
<td>3.5</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(a) 방음벽의 높이 : 2m
제4장 방음시설에 의한 소음저감 예측방법의 개선 49

<table>
<thead>
<tr>
<th>음원-방음벽 거리 (m)</th>
<th>수음점 높이 (층)</th>
<th>방음벽-수음점 거리(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0.0</td>
<td>12.7</td>
<td>12.2</td>
</tr>
<tr>
<td>0.0</td>
<td>11.2</td>
<td>11.3</td>
</tr>
<tr>
<td>0.0</td>
<td>8.4</td>
<td>9.8</td>
</tr>
<tr>
<td>0.0</td>
<td>3.5</td>
<td>7.6</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(b) 방음벽의 높이 : 4m

<table>
<thead>
<tr>
<th>음원-방음벽 거리 (m)</th>
<th>수음점 높이 (층)</th>
<th>방음벽-수음점 거리(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0.0</td>
<td>13.3</td>
<td>13.1</td>
</tr>
<tr>
<td>0.0</td>
<td>12.6</td>
<td>12.7</td>
</tr>
<tr>
<td>0.0</td>
<td>11.4</td>
<td>12.1</td>
</tr>
<tr>
<td>0.0</td>
<td>9.3</td>
<td>11.3</td>
</tr>
<tr>
<td>0.0</td>
<td>5.8</td>
<td>10.3</td>
</tr>
<tr>
<td>0.0</td>
<td>2.2</td>
<td>8.8</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>6.9</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(c) 방음벽의 높이 : 6m

건설공사장 주변의 건물에 의한 소음저감효과를 산정할 경우에는 <그림 4-7>에서와 같이 방음시설에 의한 두께를 방음벽의 높이로 치환하여 근사적으로 계산할 수가 있다. 이러한 방법을 바탕으로 평탄한 지역에서 음원과 건물 사이의 거리(10, 20m), 건물과 수음점 사이의 거리(15, 30, 45, 60m), 수음점 높이(층간 높이는 2.5m 적용), 건물의 투과손실(∞를 적용), 건물의 폭(10m 적용)에 따른 3층 및 5층 건물에 대한 삽입손실치의 분포를 <표 4-5>에 제시하였다.
공사장 환경분쟁사건 소음진동도 산출방법 개선 연구

음원-건물 거리 (m) | 수음점 높이 (층) | 건물-수음점 거리 (m)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>19.7</td>
<td>18.3</td>
</tr>
<tr>
<td>2</td>
<td>17.7</td>
<td>16.8</td>
</tr>
<tr>
<td>3</td>
<td>14.9</td>
<td>15.0</td>
</tr>
<tr>
<td>4</td>
<td>11.8</td>
<td>13.2</td>
</tr>
<tr>
<td>5</td>
<td>8.6</td>
<td>11.4</td>
</tr>
<tr>
<td>6</td>
<td>4.7</td>
<td>9.2</td>
</tr>
<tr>
<td>7</td>
<td>2.1</td>
<td>6.7</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
제4장 방음시설에 의한 소음저감 예측 방법의 개선 51

4	16.1	17.0	17.5	17.7
5	14.6	16.1	16.8	17.2
6	12.7	15.1	16.1	16.7
7	10.5	14.0	15.3	16.1
8	7.9	12.7	14.5	15.5
9	5.1	11.3	13.6	14.9
10	2.8	9.7	12.7	14.2
11	2.0	8.0	11.7	13.5
12	0.0	6.1	10.5	12.7
13	0.0	4.3	9.3	11.9
14	0.0	2.8	8.0	11.0
15	0.0	2.1	6.6	10.0

(a) 3층 건물

<table>
<thead>
<tr>
<th>음원-건물 거리 (m)</th>
<th>수음점 높이 (층)</th>
<th>건물-수음점 거리 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>18.4</td>
<td>18.8</td>
</tr>
<tr>
<td>10</td>
<td>16.4</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>12.2</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>14.0</td>
</tr>
<tr>
<td>11</td>
<td>5.9</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>10.5</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>5.9</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>2.2</td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>19.9</td>
</tr>
<tr>
<td>15</td>
<td>18.9</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td>17.7</td>
<td>19.5</td>
</tr>
<tr>
<td>16</td>
<td>16.4</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>18.0</td>
</tr>
<tr>
<td>17</td>
<td>13.5</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td>11.8</td>
<td>16.4</td>
</tr>
<tr>
<td>18</td>
<td>9.9</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>14.5</td>
</tr>
<tr>
<td>19</td>
<td>5.6</td>
<td>13.4</td>
</tr>
</tbody>
</table>

(b) 5층 건물
건설공사장에서 절도공사로 인하여 건설장비 주위에 방음벽이 형성될 수 있는데 이러한 방음벽은 건설장비에서 발생하는 소음을 저감시키는 효과를 가지고 있다. 방음벽에 의한 소음저감효과를 예측하기 위해서 <그림 4-9>에서 보여지는 前川의 실험에 의한 회절감쇠치의 분포를 활용할 수 있다. 즉, <그림 4-9> 오른쪽 아래의 형상은 방음벽과 유사한 모습을 나타내고 있으며 똑같은 높이의 방음벽(왼쪽 위의 형상)보다 약 2.0dB(A) 정도 회절감쇠치가 줄어드는 양상을 보여주고 있다.

따라서, 이러한 보정치를 근거로 해서 평탄한 지역에 대해서 방음벽 높이(2, 4m), 음원과 방음벽 사이의 거리(10, 20m), 방음벽과 수음점 사이의 거리(15,
30, 45, 60m), 수음점 높이(층간 높이는 2.5m 적용), 방음벽의 투과손실(∞를 적용)에 따른 방음벽의 삽입손실치의 분포를 <표 4-6>에 제시하였다.

<표 4-6> 방음벽에 의한 삽입손실치 예측결과

<table>
<thead>
<tr>
<th>음원-방음벽 거리 (m)</th>
<th>수음점 높이 (층)</th>
<th>방음벽-수음점 거리(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

10	1	5.3	5.6	5.7	5.7
	2	0.7	2.7	3.7	4.3
	3	0.0	0.5	1.8	2.7
	4	0.0	0.0	0.4	1.4
	5	0.0	0.0	0.0	0.4
	6	0.0	0.0	0.0	0.0

(a) 방음벽의 높이 : 2m

<table>
<thead>
<tr>
<th>음원-방음벽</th>
<th>수음점높이 (층)</th>
<th>방음벽-수음점</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

10	1	12.4	11.9	11.8	11.7
	2	9.3	10.3	10.6	10.8
	3	5.0	8.2	9.3	9.9
	4	0.6	5.7	7.8	8.8
	5	0.0	3.0	6.1	7.6
	6	0.0	0.7	4.2	6.3
	7	0.0	0.1	2.3	4.8
	8	0.0	0.0	0.8	3.3
	9	0.0	0.0	0.0	1.9
	10	0.0	0.0	0.0	0.8
	11	0.0	0.0	0.0	0.1
	12	0.0	0.0	0.0	0.0

(b) 방음벽의 높이 : 4m

방음차단을 위한 방음림은 생활환경의 보전, 환경의 조화, 소음감소 등의 물리적 및 심리적 효과를 기대할 수 있다. 수렴대가 소음전파에 영향을 주는
물리적 요인으로는 잎과 줄기에 의한 흡음, 지면(부식토)에 의한 흡음, 수림에 의한 음의 산란, 지표의 운도구배 및 마찰저항과 공기의 습도 및 야간결로에 의한 영향, 바람의 구배에 의한 영향 등을 들 수 있다. 그러나, 이와 같은 각 요인은 매우 복잡하게 소음전파에 영향을 미치며 실제로 각 요인으로부터 소음감소량을 추정하는 것은 매우 어렵다. 또한, 소음의 영향을 줄이기 위한 정도는 수목의 종류에 따른 조성방법 및 성장단계에 영향을 받으며 식수의 유형, 구조, 배치 및 밀도에 따라 다르다. 예를 들면, 조림지역이 50-100m 정도이고 관목이 무성할 경우 약 5-10dB(A) 정도의 소음을 저감할 수 있다. <표 4-7>에서 보여지는 것과 같이 도로소음에 대한 방음림의 층별에 따른 평균적인 소음저감효과를 비교한 연구에서는[15] 저층부 및 중층부에서 대략적으로 0-2.7dB(A) 정도의 저감효과를 보여주고 있는 것을 알 수 있으며 공사장 환경분쟁의 소음평가에서 이러한 방음림에 의한 층별에 따른 소음저감효과를 적용할 수 있다.

<table>
<thead>
<tr>
<th>구분</th>
<th>1층</th>
<th>3층</th>
<th>5층</th>
<th>7층</th>
<th>10층</th>
</tr>
</thead>
<tbody>
<tr>
<td>방음림</td>
<td>16</td>
<td>27</td>
<td>16</td>
<td>0.2</td>
<td>0</td>
</tr>
</tbody>
</table>

절도작업이 수반되는 지하 공사장의 경우에는 절도로 인한 방음벽이 형성되어 그로 인한 소음저감효과가 나타나는데 이러한 저감효과는 음원과 수음점의 이격거리에 따른 전달경로차를 고려하여 가설방음벽의 경우와 유사하게 산정되어진다. 평탄한 지역에 대해서 지하공사장의 깊이(10, 20m), 음원과 지하공사장 경계부 사이의 거리(5, 10m, 음원은 지하공사장 중앙에 위치), 지하공사장 경계부와 수음점 사이의 거리(15, 30, 45, 60m), 수음점 높이(층간 높이는 2.5m 적용), 지하공사장 경계부의 투과손실(∞를 적용)에 따른 삼업순실치의 분포를 <표 4-8>에 제시하였다.
표 4-8 지하공사장 경계벽에 의한 삽입손실치 예측결과

<table>
<thead>
<tr>
<th>음원-경계벽 거리 (m)</th>
<th>수음점 높이 (층)</th>
<th>경계벽-수음점 거리 (m)</th>
<th>15</th>
<th>30</th>
<th>45</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>15.1</td>
<td>16.5</td>
<td>16.9</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.9</td>
<td>15.4</td>
<td>16.3</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.2</td>
<td>14.3</td>
<td>15.6</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.1</td>
<td>13.1</td>
<td>14.8</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.0</td>
<td>11.7</td>
<td>14.0</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.2</td>
<td>10.2</td>
<td>13.2</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>8.6</td>
<td>12.3</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>6.9</td>
<td>11.3</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.0</td>
<td>5.2</td>
<td>10.3</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0</td>
<td>3.7</td>
<td>9.2</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
<td>2.6</td>
<td>8.0</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0</td>
<td>2.1</td>
<td>6.8</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
<td>5.7</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.0</td>
<td>0.0</td>
<td>3.6</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>11.0</td>
<td>13.1</td>
<td>13.8</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.7</td>
<td>11.2</td>
<td>12.6</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.5</td>
<td>9.0</td>
<td>11.3</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.0</td>
<td>6.4</td>
<td>9.8</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.0</td>
<td>3.8</td>
<td>8.1</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>2.2</td>
<td>6.3</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>4.5</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>2.9</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td></td>
</tr>
</tbody>
</table>

<그림 4-11> 지하공사장의 경계벽에 의한 소음저감량 예측

<표 4-8> 지하공사장 경계벽에 의한 삽입손실치 예측결과
<table>
<thead>
<tr>
<th>음원-경계벽 거리 (m)</th>
<th>수음점 높이 (층)</th>
<th>경계벽-수음점 거리(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>19.7</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>18.3</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td>16.7</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>13.2</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>8.5</td>
</tr>
<tr>
<td>10</td>
<td>17.0</td>
<td>18.7</td>
</tr>
<tr>
<td></td>
<td>14.7</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>8.6</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(a) 지하공사장 깊이 : 5m

(b) 지하공사장 깊이 : 10m
제5장 결론

공사장의 소음·진동 환경분쟁과 관련하여 건설장비 및 발파에 따른 소음·진동의 정도를 예측하기 위한 기법과 아울러 이러한 소음·진동을 저감하기 위한 방법들의 효과를 정량적으로 산정하기 위한 방안을 마련하기 위해서 공사장 소음·진동 예측기법과 관련한 자료들의 수집 및 분석을 바탕으로 적절한 예측식을 선정하고 공사장 소음·진동 측정데이터와의 비교를 통한 검증을 수행하였다. 연구의 주요 내용으로는 항파공사를 포함하는 건설장비 및 발파에 따른 소음·진동의 예측과 아울러 건설공사장에서 발생하는 소음의 전파경로를 차단하여 소음을 감소시키는 가설방음판넬을 포함한 방음시설에 의한 소음저감효과를 예측하는 방법의 개선방안을 포함하고 있다. 이러한 연구내용에 따른 결론적인 사항은 다음과 같다.

예측공사장의 건설기계에서 발생하는 소음·진동을 산정하는 경우에 귀리감쇠식을 적용한 예측결과에서 건설장비 소음·진동의 예측치와 실제 측정치의 분포를 통한 회귀식을 적용하여 보정을 고려하는 방법을 취하였으며 이러한 사항을 바탕으로 건설장비 소음·진동 예측을 포함하는 건설공사장 환경분쟁 평가프로그램을 개선하였다.

발파에 따른 소음영향을 평가할 경우에 미광무국 추정식을 적용한 예측결과에서 발파로 인한 소음의 예측치와 실제 측정치의 분포를 통한 회귀식을 적용하여 보정을 고려하는 방법을 적용하거나 실험발파의 소음측정자료를 바탕으로 하여 현장에 적합한 발파소음 예측식을 추정하여 사용한다. 발파진동의 예측은 실제 건설공사장에서의 실험발파 측정자료에 기인한 발파진동속도 추정식과 더불어 발파에 따른 진동속도와 진동레벨의 상관관계를 보여주는 환산식의 적용을 통하여 발파시 진동속도와 진동레벨을 구한다. 또한, 이러한 사항을 바탕으로 발파공사에 의한 소음·진동 예측
을 포함하는 건설공사장 환경분쟁 평가프로그램을 개선하였다.

▶ 건설공사장의 방음시설에 대한 소음저감효과를 예측하기 위해서 방음벽의 삽입손실치를 계산하는 예측식과 환경부의 건설공사장 소음 간이 예측 프로그램을 참조하여 방음벽 설치와 관련한 환경분쟁 평가프로그램을 개선하였으며 방음시설에 의한 소음저감효과 예측을 위해 참고하기 위하여 방음시설의 설치에 따른 기본적인 조건들(방음시설 높이, 음원과 방음시설 사이의 거리, 방음시설과 수음점 사이의 거리, 수음점 높이 등)에 따른 삽입손실치의 분포를 그림 및 도표를 이용하여 제시하였다.
참고문헌

5. “서울 00구 아파트공사장 소음·진동·먼지로 인한 건물 및 재산피해” 조정사례 참조, 2007.
15. 박영민 외, “주택단지 및 택지 등 도시개발시 도로소음 저감방안에 관한
<부록 1> 건설기계류 소음·진동레벨 자료

국내에서 신규 제작되어 ISO 측정방법에 따라 제작사에서 측정한 건설기계류의 음향파워레벨(<표 1-1>)과 일본 환경기술연구협회(<표 1-2>) 및 홍콩(<표 1-3>)에서 사용되어지고 있는 건설기계류 음향파워레벨의 자료를 이용하여 일정거리(7.0, 7.5, 15.0m)에서의 소음레벨을 산정하여 제시하였습니다. 건설공사장 환경분쟁의 소음평가를 위한 활용자료로의 적용이 가능하다. 또한, 일본에서 발표된 건설기계류의 진동레벨의 범위를 참조하여 대수평균의 개념에 의한 평균치를 포함한 것이 <표 1-4>에서 보여지고 있다.

<표 1-1> 국내 제작 신규 건설기계류의 음향파워레벨 및 거리별 소음도[6]

<table>
<thead>
<tr>
<th>대상장비</th>
<th>가동중량 (ton)</th>
<th>NET미력 (kW)</th>
<th>PWL (dB(A))</th>
<th>SPL(dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.0m</td>
<td>7.5m</td>
<td>15.0m</td>
<td></td>
</tr>
<tr>
<td>소형</td>
<td>1.0 7.5 94.9</td>
<td>7.0 69.4 63.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 12.9 94.0</td>
<td>69.1 68.5 62.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0 18.5 94.2</td>
<td>69.3 68.7 62.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5 18.5 93.8</td>
<td>68.9 68.3 62.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0 39 99.4</td>
<td>74.5 73.9 67.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0 45 100.7</td>
<td>75.8 75.2 69.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.5 41.4 100.0</td>
<td>75.1 74.5 68.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 74 99.9</td>
<td>75.0 74.4 68.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.7 69 98.4</td>
<td>73.5 72.9 66.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 78 103.8</td>
<td>78.9 78.3 72.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 91 102.1</td>
<td>77.2 76.6 70.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 87 103.9</td>
<td>79.0 78.4 72.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>곤품기</td>
<td>20 115 102.0</td>
<td>77.1 76.5 70.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.3 107 103.3</td>
<td>75.4 74.8 68.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 107 104.7</td>
<td>79.8 79.2 73.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 121 105.9</td>
<td>81.0 80.4 74.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 127 103.5</td>
<td>78.6 78.0 72.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28.6 143 105.6</td>
<td>80.7 80.1 74.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 147 106.7</td>
<td>81.8 81.2 75.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 151 104.0</td>
<td>79.1 78.5 72.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>중형</td>
<td>32 173 107.6</td>
<td>82.7 82.1 76.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 191 105.8</td>
<td>80.9 80.3 74.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36 195 107.7</td>
<td>82.8 82.2 76.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.2 184 104.3</td>
<td>79.4 78.8 72.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 218 106.6</td>
<td>81.7 81.1 75.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 238 106.9</td>
<td>82.0 81.4 75.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 239 108.7</td>
<td>83.8 83.2 77.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<표 1-2> 일본 건설기계류의 음향파워레벨 및 거리별 소음도[6]

<table>
<thead>
<tr>
<th>기계명</th>
<th>규격</th>
<th>동력</th>
<th>PWL(dB(A))</th>
<th>SPL(dB(A))</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>백호우</td>
<td>1.2㎥</td>
<td>219</td>
<td>114</td>
<td>89.1 88.5 82.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6㎥</td>
<td>102</td>
<td>109</td>
<td>84.1 83.5 77.5</td>
<td></td>
</tr>
<tr>
<td>불도저</td>
<td>80ton</td>
<td>710</td>
<td>117</td>
<td>92.1 91.5 85.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50ton</td>
<td>710</td>
<td>115</td>
<td>90.1 89.5 83.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11ton</td>
<td>108</td>
<td>112</td>
<td>87.1 86.5 80.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>77.1 76.5 70.5</td>
<td></td>
</tr>
<tr>
<td>tractor shovel</td>
<td>3.2㎥</td>
<td>250</td>
<td>110</td>
<td>85.1 84.5 78.5</td>
<td></td>
</tr>
<tr>
<td>dozer shovel</td>
<td>2.1㎥</td>
<td>197</td>
<td>114</td>
<td>89.1 88.5 82.5</td>
<td></td>
</tr>
<tr>
<td>트럭 크레인</td>
<td>50ton</td>
<td>230</td>
<td>113</td>
<td>88.1 87.5 81.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15ton</td>
<td>175</td>
<td>113</td>
<td>88.1 87.5 81.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>85.1 84.5 78.5</td>
<td></td>
</tr>
<tr>
<td>크롤라 드릴</td>
<td>10㎥/min</td>
<td>115</td>
<td>90.1 89.5 83.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>103PS</td>
<td>120</td>
<td>95.1 94.5 88.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>450ton</td>
<td>608</td>
<td>102</td>
<td>77.1 76.5 70.5</td>
<td></td>
</tr>
<tr>
<td>브레이커</td>
<td>1ton</td>
<td>102</td>
<td>122</td>
<td>97.1 96.5 90.5</td>
<td></td>
</tr>
</tbody>
</table>
부록 1. 건설기계류 소음

<table>
<thead>
<tr>
<th>대상기계</th>
<th>PWL (dB(A))</th>
<th>SPL (dB(A))</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>leg hammer</td>
<td>2.1㎥</td>
<td>-</td>
<td>114 89.1 88.5 82.5</td>
</tr>
<tr>
<td>공기 압축기</td>
<td>7㎥급</td>
<td>80</td>
<td>115 90.1 89.5 83.5</td>
</tr>
<tr>
<td>wheel rotor</td>
<td>3.2㎥/min</td>
<td>250</td>
<td>114 89.1 88.5 82.5</td>
</tr>
<tr>
<td>발전기</td>
<td>100kw</td>
<td>120</td>
<td>100 75.1 74.5 68.5</td>
</tr>
<tr>
<td>crusher</td>
<td>4,320L/㎥/h</td>
<td>113</td>
<td>88.1 87.5 81.5</td>
</tr>
<tr>
<td>두통 로울리</td>
<td>12ton</td>
<td>80</td>
<td>113 88.1 87.5 81.5</td>
</tr>
<tr>
<td>어미업 로울리</td>
<td>10ton</td>
<td>73</td>
<td>106 81.1 80.5 74.5</td>
</tr>
<tr>
<td>타이어 로울리</td>
<td>10ton</td>
<td>85</td>
<td>106 81.1 80.5 74.5</td>
</tr>
<tr>
<td>motor</td>
<td>5.0m</td>
<td>250</td>
<td>113 88.1 87.5 81.5</td>
</tr>
<tr>
<td>grader</td>
<td>5.0m</td>
<td>34</td>
<td>106 81.1 80.5 74.5</td>
</tr>
<tr>
<td>당포트리</td>
<td>4ton</td>
<td>160</td>
<td>102 77.1 76.5 70.5</td>
</tr>
<tr>
<td>트럭</td>
<td>10ton</td>
<td>-</td>
<td>102 77.1 76.5 70.5</td>
</tr>
</tbody>
</table>

<표 1-3> 홍콩 건설기계류의 음향파워레벨 및 거리별 소음도[8]
<table>
<thead>
<tr>
<th>장비</th>
<th>소음 (dB)</th>
<th>소음 (dB)</th>
<th>소음 (dB)</th>
<th>소음 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>콘크리트 믹서</td>
<td>96</td>
<td>71.1</td>
<td>70.5</td>
<td>64.5</td>
</tr>
<tr>
<td>콘크리트 펌프</td>
<td>109</td>
<td>84.1</td>
<td>83.5</td>
<td>77.5</td>
</tr>
<tr>
<td>차량/배에 장착된 기중기</td>
<td>112</td>
<td>87.1</td>
<td>86.5</td>
<td>80.5</td>
</tr>
<tr>
<td>탑형 기중기(전동식)</td>
<td>95</td>
<td>70.1</td>
<td>69.5</td>
<td>63.5</td>
</tr>
<tr>
<td>진동형 콤팩터</td>
<td>105</td>
<td>80.1</td>
<td>79.5</td>
<td>73.5</td>
</tr>
<tr>
<td>기중선</td>
<td>104</td>
<td>79.1</td>
<td>78.5</td>
<td>72.5</td>
</tr>
<tr>
<td>버킷 준설선</td>
<td>118</td>
<td>93.1</td>
<td>92.5</td>
<td>86.5</td>
</tr>
<tr>
<td>그레브 준설선</td>
<td>112</td>
<td>87.1</td>
<td>86.5</td>
<td>80.5</td>
</tr>
<tr>
<td>충격식 천공기(전동식 수작업용)</td>
<td>103</td>
<td>78.1</td>
<td>77.5</td>
<td>71.5</td>
</tr>
<tr>
<td>착암기/분쇄기(전동식 수작업용)</td>
<td>98</td>
<td>73.1</td>
<td>72.5</td>
<td>66.5</td>
</tr>
<tr>
<td>담벼초</td>
<td>106</td>
<td>81.1</td>
<td>80.5</td>
<td>74.5</td>
</tr>
<tr>
<td>갈포 트럭</td>
<td>117</td>
<td>92.1</td>
<td>91.5</td>
<td>85.5</td>
</tr>
<tr>
<td>굴착기/로우더</td>
<td>112</td>
<td>87.1</td>
<td>86.5</td>
<td>80.5</td>
</tr>
<tr>
<td>발전기, 표준형</td>
<td>108</td>
<td>83.1</td>
<td>82.5</td>
<td>76.5</td>
</tr>
<tr>
<td>발전기, 저소음형</td>
<td>100</td>
<td>75.1</td>
<td>74.5</td>
<td>68.5</td>
</tr>
<tr>
<td>발전기, 초저소음형</td>
<td>95</td>
<td>70.1</td>
<td>69.5</td>
<td>63.5</td>
</tr>
<tr>
<td>그레이더</td>
<td>113</td>
<td>88.1</td>
<td>87.5</td>
<td>81.5</td>
</tr>
<tr>
<td>승강기(작업자용/자재용 공작성)</td>
<td>108</td>
<td>83.1</td>
<td>82.5</td>
<td>76.5</td>
</tr>
<tr>
<td>승강기(작업자용/자재용 전동식)</td>
<td>95</td>
<td>70.1</td>
<td>69.5</td>
<td>63.5</td>
</tr>
<tr>
<td>승가기(작업자용/자재용 페트roleum)</td>
<td>104</td>
<td>79.1</td>
<td>78.5</td>
<td>72.5</td>
</tr>
<tr>
<td>트럭</td>
<td>112</td>
<td>87.1</td>
<td>86.5</td>
<td>80.5</td>
</tr>
<tr>
<td>페인트 선 표시기</td>
<td>90</td>
<td>65.1</td>
<td>64.5</td>
<td>58.5</td>
</tr>
<tr>
<td>황타기(유압)</td>
<td>105</td>
<td>80.1</td>
<td>79.5</td>
<td>73.5</td>
</tr>
<tr>
<td>황타기(대형)</td>
<td>90</td>
<td>65.1</td>
<td>64.5</td>
<td>58.5</td>
</tr>
<tr>
<td>황타기(대형)</td>
<td>115</td>
<td>90.1</td>
<td>89.5</td>
<td>83.5</td>
</tr>
<tr>
<td>황타기(대형)</td>
<td>115</td>
<td>90.1</td>
<td>89.5</td>
<td>83.5</td>
</tr>
<tr>
<td>트럭(대형), 리버스 서큐리티 선 및 갈무</td>
<td>100</td>
<td>75.1</td>
<td>74.5</td>
<td>68.5</td>
</tr>
<tr>
<td>황타기</td>
<td>114</td>
<td>89.1</td>
<td>88.5</td>
<td>82.5</td>
</tr>
<tr>
<td>파워패</td>
<td>100</td>
<td>75.1</td>
<td>74.5</td>
<td>68.5</td>
</tr>
<tr>
<td>파워 밸브</td>
<td>108</td>
<td>83.1</td>
<td>82.5</td>
<td>76.5</td>
</tr>
<tr>
<td>진동 파워</td>
<td>113</td>
<td>88.1</td>
<td>87.5</td>
<td>81.5</td>
</tr>
<tr>
<td>플랜나</td>
<td>117</td>
<td>92.1</td>
<td>91.5</td>
<td>85.5</td>
</tr>
<tr>
<td>크로울러/용장착된 일반 천공기(공작성)</td>
<td>128</td>
<td>103.1</td>
<td>102.5</td>
<td>96.5</td>
</tr>
<tr>
<td>크로울러/용장착된 일반 천공기(유압식)</td>
<td>123</td>
<td>98.1</td>
<td>97.5</td>
<td>91.5</td>
</tr>
<tr>
<td>일반 천공기(공작성 수작업용)</td>
<td>116</td>
<td>91.1</td>
<td>90.5</td>
<td>84.5</td>
</tr>
<tr>
<td>도로 다짐기</td>
<td>111</td>
<td>86.1</td>
<td>85.5</td>
<td>79.5</td>
</tr>
<tr>
<td>로울러</td>
<td>108</td>
<td>83.1</td>
<td>82.5</td>
<td>76.5</td>
</tr>
<tr>
<td>진동식 로울러</td>
<td>108</td>
<td>83.1</td>
<td>82.5</td>
<td>76.5</td>
</tr>
<tr>
<td>전기톱(폭제용, 원활형)</td>
<td>108</td>
<td>83.1</td>
<td>82.5</td>
<td>76.5</td>
</tr>
<tr>
<td>전기톱(제작용 수작업용)</td>
<td>114</td>
<td>89.1</td>
<td>88.5</td>
<td>82.5</td>
</tr>
<tr>
<td>도/그루버(콘크리트 페트roleum)</td>
<td>115</td>
<td>90.1</td>
<td>89.5</td>
<td>83.5</td>
</tr>
<tr>
<td>스커레이터</td>
<td>119</td>
<td>94.1</td>
<td>93.5</td>
<td>87.5</td>
</tr>
</tbody>
</table>
부록 1: 건설기계류 소음

<table>
<thead>
<tr>
<th>설비 (Tug Boat)</th>
<th>101</th>
<th>76.1</th>
<th>75.5</th>
<th>69.5</th>
<th>HCNP 221</th>
</tr>
</thead>
<tbody>
<tr>
<td>트랙터</td>
<td>118</td>
<td>93.1</td>
<td>92.5</td>
<td>86.5</td>
<td>HCNP 222</td>
</tr>
<tr>
<td>환기팬</td>
<td>108</td>
<td>83.1</td>
<td>82.5</td>
<td>76.5</td>
<td>HCNP 241</td>
</tr>
<tr>
<td>원치 (공압식)</td>
<td>110</td>
<td>85.1</td>
<td>84.5</td>
<td>78.5</td>
<td>HCNP 261</td>
</tr>
<tr>
<td>원치 (전동식)</td>
<td>95</td>
<td>70.1</td>
<td>69.5</td>
<td>63.5</td>
<td>HCNP 262</td>
</tr>
<tr>
<td>원치 (페트롤)</td>
<td>102</td>
<td>77.1</td>
<td>76.5</td>
<td>70.5</td>
<td>HCNP 263</td>
</tr>
<tr>
<td>펌프 (전동식)</td>
<td>88</td>
<td>63.1</td>
<td>62.5</td>
<td>56.5</td>
<td>HCNP 281</td>
</tr>
<tr>
<td>펌프 (페트롤)</td>
<td>103</td>
<td>78.1</td>
<td>77.5</td>
<td>71.5</td>
<td>HCNP 282</td>
</tr>
<tr>
<td>펌프 (전동식 수중용)</td>
<td>85</td>
<td>60.1</td>
<td>59.5</td>
<td>53.5</td>
<td>HCNP 283</td>
</tr>
</tbody>
</table>

<표 1-4> 일본 건설기계류의 거리별 진동레벨 [8]

<table>
<thead>
<tr>
<th>공종</th>
<th>건설작업</th>
<th>건설기계로부터의 거리(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>불도저</td>
<td>9-21ton</td>
<td>64-85 (82.0) 63-77 (74.2) 63-78 (75.1) 63-73 (70.4)</td>
</tr>
<tr>
<td></td>
<td>60, 40ton</td>
<td>64-74 (71.4) 63-73 (70.4)</td>
</tr>
<tr>
<td>트럭셔블</td>
<td>56-77 (74.0) 53-69 (66.1) 43-63 (60.0)</td>
<td></td>
</tr>
<tr>
<td>유압쇼ベル</td>
<td>72-83 (80.3) 64-78 (75.2) 58-69 (66.3) 54-59 (57.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69-73 (71.4) 66-72 (70.0) 64-66 (65.1) 58-62 (60.4) 43-58 (55.1)</td>
<td></td>
</tr>
<tr>
<td>스크레이퍼</td>
<td>88</td>
<td>77</td>
</tr>
<tr>
<td>진동돌리</td>
<td>52-90 (87.0) 44-75 (72.0) 43-68 (65.0)</td>
<td></td>
</tr>
<tr>
<td>진동컴팩터</td>
<td>46-54 (51.6) 40-44 (42.4) 43</td>
<td></td>
</tr>
<tr>
<td>담프트릭</td>
<td>42-69 (66.0) 41-68 (65.0) 67 34-68 (65.0) 62</td>
<td></td>
</tr>
<tr>
<td>다결과일 헤머</td>
<td>~2ton</td>
<td>75-80 (78.2) 61-74 (71.2) 52-68 (65.1)</td>
</tr>
<tr>
<td></td>
<td>2-3ton</td>
<td>72-84 (81.3) 70-81 (78.3) 56-72 (69.1)</td>
</tr>
<tr>
<td></td>
<td>3-4ton</td>
<td>76-89 (86.2) 73-85 (82.3) 89-73 (86.1)</td>
</tr>
<tr>
<td></td>
<td>4ton~</td>
<td>70-91 (88.0) 63-72 (69.5) 61-72 (69.3)</td>
</tr>
<tr>
<td>기초공 및 상류공</td>
<td>드롭햄머</td>
<td>63-89 (86.0) 54-80 (77.0) 65-83 (80.1)</td>
</tr>
<tr>
<td></td>
<td>유압햄머</td>
<td>6.5ton 85-88 (86.8) 70-83 (80.2) 61-81 (78.0)</td>
</tr>
<tr>
<td></td>
<td>8-8.5ton</td>
<td>85-91</td>
</tr>
<tr>
<td></td>
<td>(89.0)</td>
<td>(85.0)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>진동햄머</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~30kW</td>
<td>71-77</td>
<td>61-71</td>
</tr>
<tr>
<td></td>
<td>(75.0)</td>
<td>(68.4)</td>
</tr>
<tr>
<td>30~40kW</td>
<td>70-75</td>
<td>60-69</td>
</tr>
<tr>
<td></td>
<td>(73.2)</td>
<td>(66.5)</td>
</tr>
<tr>
<td>40kW~</td>
<td>72-92</td>
<td>69-88</td>
</tr>
<tr>
<td></td>
<td>(89.0)</td>
<td>(85.0)</td>
</tr>
<tr>
<td>어스오거</td>
<td>50-61</td>
<td>44-57</td>
</tr>
<tr>
<td></td>
<td>(58.3)</td>
<td>(54.2)</td>
</tr>
<tr>
<td>어스드릴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20ton</td>
<td>59-67</td>
<td>54-60</td>
</tr>
<tr>
<td></td>
<td>(64.6)</td>
<td>(58.0)</td>
</tr>
<tr>
<td>30ton</td>
<td>58-61</td>
<td>45-55</td>
</tr>
<tr>
<td></td>
<td>(59.8)</td>
<td>(52.4)</td>
</tr>
<tr>
<td>울케이싱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>굴삭기 1,300mm</td>
<td>57-68</td>
<td>49-67</td>
</tr>
<tr>
<td></td>
<td>(65.3)</td>
<td>(64.1)</td>
</tr>
<tr>
<td>2,000mm</td>
<td>53-68</td>
<td>50-63</td>
</tr>
<tr>
<td></td>
<td>(65.1)</td>
<td>(60.2)</td>
</tr>
<tr>
<td>리버스 서큘레이션 공법</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,400~1,500mm</td>
<td>61-68</td>
<td>51-64</td>
</tr>
<tr>
<td></td>
<td>(65.8)</td>
<td>(61.2)</td>
</tr>
<tr>
<td>3,000~3,500mm</td>
<td>44-60</td>
<td>43-50</td>
</tr>
<tr>
<td></td>
<td>(57.1)</td>
<td>(47.8)</td>
</tr>
<tr>
<td>프리보링공법</td>
<td>50-64</td>
<td>41-61</td>
</tr>
<tr>
<td></td>
<td>(61.2)</td>
<td>(58.0)</td>
</tr>
<tr>
<td>중굴공법</td>
<td>43-62</td>
<td>41-59</td>
</tr>
<tr>
<td></td>
<td>(59.0)</td>
<td>(56.1)</td>
</tr>
<tr>
<td>구조물 파괴공법</td>
<td></td>
<td></td>
</tr>
<tr>
<td>브레이커</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200~400kg</td>
<td>67-77</td>
<td>62-70</td>
</tr>
<tr>
<td></td>
<td>(74.3)</td>
<td>(67.6)</td>
</tr>
<tr>
<td>600kg</td>
<td>63-75</td>
<td>56-65</td>
</tr>
<tr>
<td></td>
<td>(72.3)</td>
<td>(62.5)</td>
</tr>
<tr>
<td>대형유압 브레이커</td>
<td>69-82</td>
<td>56-65</td>
</tr>
<tr>
<td></td>
<td>(79.2)</td>
<td>(62.5)</td>
</tr>
<tr>
<td>콘크리트 유압 알체기</td>
<td>48-55</td>
<td>46-58</td>
</tr>
<tr>
<td></td>
<td>(52.8)</td>
<td>(55.3)</td>
</tr>
<tr>
<td>콘크리트 유압식</td>
<td>41-46</td>
<td>38-42</td>
</tr>
<tr>
<td></td>
<td>(44.2)</td>
<td>(40.4)</td>
</tr>
<tr>
<td>콘크리트 가구식, 80cm</td>
<td>42-48</td>
<td>40-44</td>
</tr>
<tr>
<td></td>
<td>(46.0)</td>
<td>(42.4)</td>
</tr>
</tbody>
</table>

* () 안의 값은 진동레벨을 대수평균한 값을 나타냄
미국의 Parsons Brinckerhoff(PB)사는 Seattle 지역에 두 개의 중요한 교통시설의 건설프로젝트를 추진하고 있었는데 Sound Transit North Link라는 지하철 건설공사와 Alaska Way Viaduct의 교체공사가 그것이다.[16] PB사는 건설현장 주변의 고층건물에 대한 주·야간의 건설소음의 분포를 파악하기 위해서 지리정보시스템(Geographic Information System, GIS)을 활용하는 ARCGIS 상용프로그램과 건설소음의 영향을 예측할 수 있는 SoundPlan이라는 상용프로그램의 결합을 통하여 건설공사장 주변의 소음지도를 작성하게 되었다.(<그림 2-1>) 건설공사로 인하여 영향을 받는 고층건물에 대한 충분한 소음을 예측하는 것뿐만 아니라 건설공사장 주변의 정온시설들에 대한 소음분포를 시각적으로 구현하였으며 가설방음벽 설치 및 저소음 건설기계의 적용에 따른 소음의 분포를 상호 비교함으로써 건설소음을 저감하기 위한 적절한 방안을 찾아보았다.

Sound Transit North Link 건설프로젝트는 주변의 정온시설에 대한 건설소음의 영향을 저감하기 위하여 건설공사장 주변에 4.9m 높이의 가설방음벽을 설치하고 야간작업을 위한 저소음 건설기계의 적용을 고려하였는데 이에 따른 소음의 분포를 보여주는 것이 <그림 2-2>에 제시되어 있다. Alaska Way Viaduct 건설공사의 경우에는 저감시설이 없는 경우(<그림 2-3(a)>), 방음천막의 설치(<그림 2-3(b)>), 야간작업을 위한 저소음 건설기계의 사용(<그림 2-3(c)>), 방음천막과 저소음 건설기계의 동시 적용(<그림 2-3(d)>)에 따른 건설소음의 분포를 상호 비교하여 건설공사로 인한 주변의 소음영향을 최소화하기 위한 적절의 방안을 구현하고자 하였다.

따라서, 국외의 사례를 바탕으로 하여 건설공사로 인한 소음의 영향을 파악하고 소음저감을 위한 효율적인 방안을 마련하기 위해서 간단한 예측식의 적용을 통한 예측의 수준을 넘어서 소음지도를 근간으로 한 예측기법의 개발이 필요하다고 볼 수 있다.
공사장 환경분쟁사건 소음진등도 산출방법 개선 연구

(a) 건설공사현장의 분포

(b) 건설소음의 수평적 분포
(지면위 5 feet, 55-75 dB(A) 범위)

(c) 건설소음의 수직적 분포

<그림 2-1> ARCGIS와 SoundPlan을 적용한 소음지도[16]
(a) 주간소음

(그림 2-2) 저감방안을 고려한 Sound Transit North Link 건설공사의 주·야간 소음분포[16]

(b) 야간소음
공사장 환경문제 해결에 소음·진동도 산출방법 개선 연구

(a) 저감시설이 없는 경우

(b) 방음천막의 설치
<부록 2> 국외의 건설공사장 소음예측 사례 71

(c) 저소음 건설기계의 적용

(d) 방음천막과 저소음 건설기계의 적용

<그림 2-3> 다양한 저감방안을 고려한 Alaska Way Viaduct 건설공사의 야간 소음분포의 비교[16]