환경시험 · 검사 발전
기본계획 수립을 위한 연구

A Study on the Strategic Planning for the Improvement of Environmental Measurements

2007. 10. 2.

주 관 기 관
한국표준과학연구원

국립환경과학원
제 출 문

국립환경과학원장 귀하

본 보고서를 "환경시험·검사 발전 기본계획 수립을 위한 연구" 사업의 최종보고서로 제출합니다.

2007년 10월 2일

연구기관명 : 한국표준과학연구원

연구책임자 : 김 현 호

참여연구원 : 강남구, 김달호, 박찬복, 방건웅, 서정기, 이정환
요약문

환경부는 국제적 환경규제 등 국내외 환경변화에 신속히 대응하고 환경 분야 시험・검사를 국제적 수준으로 발전시키기 위하여 대기, 수질, 소음・진동, 폐기물, 유해물질 등 분야별 특수성에 따라 독립된 개별법령에 의하여 운영되고 있던 시험검사 분야를 효율적으로 통합운영할 수 있도록 “환경분야 시험・검사 등에 관한 법률”을 제정하였고, 환경시험・검사 분야 발전 선진화를 위하여 기준 및 운영체계의 기본 방향, 중장기 투자계획 및 국제협력에 관한 사항 등이 포함된 “환경시험・검사 발전 기본계획”을 5년마다 수립하도록 하였다.

본 연구에서는 이에 따라 환경시험・검사 발전 기본계획을 수립하기 위한 연구를 수행하였다. 국내외 환경변화에 따른 국내 환경시험・검사 분야 현황을 분석하였고 선진국의 환경시험・검사 운영체계에 대하여 조사 분석하였으며, 앞으로 환경시험・검사 분야의 발전을 위한 운영체계, 연구개발, 인력양성, 국제협력 분야에서 향후 5년간 추진해야할 업무영역과 기본방향을 제시하였다.

국내 환경분야 현황분석에서는 시험・검사 기관 현황과 시험・검사 기관 운영체계로서 환경시험・검사 기관 지정/인정 제도, 정도관리 제도, 환경측정기기 형식인정・정도검사 제도, 환경측정 표준화 제도 및 교육, 인력 현황 등에 대하여 현황 분석 및 문제점을 도출하였다. 국외 현황 분석으로 미국, 영국, 일본 및 독일의 환경시험・검사 운영체계를 조사 하였으며 특히 미국과 영국의 환경분야 인정체계에 대하여 본 기본계획 수립의 모델로서 자세히 분석하였다. 미국의 환경분야 인정기구인 TNI의 최근 발전 모델과, 영국의 환경분야 인정프로그램인 MCERTS 체계에 대하여 조사 분석하였다.

시험・검사 기관 정도관리 제도에 있어서 시험분석 능력을 국제적 수준으로 향상시키고 국제적 동등성을 확보하기 위한 방법으로 숙련도 시험 운영 프로그램을
국제 기준인 ISO Guide 43에 따라 확립하기 위한 기본계획 수립방안을 제안하였다. 특히 기준 숙련도시험 지원 센터 설립 계획을 준비하여 이를 통한 시험기관의 국제적 동등성을 확보할 수 있도록 하였다. 기준 숙련도시험 지원센터의 국제 비교 숙련도시험 프로그램 참가가 국가간 상호인정협약 체결을 통해 국제적 동등성을 확보하게 하고, 기준 숙련도시험 지원센터의 국내 시험·검사 기관의 숙련도 시험 프로그램을 주관하게 함으로써 국내 시험기관의 국제적 동등성을 확보할 수 있도록 하였다. 숙련도 기준시험 공급기관 인정 프로그램과 육성 계획을 국제 기준에 맞게 수립하도록 하였으며 연차별 숙련도 기준시험 개발 및 공급 계획을 수립하도록 하였다. 또한 기준 숙련도시험 지원센터의 시험기관 혼란프로그램을 통해 단계적으로 국제적 수준의 대표적인 민간 시험기관 육성 계획을 수립하도록 하였다.

시험·검사 발전의 기본 영역 요소로서 환경분야 표준물질 생산기관에 대하여 국제 기준인 ISO Guide 34에 맞는 인증 프로그램을 수립하도록 하였으며, 국가측정표준 대표기관인 한국표준과학연구원으로부터 측정표준 소급성 체계를 확립하도록 하였다. 또한 환경분야 측정표준의 기준이 되는 인증표준물질 개발 및 공급 계획을 수립하도록 하였다. 환경오염공정시험법 제·개정 계획과 표준화 개발사업 추진계획 방안을 제시하였으며, 환경측정기기 형식승인·형식검사 발전 계획과 환경 측정망 측정 데이터의 신뢰성 확보를 위한 정보관리 수립 방안을 제시하였다. 시험기관의 국제협력 방안으로 환경분야 인정기관의 APLAC peer review 계획과 국제 숙련도시험 프로그램 참가 계획을 제시하였다.

환경 시험·검사 발전 기본 계획을 통해 시험·검사 기관 관리 운영체계를 단계적으로 국제적 수준에 맞도록 재정비하여 신뢰성을 추진함으로서 환경분야 시험·검사 기관의 국제적 동등성과 신뢰성을 확보할 수 있게 할 것이다. 또한 국제적인 환경규제에 대응하여 국제적 기준의 시험·검사 능력을 확보한 대표적인 민간 시험기관을 육성함으로써 국내 기업의 대외 무역환경에서의 경쟁력 강화에 기반을 제공할 수 있을 것이다. 그리고 국내 환경에서 국민들의 환경 분야 시험 분석 결과에 대한 신뢰를 확보함으로써 국민의 삶의 질을 향상시킬 수 있는 기반을 구축할 수 있을 것이다.
목차

제 1 장 서론

제 1 절 배경 및 필요성

제 2 절 사업의 목표 및 내용

제 2 장 환경분야 시험·검사 국내현황 분석

제 1 절 환경분야 시험·검사기관 현황

1. 환경분야 시험·검사 기관 현황

2. 지방환경청 현황

3. 시·도 보건환경연구원 현황

2. 측정대행업체 현황

제 2 절 환경분야 시험·검사 운영체계 현황분석

1. 환경분야 시험·검사 기관 지정/인정 제도

2. 환경분야 시험·검사 기관 정도관리 제도

3. 환경측정기기 형식승인/정도검사 제도

4. 환경측정 표준화 제도

5. REACH 대응체계 현황

6. 교육, 인력 현황

제 3 절 국내 환경 분야 현황 종합

제 3 장 환경시험·검사 선진국 현황분석

제 1 절 미국의 환경시험·검사 운영 체계

제 2 절 영국의 환경시험·검사 운영 체계

제 3 절 일본의 환경시험·검사 운영 체계

제 4 절 독일의 환경시험·검사 운영 체계

제 5 절 결론

제 4 장 환경분야 시험·검사 발전 기본계획

제 1 절 환경분야 시험·검사 운영체계

1. 시험·검사 기관 지정/인정 제도

2. 환경분야 시험·검사 기관 정도관리 제도

3. 환경측정기기 형식승인/정도검사

4. 환경측정 표준화 제도
제1장 서 론

제1절 배경 및 필요성

1. 사업 배경

삶의 질 향상에 대한 국민들의 욕구가 증가함에 따라 환경에 대한 국민적 관심이 매우 커지고 있으며, 이러한 사회적 환경의 변화에 따라 환경 측정 신뢰도를 증진시켜야 할 필요성이 증가하고 있다. 또한 환경 분야의 오염물질 배출 부과금 제도가 시행됨에 따라 부과금의 근거가 되는 측정 결과의 신뢰성의 확보가 더욱 중요해지고 있다.

환경보호는 지속 가능한 삶의 터전을 유지하기 위한 기반이 되며, 세계 각국은 환경규제를 통하여 자국의 환경을 보호하면서 보이지 않는 무역장벽으로 활용하고 있다. 국제적으로 각종의 환경규제가 무역영역을 미치고 있으므로 환경 분야의 시험검사에 대한 신뢰도를 증진시켜야 할 필요성이 증대되고 있다. 세계무역기구(WTO)에서는 표준규격 등을 이용한 기술적 무역장벽의 철폐를 위하여 "무역기술장벽에 관한 협정"(TBT)을 체결하였으나 국방, 보건, 환경, 안전 분야에 대해서는 예외적 조항을 인정하고 있으므로 이들은 새로운 무역장벽으로 등장하고 있다. 이 내용은 2001년에 합의된 "도하개발 아젠다"(DDA, Doha Development Agenda)에서도 다시 확인되었다. 이것은 세계 각국의 환경문제의 문제로 인해 그 경우 상품교역을 제한하고자 할 경우를 인정한다는 것을 의미하므로 잠재적인 기술장벽으로 활용될 가능성이 매우 높다. 여기에 더하여 환경문제가 국경을 넘어서는 천지구적인 문제로 떠오르자 환경오염물질을 대상으로 하는 국가 간 협상이 증가하고 있다. 이산화탄소 배출, 황사의 대기 중 이동, 여러 국가들 간의 기술적, 환경적 문제로 인해 보이는 이산화탄소 배출, 황사의 대기 중 이동, 여러 국가들을 경유하여 이동되는 오염물질을 대상으로 한 국가 간 협상에 있어 시험기관의 오염물질량에 대한 측정결과의 신뢰성은 매우 중요한 요소로 작용할 수 있다.

측정표준분야 국제기구인 국제도량형국(BIPM)은 자유무역체제에 대비하여 국가 간의 측정표준에 대한 상호 동등성을 확보하고자 1999년에 45개국측정표준기관과 2개 국제기구, 20개 단체 대표들이 상호인정협약(MRA)에 서명하였고 국제 비교 등을 통한 이행단계에 있는데 이것은 측정/시험결과의 국제적 동등성 확보를 위한 노력이고 다른 분야 측정결과 상호인정의 기반을 제공한다.
시험·검사기관 인정제도는 "국제표준화기구"(ISO) 규격에서 요구하는 인정기구로서의 자격 요건을 갖춘 인정기관에 의해 시험·검사기관을 심사하여 인정하는 것으로서 시험·검사 기관의 신뢰도를 국제 기준에 의해 보증하는 제도이며 최종적으로는 국제간에 상호 인정 체제를 확보함을 목적으로 하고 있다. 이 분야의 국제기구는 "국제시험소인정협의체"(ILAC)이며 지역적으로는 아시아 대평양 지역의 협의체인 "아태시험소인정기구연합체"(APLAC)가 있다.

국가측정표준기관에서 확립한 측정표준이 결국에는 이 인정기구 체계를 타고 산업계 일선에 보급되므로 측정표준기관과 인정기구간의 협력을 불가피하고 이와 같은 상호보완적 특성 때문에 국제도량협국(BIPM)과 국제시험소인정협의체(ILAC)는 2001년에 상호협력을 위한 양해각서를 체결하였다.

이러한 국내외 상황 하에서 국내 환경 분야 시험·검사 기관들의 신뢰도를 보증할 수 있는 체제를 갖추어 국제 경쟁력을 높여야 필요성이 대두되고 있다. 이에 따라 환경부는 환경 분야 시험·검사 기관 측정결과의 신뢰도를 높이기 위하여 환경 분야 시험검사업무 전반을 포괄하는 "환경분야 시험검사 등에 관한 법률"을 제정하였고 이법에 따라 환경분야 시험검사 운영체계에 대한 기본방향, 연구개발 및 인력 양성 등에 대한 중장기 투자계획, 국제협력 등을 포함하는 기본계획을 수립하도록 하였으며, 본 용역사업은 이와 같은 국가적 필요에 의해 국내외 시험·검사 분야 현황을 분석하고 환경 시험·검사 발전을 위한 기본계획을 수립하게 되었다.

2. 사업의 필요성

국민소득 30,000불 시대를 눈앞에 보이고 있는 우리는 측정결과의 정확성·신뢰도에 대한 국민적 요구를 충족할 수 있는 기반을 구축하여 할 필요가 있다. 특히 우리나라의 경우, 평지(平地)가 국토면적의 30%에 지나지 않아 공장들의 밀집도가 세계 어느 나라에서도 유례를 찾아보기 힘들 정도로 높기 때문에 환경오염 물질에 대해서는 철저한 시험검사 및 분석체계를 갖추어야 할 필요성이 매우 높아졌다.

향후 시험검사서비스업의 시장개발에 대응하려면 시험검사기관의 신뢰도를 국제적 수준으로 향상시키기 위한 제도적 대응책을 강구할 필요가 있다. 규제영역의 환경분야는 제품을 대상으로 한 자율영역과는 다른 특수성이 있기 때문에제도운영의 효율성과 효과성을 고려한 체계의 구축이 필요하다.

환경규제가 강화되면서 향후 세계 환경시장 규모는 연평균 5% 이상 성장할 것으로 전망되고 있으며, 구체적으로는 2000년 5,180억불에서 2010년 8,635억불 수준이 될 것으로 추정되고 있다. 특히 중국은 WTO 가입, 2008년 올림픽, 서부대개발 등에
따라 2005년까지 총 112조원을 환경부문에 투자하고 있다. 대기·수질오염 방지와 폐기물처리 분야에 집중 투자할 계획이어서 오염물질 처리기술 및 관련 상품에 대한 수요가 증가할 것으로 예상되며 세계 최대의 환경 시장으로 급부상하고 있다.

우리나라는 환경 산업이 1995년 이후 지속적으로 성장하여 2001년의 시장규모가 GDP의 1.7%에 해당하는 9조 2,521억원 정도이다. 환경설비업의 환경처리기술 수준은 선진국과의 환경기술 격차가 대략 4∼5년 정도이나 미래형 기술은 뒤떨어진다. 그러나 환경기술(ET)은 IT·BT 기술과 함께 향후 우리나라 경제성장과 수출을 견인하는 주요 미래 산업으로서의 성장 잠재력을 지니고 있다. 실제로 환경업체의 해외시장 진출 실적은 2002년 상반기에 1,214억원에서 2003년 상반기에는 4,807억원으로 약 300% 성장하였으며 주요 수출 대상 기술에는 환경 측정기술, 환경 모니터링 기술 등이 포함되어 있다.

도하개발아젠다(DDA)에서의 결의안 가운데 하나가 환경상품 및 서비스에 대한 무역장벽 완화 및 철폐이다. 아태경제협의체(APEC)에서 작성한 환경 상품 분류에 따르면 환경 상품에는 환경오염물 측정, 분석, 검사용 기기 및 장비가 58종이 있다. 이들 상품은 무세화(無稅化)를 통한 환경협상의 대상이므로 국내 환경 기기 생산 업체들의 경쟁력 지원을 위해서도 이들 측정기기의 성능에 대한 인정성을 더욱 발전하는 기관의 신뢰도를 보증하는 인정체제 도입이 필요하다. 이것은 형식승인 과정 관련이 있다.

우리나라의 경우, 모든 환경관리 기초가 되는 환경오염도 측정 분야의 민간 자율 환경관리기관이 미흡하다. 환경오염 측정대행업체 등이 이러한 정부기관의 일부로 구성되어 있으나 현재의 상황에서 바라볼 때 그 관리 실태와 생산 자료의 신뢰성은 전반적으로 미흡한 수준이다. 따라서 민간 시험·검사 기관의 관리 개선 및 신뢰도 확보는 우리나라 자율 환경관리체계의 확대와 확립을 위한 중요한 과제라 할 수 있다.

이러한 관리기관이 확립되면 민간분야의 환경 오염도검사, 배출량 조사 등 현재 정부기관에서 주로 담당하는 업무까지 외부 조달(outsourcing)이 가능하게 되므로 작은 정부를 지향하고 민간 자율기능을 강화하고자 하는 정부정책과도 일관성을 가진다. 관리 기반의 개선은 또한 환경 분야 시장의 세계화에 대비하기 위한 국내 업체의 경쟁력 제고 측면에서도 중요하다. 실제로 해외의 유명 시험·검사 기관들이 시장 개방 후에 국내에 진출하기 위하여 이미 시장조사를 하고 있는 것으로 알려져 있다. 시장 개방이 이루어지기 전에 국내 업체들의 경쟁력이 갖추어지면 시장을 지키는 것만 아니라 이들 서비스 업체들이 해외로 진출하는 것도 용이하게 될 것이다.
제2절 사업의 목표 및 내용

1. 목표

환경시험검사에 대한 국내외 현황조사 분석을 통한 환경시험·검사 발전 기본계획 수립을 위한 국내외 환경분석 및 정책제안

2. 내용

○ 시험·검사 등의 운영체계의 기본방향 제시
 - 환경분야 시험검사 기관(국립환경과학원, 지방환경청, 시도보건환경연구원 등의 공공기관 포함)의 현황 분석
 - 측정장비, 인력, 인프라, 측정분석기술, 운영시스템, 국제협력 등
 - 향후 5년간 운영될 수 있는 운영체계의 기본방향 제시

○ 시험·검사 등의 중장기 투자계획 제시
 - 환경분야 시험·검사의 선진화를 위한 중장기 기본계획을 추진하기 위하여 필요 중장기(5년, 10년) 투자계획 제시

○ 시험·검사 등 관련기술의 연구개발 및 인적자원에 관한 사항 제시
 - 연구개발 및 인적자원 개발이 필요한 분야, 개발방법 등 필요한 사항을 제시

○ 시험·검사 등의 정밀도 및 정확도 향상에 관한 사항 제시
 - 환경분야 시험검사의 정밀도 및 정확도 향상을 위하여 추진해야 할 정책사항 등을 제시

○ 시험·검사 등 관련 국제협력에 관한 사항 제시
 - 환경분야 시험검사의 선진화에 필요한 국제협력과 관련된 제반사항 제시

○ 시험·검사 등의 발전을 위해 필요한 사항 제시

○ 환경분야 시험·검사발전기본계획(안) 제시
제 2 장 환경 분야 시험⋅검사 국내 현황 분석

제 1 절 환경 분야 시험⋅검사 기관 현황

1. 환경 분야 시험⋅검사 기관 현황

환경 관련 측정, 시험, 검사 업무는 그 영역이 넓고 해당 기관들도 다양하다. 환경 분야의 시험검사는 크게 두 분야의 기관에서 수행되고 있다. 하나는 지방 환경 관서, 시도보건환경연구원 등의 정부기관과 환경관리공단과 같은 공공 성격의 기관들이며, 다른 하나는 측정대행업체들이 중심이 되는 민간 기관들이다. 환경 분야 시험⋅검사기관 운영 및 지정 등은 대기환경보전법, 수질환경보전법, 먹는물관리법 등 각 개별법에 명시되어 있으며, 각각의 공정시험방법에서 각 분야 별로 측정, 분석 항목, 방법 및 절차 등이 규정되어 있다. 환경 부담금의 부과 근거가 되는 측정, 시험 및 분석을 직접 수행하고 있는 이들 시험기관이 부담하고 있는 가장 큰 문제는 시험⋅검사 결과에 대한 품질 보증의 신뢰성이다. 환경 분야 시험⋅검사 결과의 신뢰도에 대한 논란이 일어날 때 이를 불식할 수 있을 정도로 국민들에게 확실한 믿음을 제공할 수 있고 국제적 동등성을 확보할 수 있는 국제 기준에 의한 시험기관 정신관리 체계의 확립이 필요한 시점이다.

환경 관련 법규에 명시되어 있는 환경 분야 시험⋅검사 기관 현황은 다음과 같다.
① 「환경분야 시험⋅검사 등에 관한 법률」제13조의 규정에 의한 검사대행자.
② 「환경분야 시험⋅검사 등에 관한 법률」제16조의 규정에 의한 측정대행업자
③ 「폐기물관리법」제25조의2제1항제2호, 제30조의2제1항 및 제30조의3제2항에 따른 분석전문기관⋅검사기관 및 측정기관
④ 「대기환경보전법 시행령」제14조제2항의 규정에 의한 오염도 검사기관;
⑤ 「다중이용시설 등의 실내공기질관리법」 제13조제2항에 따른 실내공기질오염도 검사기관
⑥ 「먹는물관리법」제35조의 규정에 의한 먹는물 수질검사기관
⑦ 「토양환경보전법」제23조의2제1항의 규정에 의한 토양관련 전문기관,
⑧ 「수질 및 수생태계 보전에 관한 법률」제49조제2항의 규정에 의한 오염도 검사기관
⑨ 「석유사업법 시행령」제34조제1항 단서의 규정에 의한 검사소
표 2-1. 환경측정 분야별 측정분석기관 현황

<table>
<thead>
<tr>
<th>명 칭</th>
<th>대상기관</th>
<th>주 요 업 무</th>
<th>근 거 법</th>
</tr>
</thead>
<tbody>
<tr>
<td>악취 검사기관</td>
<td>한국표준과학연구원, 산업기술시험원, 환경관리공단, 교통안전공단, 수자원공사, 서울시 상수도연구소 등 (35개)</td>
<td>악취오염물질 측정</td>
<td>악취방지법 제 18조</td>
</tr>
<tr>
<td>환경측정기 검사대행기관</td>
<td>환경관리공단, 산업기술시험원, 서울, 경기 보건환경연구원, 국립환경과학원장 고시(7개)</td>
<td>환경측정기 형식승인을 위한 성능시험 및 정도검사</td>
<td>환경기술개발 및 지원에 관한 법률 제 15조 (시험검사법 이관)</td>
</tr>
<tr>
<td>다이옥신 측정기관</td>
<td>환경관리공단, 산업기술시험원, 서울, 경기 보건환경연구원, 국립환경과학원장 고시(8개)</td>
<td>폐기물 소각시설에서 배출되는 다이옥신농도측정 분석</td>
<td>폐기물관리법 제 30조의 3, 시행규칙 제 24조의 2 국립환경연구원예규 388호 (2006.07.14)</td>
</tr>
<tr>
<td>먹는물 수질 검사기관</td>
<td>국립환경과학연구원, 시 도보건환경연구원, 지방환경청, 국립환경과학원장 고시(21개)</td>
<td>먹는물 수질검사, 먹는물 관련 영업에 사용하는 원재료, 제품, 용기 검사</td>
<td>먹는물관리법 제 35조, 시행규칙 제 31조</td>
</tr>
<tr>
<td>바이러스 검사기관</td>
<td>국립환경과학연구원, 시 도보건환경연구원, 지방환경청, 국립환경과학원장 고시(6개)</td>
<td>바이러스 검사</td>
<td>바이러스 검사</td>
</tr>
<tr>
<td>원생동물 검사기관</td>
<td>국립환경과학연구원, 시 도보건환경연구원, 지방환경청, 국립환경과학원장 고시(4개)</td>
<td>원생동물 검사</td>
<td>원생동물 검사</td>
</tr>
<tr>
<td>GLP</td>
<td>한국화학연구원 부설 안전성평가연구소 등 (6개)</td>
<td>유해물질에 대한 생태독성 실험</td>
<td>화학물질 유해성시험연구기관의 지정 등에 관한 규정</td>
</tr>
<tr>
<td>폐기물분석 (PCB, 일반항목, 유기용제)</td>
<td>폐기물분석 전문기관 : 한국표준과학연구원, 산업기술시험원, 국립환경과학원장</td>
<td>폐기물분석 전문기관 지정, 전문기관 현지평가 전문기관 사후관리</td>
<td>폐기물관리법 시행규칙 제 16조 제 6항 제 3호, 국립환경연구원예규 389호 (2006.07.14)</td>
</tr>
<tr>
<td>명칭</td>
<td>대상기관</td>
<td>주요업무</td>
<td>근거법</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>수질오염도 검사기관</td>
<td>국립환경과학원, 시·도보건환경연구원, 지방환경청, 환경관리공단의 소속 사업소, 환경부장관이 인정하는 수질검사기관 (32개)</td>
<td>배출시설, 방지시설 설치시 가동상태 점검</td>
<td>수질환경보전법 시행규칙 제24조</td>
</tr>
<tr>
<td>지하수 수질검사기관</td>
<td>한국지질자원연구원, 대한광업진흥공사, 한국수자원공사, 농업기반공사, 한국건설기술연구원, 환경관리공단, 머리는 물 수질검사기관, 일반수도사업자, 농업과학기술원, 도농업기술원 (40개)</td>
<td>지하수 관리, 조사 및 수질검사</td>
<td>지하수법 제20조, 시행령 제30조 등</td>
</tr>
<tr>
<td>충돌수 측정기관</td>
<td>시·도보건환경연구원, 환경관리공단, 축종대행업자, 수도권매립지관리공사, 국립환경과학원장이 고시하는 기관 (176개)</td>
<td>매립시설 운영관리를 위한 충돌수 측정</td>
<td>폐기물관리법 제30조의3, 시행규칙 제24조의2</td>
</tr>
<tr>
<td>설내공기질 측정기관</td>
<td>국립환경과학원, 시·도보건환경연구원, 지방환경청, 환경부장관이 고시하는 기관 (38개)</td>
<td>실내공간의 유해물질 측정</td>
<td>다중 이용시설 등의 설내 공기질 관리법 제12조 제1항, 동법 시행규칙 제13조</td>
</tr>
<tr>
<td>가스 안전관리 전문기관</td>
<td>한국산업안전공단(1개)</td>
<td>가스 상 유독물 제조, 저장, 운반시설 안전관리 규제 평가</td>
<td>유해화학물질관리법 제31조</td>
</tr>
<tr>
<td>운행차 검사대행자, 제작자 배출가스 검사기관</td>
<td>국립환경과학원, 자동차성능연구소, 자동차부품연구원, 환경관리공단 등</td>
<td>자동차 배출가스 성능검사</td>
<td>대기환경보존법 제33조, 제40조</td>
</tr>
<tr>
<td>토양관련 전문기관</td>
<td>토양오염 검사기관 : (50개) 국립환경과학원, 시·도보건환경연구원, 지방환경청, 농업과학기술원, 임업연구원, 환경부장관 지정기관 누출검사기관 : (10개) 환경부장관 지정기관</td>
<td>토양오염유발시설 부지의 오염도 조사</td>
<td>토양환경보전법 제23조의2</td>
</tr>
<tr>
<td>유해성 시험연구기관</td>
<td>국립환경과학원장이 인정하는 기관 (4개)</td>
<td>제조, 수입 화학물질의 독성, 분해성 시험</td>
<td>유해화학물질관리법 제7조</td>
</tr>
<tr>
<td>측정대행업 (대기, 수질, 소음진동, 설내공기질, 악취)</td>
<td>측정대행업체 (310여개)</td>
<td>환경오염물질측정 대행</td>
<td>환경기술개발및지원에관한법률 제17조</td>
</tr>
</tbody>
</table>
2. 지방환경청 현황

환경부는 지방의 환경업무를 담당하기 위해 총 4개의 지방 환경청과 4개의 유역 환경청을 설치·운영하고 있으며, 지방환경청은 수도권 대기환경청, 원주지방환경청, 대구 지방환경청과 전주 지방환경청, 유역환경청은 금강유역환경청, 낙동강유역환경청, 영산강유역환경청과 한강유역환경청이 있다.

각 지방환경청과 유역환경청은 고유의 목적에 따라 대체적으로 7개~10개의 과로 구성되어 있으며, 정에 따라 출장소를 포함하기도 한다. 지방환경청과 유역환경청의 역할은 측정망 설치 및 상시 측정부터 각종 계획 수립, 허가, 참문, 과태료 부과까지 환경보전과 개선에 필요한 업무 전반에 걸쳐 있다.

지방환경청과 유역환경청의 혁신기획과에서는 혁신업무, 환경보전교육 및 홍보, 환경행정사 업무를, 환경관리과에서는 수질오염 사고 방지대책 수립 및 사후 수습, 지정폐기물 관련 업무를 수행하고 있으며, 자연환경과에서는 야생동식물 보호, 생태 경관보전지역 관리업무를, 환경평가과에서는 환경영향평가 및 사전환경성검토 협의업무를 담당한다. 화학물질관리과에서는 화학물질배출량 및 유통량조사, 유독물 제조 및 사용업소 지도점검업무를, 수질환경관리과에서는 수질오염물질관리 기초계획협의, 중권역 물관리계획 수립·시행업무를 담당하고 있으며, 측정분석과에서는 환경오염측정망 운영·관리, 오염물질 사후조사, 지정폐기물 관련사업장 지도점검 업무를 담당하고 있다.

유역환경청은 지방환경청의 부서외에 유역계획과, 재정계획과, 상수원관리과와 지역협력과, 환경감시단의 부서가 더 포함되며, 유역계획과는 수질오염예방의 수립과 하수도 사업 예산 및 보조금 업무, 수질오염원조사 등 환경기초조사 사업 및 환경기초시설의 운영 및 관리 업무를 수행하고 있으며, 재정계획과는 수계관리기금의 운용 및 자금조달과 물가용역비급 관련 업무를 수행하고 있다. 수질오염사고 방재대책 수립, 수변구역의 관리와 조류예보개발 관련 업무를 담당하고 있으며, 지역협력과는 재생재해방, 환경보전에 관한 홍보·교육, 병예환경감시단제도의 운영 등의 업무를 수행하고 있다. 환경감시단은 환경감시단단속과 환경조사에 대한 사례수사, 환경전달망 운영 등의 업무를 담당하고 있다.

3. 시·도 보건환경연구원 현황

시·도 보건환경연구원은 「보건환경연구원법」에 의하여, 각 도, 광역시, 특별시에 설치되어 보건·환경에 관한 검사 및 연구업무를 합리적으로 운영함으로써 국민
보건의 증진과 환경보전에 이바지함을 목적으로 하고 있다.

보건환경연구원은 본연의 목적을 달성하기 위하여 다음과 같은 업무를 행한다.
가. 전염병예방법에 의한 전염병, 후천성면역결핍증예방법에 의한 후천성면역결핍증, 기생충질환예방법에 의한 기생충 및 기타 전염성 질환과 집단질병발생에 대한 진단·검사·시험·조사·연구에 관한 사항
나. 약사법에 의한 의약품·의약외품, 화장품법에 의한 화장품, 의료기기법에 의한 의료기기, 마약류 관리에 관한 법률에 의한 마약류, 식품위생법에 의한 식품·첨가물·기구·용기·포장 및 농산물의 농약잔류량, 축산물가공처리법에 의하여 검사를 받아 유통되는 식육, 공중위생법에 의한 음용수·수처리제·세척제 기타 위생용품 및 장난감, 오염물질에 의한 오염물질의 검사·시험·조사·연구에 관한 사항
다. 대기환경보전법에 의한 대기, 악취방지법에 의한 악취, 수질환경보전법에 의한 수질·토양·농약잔류량, 소음·진동규제법에 의한 소음·진동, 폐기물관리법과 오수·오염물질관리법에 의한 폐기물·오수처리시설·축산물에 의한 폐기물·오수처리시설·축산물의 처리시설·분뇨처리시설 등에서 배출되는 방류수, 해양오염방지법에 의한 해양오염 및 해양환경물질관리법에 의한 유해화학물질 등의 검사·시험·조사·연구에 관한 사항
라. 관할구역안의 보건·환경 관련기관의 검사업무에 대한 기술적인 지도·점검에 관한 사항
마. 관할구역안의 보건·환경 관련기관의 검사업무에 대한 기술적인 지도·점검에 관한 사항
바. 기타 공중보건의 향상 및 환경보전을 위하여 보건복지부장관·식품의약품안전청장 또는 환경부장관이 필요하다고 인정하는 검사·시험·조사·연구에 관한 사항
위의 업무를 수행함에 있어 시료의 채취 등의 범위와 절차 및 관할구역안의 보건·환경관련기관의 범위 등에 관하여 필요한 사항은 당해 지방자치단체의 조례로 정하고 있다.

4. 측정대행 업체 현황

민간업체인 측정 대행업체는 꾸준히 증가하여 2003년 150 여개에서 2006년 말 기준으로 235 여개 업체였으며, 이 숫자가 2007년 들어서 갑자기 증가하여 거의 480여 업체에 이르고 있다. 이들 업체는 자가 측정 시설을 갖추지 못한 기업체에서 의뢰하는 공해물질 측정·분석 서비스를 제공하고 있다. 측정대행업체는 환경오염 물질 배출 기준을 엄격하게 적용하기 시작한 당시 대부분의 오염물질 배출 업체들
이 측정 분석장비 및 분석능력을 제대로 갖추지 못한 것을 지원하기 위하여 도입된 제도에 따라 세워진 것으로서 설립근거는 환경기술개발 및 지원에 관한 법률 제17 조 (2007. 10. 5. 이후 “환경분야 시험·검사 등에 관한 법률 제16조”로 이관)이다. 그러나 측정대행업체의 대부분이 영세하며 측정 분석 비용도 비현실적이다. 이 때문 에 대부분의 업체들이 측정·분석 서비스 수입만으로는 운영이 어려워 환경 설비 설계 용역을 같이 겸하면서 자신들이 설치한 시설물의 관리를 대행하는 방식으로 수입을 확보하는 경우가 많다. 또한 대부분의 업체들이 국제적 기준의 측정 신뢰성 을 갖추고 있지 못한 실정이다.

현재 480여개 업체들 중에서 국제적 기준의 인정체제를 도입할 경우, 큰 어려움 없이 이를 소화할 수 있는 업체는 소수에 불과하다. 업체측정대행업체들이 자신들의 측정·분석 결과에 대한 품질보증 체계를 도입하는데 소극적인 이유는 공인 시험·검사 기관이 되어도 돌아오는 혜택이 없기 때문으로, 현재로서 측정대행업체들 간에 품질 경쟁 체제가 도입되어 있지 않고 법규상 품질 수준에 따른 차별성이 인정되지 않기 때문에 스스로 품질을 높이거나 능력을 향상하고자 하는 동기 유발이 안되고 있다. 일부 업체들은 능력에 따른 공정한 경쟁의 원리가 도입되기 위해서는 이를 바꿔야만 측정대행업체들은 능력을 향상시키기 위하여 노력할 것으로 예상된다.

가. 측정대행업체의 변천 과정

1977년도부터 환경오염물질 배출을 엄격하게 규제하기 시작하면서 사업자가 배출시설을 사용할 때에는 배출되는 오염물질을 자가측정 하거나 환경청장이 지정하는 자로 하여금 측정하게 하고 그 측정기록을 비치토록 하였다. 이것은 오염물질을 배출하는 사업자가 스스로 오염물질의 배출 상황을 측정하게 함으로써 법에서 정한 오염물질의 배출허용기준 초과 여부를 정기적으로 점검하고 자율적인 개선을 유도하는 제도적 장치이었다. 그 후 행정관청의 상시감시와 수시점검의 어려움을 보완하기 위한 행정제도로서 배출업소가 측정분석 능력이 부족할 때 자가측정대행자에게 의뢰하도록 1981년부터 시행하였다. 연도별 변천과정을 보면 다음과 같다.

- '77. 12. 31 : 공해배출시설에 대한 자가측정 의무부과(환경보전법)
- '79. 12. 28 : 자가측정대행자지정제도 근거 마련
- '81. 1. 1 : 자가측정대행자 지정
- '83. 8. 25 : 자가측정대행자지정의 지역별 정수책정 및 고시

-15-
- '90. 8. 1 : 대기 및 수질환경보전법과 소음·진동규제법으로 지정 근거 분야화(자가측정대행자 지정제도를 측정대행업지정제도로 명칭변경)
- '94. 8. 3 : 측정대행업 지정제도를 등록제로 전환 (정수제도 폐지)
- '99. 2. 8 : 측정대행업 근거 법령 통합 (대기 및 수질환경보전법과 소음 진동규제법에 각각 규정된 것을 환경기술개발 및 지원에 관한 법률로 통합)
- '99. 2. 8 : 수질분야자가측정 의무사항에서 권장사항으로 개정
- '04. 5. 28 : 다중이용시설등의 실내공기질 측정대행 등록제 시행
- '05. 2. 7 : 악취 측정대행 등록제 시행
- '07. 10. 5 : 환경분야 시험·검사 등에 관한 법률로 이관

<환경분야 시험·검사 등에 관한 법률>
제16조(측정대행업의 등록) ① 대기오염물질, 다중이용시설 등의 설내공간오염물질, 악취, 수질오염물질 또는 소음·진동의 측정업무를 대행하는 영업(이하 "측정대행업"이라 한다)을 하고자 하는 자는 대통령령이 정하는 기술능력·시설 및 장비를 갖추어 특별시장·광역시장·도지사(이하 "시·도지사"라 한다)에게 등록하여야 한다.

나. 측정대행업체의 업무 현황

1) 측정대행업체의 업무 및 지정 현황

측정대행업체에서 제공하는 서비스 종류에는 대기, 수질, 소음·진동, 설내공기질, 악취가 있으며, 등록업체의 수는 2006년 12월 기준 235 개이며 분야별로는 대기 : 141, 수질 : 166, 소음진동 : 73, 설내공기질 51, 악취: 35 개이다. 다음 표 2-2는 측정대행업체에서 제공하는 측정항목을 정리한 것이며 표 2-3은 측정기관으로 승인 받는데 필요한 법정인력기준을 보여주고 있고 표 2-4는 연도별 측정대행업체 지정 현황을 보여주고 있다.
표 2-2. 측정 대행업 분석 항목

<table>
<thead>
<tr>
<th>측정분야</th>
<th>측정 항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>대기분야</td>
<td>황산화물(SO₂), 암모니아, 이황화탄소, 황화수소, 먼지, 매연, 일산화탄소, 질소산화물</td>
</tr>
<tr>
<td>수질분야</td>
<td>수소이온농도(pH), 부유물질(SS), 수질 및 특정수질유해물질분석, 생물화학적산소요구량(BOD) 및 화학적산소요구량(COD)</td>
</tr>
<tr>
<td>소음·진동분야</td>
<td>소음계 및 진동레벨계 소음도, 진동레벨기록계, 소음계외부교정기</td>
</tr>
<tr>
<td>실내공기질분야</td>
<td>미세먼지(PM10), 이산화탄소(CO₂), 포름알데히드(HCHO), 총부유세균, 일산화탄소(CO), 이산화질소(NO₂), 라돈(Rn), 휘발성유기화합물(VOC) 석면, 오존(O₃)</td>
</tr>
</tbody>
</table>

표 2-3 측정기관의 법정 인력 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>법 규정 기술인력</th>
<th>합계(명)</th>
</tr>
</thead>
<tbody>
<tr>
<td>측정대행업</td>
<td>대기: 3명, 수질: 3명, 소음·진동: 1명, 실내공기질: 3명, 악취: 2명</td>
<td>1~3</td>
</tr>
<tr>
<td>먹는물검사기관</td>
<td>미생물분야: 4명, 미생물분야: 2명</td>
<td>6</td>
</tr>
<tr>
<td>토양오염조사기관</td>
<td>책임: 1명, 분석: 2명, 기능직: 4명</td>
<td>7</td>
</tr>
<tr>
<td>다이옥신측정분석기관</td>
<td>책임: 1명, 연구: 2명</td>
<td>3</td>
</tr>
<tr>
<td>폐기물분석전문기관</td>
<td>책임: 1명, 분석: 2명</td>
<td>3</td>
</tr>
<tr>
<td>악취검사기관</td>
<td>분석요원: 2명</td>
<td>2</td>
</tr>
</tbody>
</table>

표 2-4. 연도별 환경측정대행업체 지정현황

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>개소수</td>
<td>159개소</td>
<td>137개소</td>
<td>211개소</td>
<td>235개소</td>
<td>480개소</td>
</tr>
</tbody>
</table>

2) 측정대행업체 관리 현황

현재 측정대행업체의 지정은 지방자치단체의 장이, 그리고 지도점검은 환경관리
청장 또는 지방환경관리청장이 시행하도록 되어 있다. 이 결과 환경과학원이 주관하는 숙련도 시험에 해당하는 정도관리에 의한 기술적 관리 및 결과의 반영 등이 제대로 이행되지 못하고 있다. 측정대행업체의 지정 및 관리부분에 대해서 시행기 관 인정기구의 역할을 고려한 제도적 개선을 심각하게 검토할 필요가 있다. 아래의 시행령에 나와 있는 지도점검사항을 보면 기술적인 내용보다도 형식적인 요구조건에 치우쳐 있음을 알 수 있으며 ISO 17025와 같은 국제적 기준에 견주어 보아도 요구사항이 충분하지 않다.

<table>
<thead>
<tr>
<th>측정대행업소 지도·점검에 관한 규정</th>
</tr>
</thead>
</table>

시행령 제8조(지도·점검사항) 제4조제1항의 규정에 의한 정기지도·점검을 실 시할 때에는 다음 사항을 확인하여야 한다.

1. 기술능력 적정여부
2. 시설 및 장비 보유기준 및 운영의 적정여부
3. 실험폐수 적정처리 여부
4. 시료채취 및 실험분석의 적정여부
5. 정도관리 및 검·교정 이행여부
6. 실험일지, 검량선 기록일지, 시약소모대장 및 측정대행기록부 등의 적정기록 및 보존여부
7. 행정명령 이행사항
8. 기타 지도·점검에 필요한 사항

종합적으로 시험 기관 지정제도에 대해 살펴보면 대기오염도 검사기관, 수질오 염도 검사기관 등 13개 지정제도에 의해 580여 실험실이 지정되어 있으며 현행 지 정제도의 문제점으로는 분야별로 지정절차가 다양하고, 평가내용 및 절차에 대한 국제적 적합성 확보가 미흡하며 ISO/IEC 등 국제적으로 통용되는 규정이 적용되지 않고 있다.
제 2 절 환경 분야 시험·검사 운영체계 현황분석

1. 환경분야 시험·검사 기관 지정/인정제도

가. 시험·검사 기관 인정제도

시험·검사기관 인정제도는 "국제표준화기구"(ISO) 규격(ISO 17011)에서 요구하는 인정기구로서의 자격 요건을 갖춘 기관이 시험·검사기관을 심사하여 인정하는 것으로서 말하자면 특정기준에 적합한 제품에 환경마크나 한국산업표준(KS) 마크를 부착하는 것처럼 적합한 시험·검사 기관에 인증 마크를 부착하여 그 신뢰도를 보증하는 체제이다. 이 분야의 국제 기구는 "국제시험소인정협의체"(ILAC)이며 지역적으로는 아시아 태평양 지역의 협의체인 "아태 시험소인정기구 연합체"(APLAC)가 있다. 국가 측정표준기관에서 확립한 측정표준이 결국에는 이 인정기구 체제를 타고 산업계 일선에 보급되므로 양자 간의 협력은 불가피하다. 이와 같은 상호 보완적 특성 때문에 국제표준협의체(BIPM)과 국제시험소인정협의체(ILAC)는 2001년에 상호협력 의한 양해각서를 체결하였다. 아래의 그림 2-1은 현행 우리나라의 인정체계를 요약한 것이다.

그림 2-1. 국내 시험기관 인정체계 현황
한국 교정 시험기관 인정기구(KOLAS; Korea Laboratory Accreditation Scheme)는 산업자원부의 국가표준기본법에 근거하여 설립되었으며 기술표준원이 주관하여 인정 기구의 운영을 담당하고 있다. 이 그림을 보면 공식적으로는 인정기구의 이름을 달고 있는 것이 KOLAS 하나이지만 실제로는 각 부처마다 필요에 의해 인정기구와 유사한 체제를 운영하고 있음을 알 수 있다. 현재 이와 같은 문제점을 해결하기 위하여 법무처 차원의 인정기구 관련 체제가 논의 중에 있으며 아래의 그림은 국가표준심의회의 기능을 강화하는 관점에서 거론되고 있는 두 가지 안을 나타낸 것이다. 제 3안은 국가표준심의회의 전면적으로 개편하여 「국가표준위원회」(가정)를 구성하여 운영하고 그 산하에는 상시전담기구와 상시전담인력을 두어 국가표준 및 인증업무 전반에 대한 통합조정체계로서 역할을 수행하도록 되어 있다. 어느 안이든 공통점은 국가표준 심의회가 인정기구 협의체 역할을 할 것이라는 점으로서 각 부처별 전문성을 살린 인정기구의 도입이 예상된다.

그림 2-2. 현행 국가표준심의회 조직체계 제1-①안
그림 2-3. 국가표준심의회 조직제설계 제1-②안

그림 2-4. 국가표준위원회(가칭)의 기능과 역할 (제3안)
나. 환경 분야 시험검사기관 인정체계의 문제점

시험검사기관 인정제도의 목적이 시험검사기관의 신뢰도 증진만이 아니라 환경 분야의 시험분석 신뢰도 보증이므로 인정제도의 대상이 되는 기관에는 시험검사 전문기관 외에 다른 관련기관들이 포함되는 것이 당연하다. 현재 환경 분야의 관련 시험기관들을 정리하면 정도관리 주관기관(국립환경과학원), 환경인증기관, 검사대행기관, 공공 시험분석기관, 측정대행업체 등으로 나눌 수 있는데 일관성 있는 체제를 구축하여 시험분석 결과에 대한 품질을 보증하려면 이들 모든 시험기관들을 통합 관리할 수 있는 지정/인정제도를 검토할 필요가 있다. 무엇보다도 먼저 지적할 사항은 환경 분야의 시험분석 신뢰도를 높이는데 가장 결정적으로 중요한 역할을 담당하는 인정기구가 환경부 산하에 없다는 점이다. 여러 종류의 시험검사기관들을 지정하는 행정적 권한만 여러 기관에 흩어져 있으며 관리체계도 일관성이 없고 공인기관들이 갖추어야 하는 국제적 요구조건도 충분하게 반영되어 있지 않다.

현재 우리나라의 환경 분야 시험검사기관 인정 및 관리 제도는 새로 공포된 "환경분야 시험검사 등에 관한 법률"에서 규정하는 기기형식승인, 교정용품검정대행기관, 환경측정대행기관 등을 제외하고 대기환경보전법, 수질환경보전법, 음식물관리법 등 각 개별법에서 지정·관리하고 있고 대부분 장비·인력요건 등 일반적인 사항만 규정하고 있어 ISO 규격을 기준으로 한 국제적인 수준에 비추어보면 미흡하다. 국제적 필수 기관이 시험 및 교정 기관의 자격에 대한 일반요구사항인 ISO 17025에서 요구하는 경영요건과 기술요건을 기준으로 비교하면, 경영요구사항인 조직 및 품질시스템 요건에 주의를 기울여야 할 점, 제도적 분야에 해당하는 일반요건의 관리체계는 일부 갖추어져 있다고 볼 수 있으나 품질시스템의 사후관리 등 품질요건항목은 불충분하다. 기술요구사항에 있어서는 측정표준의 소급성, 측정결과의 품질보증체계, 시험·검사 방법의 유효성 확인 및 표준절차서 등이 체계적으로 확립되어 있지 않다. 또한 국제 시험소인정기구협의회(ILAC) 등과의 연계고리가 설정되어 있지 않기 때문에 정도관리 결과의 국제적 동등성을 확보하는데 문제점이 있다.

d. 우수실험실 인정제도(GLP, Good Laboratory Practice)

우수실험실 인정제도는 국내 3개 부처에서 운영하고 있으며 국립환경과학원이 유효화물질 분야에서 지정한 8개 기관을 포함하여 총 18개 기관이 있다. 다른 2개 지정기관은 농촌진흥청과 국립독성연구소로서 OECD에서 제정한 기준에 따라

라. 인정제도 관련 법

일관되게 적용되어야 할 인정기구라는 관점에서 보았을 때 환경관리 법규는 그 때그때 필요에 따라 만들어지고 운용되어 왔기 때문에 복잡한 양상을 보인다. 참고로 산자부에서 운용하는 국가표준과 관련된 법률 및 시행령은 다음과 같다.

- 국가표준기본법(법률 제5390호), 동법 시행령(대통령령 제16494호)
- 계량법
- 산업표준화법
- 시험기관 및 검사기관 인정제도 운영요령(기술표준원 고시 제2001-205호)
- 국가교정기관지정제도운영요령(산업자원부 고시 제2001-41호)
- 국가교정기관지정제도운영세칙(기술표준원 고시 제1999-271호)
- 숙련도 시험 운영기관 지정기준(ISO/IEC Guide 43-1, 43-2)
- 화학, 역학, 전기, 열 및 운도 등 각 분야별 추가인정기준
- 표준물질 인증제도 운영요령(산업자원부 고시 제1999-110호)
- 표준물질 인증제도 운영세칙(기술표준원 고시 제1999-346호)

환경 분야의 시험검사 기관 정도관리 체계는 “환경기술 개발 및 지원에 관한 법률”과 “환경분야 시험검사 등에 관한 법률”이 근거 법 역할을 하고 있으나 정도관리 및 정도검사 제도를 선진화하고 시험기관 인정제도를 도입하기 위해서는 전체적
으로 법령을 정비하여 일관된 법체계가 이루어지도록 하는 것이 필요하다. 또한 환경 분야의 특성상 인정제도를 필수규정으로 운용하여야 하므로 이에 대비하기 위해 서도 법령 내용을 정비하여 공인시험·검사기관의 성격에 맞을 인정할 수 있도록 하고 부처별 인정사항이 서로 인정되어 통용될 수 있도록 일관된 체계로 만드는 것이 필요하다.

최근에 환경오염 물질, 환경오염 상태 및 유해성 등에 대한 측정·분석·평가의 통일성과 정확성을 기하기 위하여『대기환경보전법』 등 9개 법률의 관련 분야에 대한 환경오염공정시험기준과 측정기기의 형식승인·정도검사(精度檢查)·표준물질의 검정 등에 관한 사항을 통합하여 정합으로써 환경분야의 시험·조사 및 그와 관련된 기술기준을 확립하고, 시험·조사 등의 운영체계 등을 효율화하여 환경오염 측정·평가의 신뢰도를 높이며, 환경분야의 시험·조사 관련 기술개발을 촉진하기 위해『환경분야 시험 검사 등에 관한 법률』이 제정되었다. 동법에는 다음과의 내용들이 포함되어 있다.

- 환경시험·조사방전기본계획의 수립
- 환경오염공정시험기준의 제정 및 적용
- 측정기기 등의 형식승인·정도검사 및 검정
- 측정대행업의 등록
- 환경측정분석사 자격제도의 도입

그러나 시험기관 인정제도에서 가장 중요한 요소 중 하나인 측정분석기관의 정도관리 제도는『환경기술 개발 및 지원에 관한 법률』 제 16조에 근거하고 있으며, 시행령 및 시행규칙에서 구체화하고 있다. 그리고 세부사항은 국립환경과학원장에게 위임하고 국립환경과학원의 “측정분석기관 정도관리의 방법 등에 관한 규정”에서 목적과 대상범위 각 분석항목별 관리 규정 등을 정의하고 있다. 그리고 국립환경과학원에서는 이런 법률적 근거를 가지고 매년 국·공립 및 민간 환경분석기관을 대상으로 실시의 실시와 인증 등을 수행하고 있다.

2. 환경 분야 시험·검사기관 정도관리 제도

가. 법, 제도 현황 분석

“환경기술 개발 및 지원에 관한 법률” 제16조에서 환경부장관은 환경오염물질,
소음・진동 또는 환경상태 등을 측정・분석하는 자 중 대통령령이 정하는 자(이하 "측정분석기관"이라 한다)에 대하여 환경부령이 정하는 바에 따라 측정・분석능력의 평가, 교육의 실시 및 측정・분석과 관련된 자료의 검증 등(이하 "정도관리"라 한다)을 할 수 있도록 되어 있고, 정도관리 결과 필요하다고 인정되는 경우 관련 장비 및 기기의 개선・보완 기타 필요한 조치를 명할 수 있도록 되어 있다.

정도관리 방법에 대하여 동법 시행규칙에 다음과 같이 명시하고 있다.

제24조(정도관리 방법 등) ① 법 제16조의 규정에 의하여 국립환경과학원장은 영 제22조의 규정에 의한 측정분석기관에 대하여 3년마다 정도관리를 실시하여야 한다. 이 경우 국립환경과학원장은 그 결과를 분석하여 다음해 2월말까지 환경부 장관에게 보고하고, 이를 공고할 수 있다.

② 제1항의 규정에 의하여 실시하는 정도관리(이하 "정도관리"라 한다)의 방법은 국립환경과학원장이 기술인력・시설・장비 및 운영 등에 대한 측정・분석능력의 평가와 이와 관련된 자료를 검증하는 것으로 한다.

③ 국립환경과학원장은 제2항의 규정에 의한 평가 및 검증을 실시하고 그 결과를 대상기관에 통보하여야 한다. 이 경우 국립환경과학원장은 국립환경과학원장이 정하는 기준에 따라 측정・분석능력이 우수한 대상기관에 대하여는 정도관리검증서를 발급할 수 있으며, 측정・분석능력이 평가기준에 미달한 대상기관에 대하여는 국립환경과학원장이 정하는 기관에서 당해 측정・분석 항목에 대한 교육을 받도록 하거나 현지지도를 실시할 수 있으며, 장비 및 기기의 개선・보완 그 밖에 필요한 조치를 명할 수 있다.

④ 정도관리를 위한 세부적인 평가방법, 평가항목, 평가기준 및 운영기준 등은 국립환경과학원장이 정하여 고시한다.

측정분석기관 정도관리의 방법 등에 관한 규정에서는 측정분석기관의 정도관리를 위한 평가방법・평가항목, 평가기준 및 운영기준과 정도관리심의회, 기술위원회, 정도관리 평가위원 등에 대한 규정을 정하고 있다. 정도관리 평가 방법으로는 숙련도 시험과 현장평가를 정하고 각 평가 방법 및 기준을 정하고 있다.

또한 정도관리 평가 계획 및 절차에 대한 세부 지침으로 "환경측정분석기관 정도관리 운영 지침(2007. 9. 4)"을 정하고 있으며, 본 지침에 평가 계획 및 평가 내용에 대한 세부 절차 및 기준을 정하고 있다.

숙련도 평가는 숙련도 시료의 기준값과 참여자의 분산정도를 고려한 Z-SCORE
에는 의한 평가를 기본적으로 사용하고 있고, 현장평가는 시험기관의 경영요건과 기술요건의 세부 평가 항목에서 문서, 측정자료 등의 품질관리, 시험절차, 시료채취, 시험결과의 보증 등에서 시험기관 적합성 평가를 위한 국제 기준인 ISO 17025의 기준 요건을 갖추어 가고 있다.

나 조직, 인력 현황

환경분야 시험·검사 기관의 정도관리 평가 주관기관은 국립환경과학원으로 원내 환경측정기준부에서 본 업무를 총괄하고 있다. 환경측정기준부 내 정도관리 평가를 위한 관리 인력은 측정기준연구과 직원으로 구성되며, 숙련도 시험과 현장 평가 업무를 담당하고 있다.

국립환경과학원은 정도관리 현장평가를 수행하기 위하여 정도관리 평가위원을 양성하고 있으며, 국립환경인력개발원의 정도관리 평가위원 양성과정을 이수하거나 그와 동등 또는 그 이상의 자격이 있다고 판단되는 자에 한하여 정도관리 심의회의의결을 거쳐 위촉하고 있다.

<측정분석기관 정도관리의 방법 등에 관한 규정>
제10조(정도관리 평가위원의 위촉) ①과학원장은 제15조제1항의 현장평가를 수행하기 위한 정도관리 평가위원을 다음 제1호 및 제2호 또는 제3호의 자격을 갖춘 자로서 국립환경인력개발원의 정도관리 평가위원 양성과정을 이수하거나 그와 동등 또는 그 이상의 자격이 있다고 판단되는 자에 한하여 심의회의의결을 거쳐 위촉하되, 위촉시에는 별지 제1호서식의 위촉장을 교부한다.
① 국가공무원법 제33조의 결격사유가 없는 자
② 전문대학을 졸업한 후 7년 이상, 또는 학사학위를 취득한 후 5년 이상, 또는 석사학위 취득 후 3년 이상 환경분야 측정분석이나 정도관리 등에 대한 경력을 갖춘 자, 또는 관련분야 청공의 박사학위를 취득한 자
③ 환경관련 분야의 산업기사 자격을 취득한 후 7년 이상, 또는 기사 자격을 취득한 후 5년 이상 환경분야 측정분석이나 정도관리 등에 대한 경력을 갖춘 자, 또는 관련분야 기술사 자격을 취득한 자

정도관리 평가위원의 임기는 3년으로 하며, 과학원장이 정하는 보수교육을 받은 경우 연임할 수 있다.

국립환경인력개발원의 평가위원 양성 교육 프로그램은 현재 180여명이 이수하였다.

다. 정도관리 수행 방법 및 현황

또한 그 동안 제공된 표준시료의 분석능력 확인에 중점을 둔 정도관리제도가 2005년 7월에 「환기법」이 개정되어 단순한 측정분석의 능력 평가에서 인력, 장비, 시설, 실험실 운영 및 자료의 검증 등 현장평가를 통한 종합적인 평가방법으로 개선되었다. 연차 별 숙련도 시험 실시 계획을 보면 다음 표 2-6과 같으며 연차적으로 시험 대상 항목을 확대 실시할 계획을 갖고 있다.

현재 환경관련 법에서 규제하는 항목 수는 수질분야 40항목, 대기 62, 먹는물 62, 실내공기질 10, 토양 16, 폐기물 28 등 239항목이 있으며 이 외에 유해화학물질 분야에 560개의 유독물 관찰물질 항목이 지정되어 있고 95개 항목에 대해 공정시험방법이 제정되었다. 향후 모든 환경규제 항목에 대하여 정도관리 대상 항목으로 점차 확대되어야 할 것이다.

분석능력 평가를 위한 표준시료는 가능한 한 공인받은 기관에서 생산한 표준물질을 구입하여 사용하고 있으며, 표준시료는 평가항목 군에 따라 각 항목을 1~6개 농도군으로 구분하여 표준시료를 제조하여 공급하고 있다.

숙련도 시험 평가는 숙련도 시료의 기준값과 참여자들의 분산정도를 고려한 Z-SCORE에 의한 평가를 사용하고 있으며, Z-SCORE에 의한 평가가 어려운 미생물 항목 등의 숙련도 실험은 오차율 등 그에 적합한 평가 방법을 적용하고 있다. 그러나 측정결과의 불확도 표시, 시험검사기관에서 사용하는 표준물질의 측정 소급성 문제, 정도관리시료 기준값의 인증 절차 등의 보완이 필요할 것으로 분석되었다.

<table>
<thead>
<tr>
<th>분야 수</th>
<th>'05</th>
<th>'06</th>
<th>'07</th>
<th>'08</th>
</tr>
</thead>
<tbody>
<tr>
<td>항목 수</td>
<td>대기 등 5개</td>
<td>실내공기질 등 7개</td>
<td>실내공기질, 폐기물 등 7개 분야</td>
<td>악취 등 7개 분야</td>
</tr>
<tr>
<td>27개</td>
<td>40개</td>
<td>50개</td>
<td>55개</td>
<td></td>
</tr>
</tbody>
</table>

속련도 시험 수행방법 및 시기는 「측정분석기관 정도관리의 방법 등에 관한 규
정」에따라 정도관리 계획을 수립하고 숙련도 시험용 표준시료의 제조 및 준비를 거쳐 각 시험기관에 송부하고 표준시료의 분석 결과의 접수 및 평가를 거쳐 현장 지도 및 결과 보고를 하는 절차를 갖고 있다.

라. 현황 분석 및 문제점

1) 정도관리 체제 분석 및 문제점

○ 시험기관 정도관리 평가기관 운영 기준

시험기관 정도관리 평가 주관기관인 국립환경과학원 내부 평가 조직에 대하여 적합성평가 인정 관련 국제 기준인 “적합성평가-인정기관에 대한 일반요구사항” ISO/IEC 17011에 따른 운영 기준의 마련이 필요할 것으로 판단된다.

○ 숙련도 시험

측정분석기관 정도관리의 방법 등에 관한 규정 제13조에 숙련도시험 실시에 대한 내용을 규정하고 있으나 운영기관인 국립환경과학원의 숙련도시험 운영 규정이 국제적 기준인 ISO/IEC Guide 43에 적합하게 규정되어 있지 않다. 또한 숙련도 시험을 위한 숙련도 기준시료 제공 기관에 대한 세부 규정 및 인정 규정 등이 국제 기준에 맞게 만들어져야 할 것으로 판단된다.

○ 숙련도시험 기준 시료

숙련도 시험 기준시료의 제공에 있어 기준시료의 기준값에 대한 측정 소급성 및 인증값 결정 절차 등이 정도관리 숙련도 관련 운영 지침에 보완되어야 할 것이 다.

○ 표준물질

시험기관에서 사용하는 인증표준물질, 표준물질의 기준에 대하여 국가측정표준 소급성이 유지될 수 있도록 규정이 명시 될 필요가 있다.

2) 정도관리 운영 현황 분석 및 문제점

○ 조직 및 인력

현재 환경 분야 시험·검사 기관의 정도관리 평가 주관기관은 국립환경과학원으
로 원내 환경측정기준부 내 정도관리 평가를 위한 관리 인력은 측정기준연구과 중
부분인력으로 운영되고 있다. 그 외 비 상임 기구로 정도관리심의회와 정도관리 기
승위원회를 두고 있고, 정도관리 평가사 제도가 도입되어 있다.

그러나, 정도관리의 체계적인 관리 위해서는 현재의 상근 담당 인력으로는 부
족하며 또한 숙련도 시험 운영위원회 등 전문위원회의 추가 설치가 필요하다.

○ 숙련도 시험 항목 및 연차 계획

숙련도 시험은 1983년에 BOD, COD 두 항목으로 시작하였으며 개별 법률이 독
립적으로 세분화됨에 따라 숙련도 시험 분야도 점차 세분화되었고 이에 따라 숙련
도 항목도 점차 확대되었다. 그 결과 관련 규정에 따라 2005년까지 5개 분야 27개
항목에 대해 숙련도 시험을 하였으며 이후 약취분야와 실내 공기질 분야를 추가하
여 총 7개 분야에 대해 숙련도 시험을 하고 있다. 소음·진동분야는 측정기에 의
한 측정분야이므로 기기의 교정으로 정확도를 유지할 수 있기 때문에 현재 소음·
진동 분야는 숙련도 시험에서 제외되어 있다. 그러나 향후 오염물질을 점차 확대
될 수록 숙련도 시험 항목도 확대되어야 할 것으로 판단되며 국립환경과학원에서는
연차별로 항목 수를 확대하는 계획을 세우고 있고, 2005년 27개 항목에서 2007년
현재 수행 중인 정도관리 항목은 50개에 이르러 2년 사이에 100%의 증가를 보이고
있다. 법적인 요구를 충족시키기 위해서는 규제 항목이 모두 포함될 수 있도록 정
도관리의 대상 항목수를 늘리아 하는 것도 중요하지만 제대로 된 정도관리 기준시
료를 조제 공급하기 위해서는 많은 시간과 노력이 필요하며품질체계가 갖추어지지
않고 예산의 증액이 부족한 현실에서 급격한 항목수의 확대는 정도관리의 부실을
 초래할 수밖에 없다. 따라서, 정도관리 예산의 충분한 확보와 지속적인 악취분야의
숙련도 시험의 개발이 필요한 실정이다.

나아가 숙련도 시험을 위한 기준 시료의 조제 및 공급 체계를 국제 기준에 맞
게 다시 수립하여야 할 필요가 있다. 숙련도 시험을 위한 국제 기준은 ISO/IEC Guide
43으로 두개의 규격으로 되어 있다. 43-1은 숙련도 시험 프로그램의 개발 및 운영
에 대한 것이고, 43-2는 시험 인정기구에 의한 숙련도 시험 프로그램의 선정 및 활
용이다.

현재의 정도관리 숙련도 시험 수준으로는 국제적 동등성을 확보할 수 있는 시
험방법으로 평가하기는 여러 가지 문제가 있음을 알 수 있다. 또한 숙련도 시험 주
관기관으로서의 국제적 상호인정 연결고리체계도 준비되어 있지 않아 정도관리 결과
의 국제적 신뢰도를 확보하기 위한 체계의 수립이 필요하다.

숙련도 시험용 기준 시료는 균질성과 안정성, 기준값의 불확도가 평가된 시료를
공급하여야 하며, 신뢰성 있는 정도관리 시료를 제조하기 위해서는 측정표준과 연
결고리를 형성할 수 있는 공신력 있는 숙련도 시험 공급기관을 평가하고 인정하는 종합적인 관리체계를 갖추어야 한다. 또한 이를 위한 안정적인 연구비를 지원할 수
있는 예산의 확보가 필요하다.

○ 정도관리 예산

국립환경과학원의 측정분석기관 정도관리 예산비목은 인건비, 숙련도 표준시료 구매, 정도관리 현장평가 행정비용(여비, 수당, 회의운영, 등), 정도관리 프로그램 유지보수 등이 있으며 이에 사용하는 예산 총액을 보면 2006년도 3억, 2007년도 6억, 2008년도에 8.9억 정도이다. 특히 숙련도 시험에 필요한 숙련도 시료 공급 및 평가 를 위한 예산을 보면 2007년도에 7개 분야 50개 항목에 대하여 2.9억의 예산이 계 획되어 있다. 본예산은 국제 기준에 맞는 숙련도 기준 시료의 개발 및 공급 계획을 갖추기 위해서는 상당히 부족한 예산으로 향후 예산 확충 계획을 수립해야 할 필요 가 있다.

3. 환경측정기기 형식승인 및 정도검사 제도

가. 법, 제도 현황

환경측정기기 형식승인 및 정도검사 제도와 관련된 법, 제도, 규정 등을 보면 다 음과 같다.

○ 환경측정기기의 형식승인

“환경분야 시험·검사 등에 관한 법률” 제9조에 측정기기의 정확성과 통일성을 기하기 위하여 환경부령이 정하는 측정기기를 제작 또는 수입하고자 하는 자는 당 해 측정기기의 구조·규격 및 성능 등에 대하여 환경부장관의 형식승인을 얻어야 한다고 규정되어 있다. 다만, 「산업표준화법」 제11조제1항 및 제13조 제1항의 규정 에 따라 한국산업규격표시의 인증을 받은 제품으로서 환경부장관이 제5항의 규정에 따른 기준에 적합하다고 인정하여 공고하는 측정기기의 경우에는 별도의 형식승인 을 받지 않아도 된다.

○ 환경측정기기의 정도검사

같은 법 제11조에 형식승인을 얻었거나 수입신고를 한 측정기기를 사용하는 자
는 형식승인한 내용대로 구조와 성능이 유지되는데의 여부에 대하여 환경부장관이 실시하는 정도검사를 받아야 한다고 규정되어 있으며, 다만, 「국가표준기본법」 제14조의 규정에 따라 지정된 국가정밀업무 전담기관의 교정을 받은 제품으로서 환경부장관이 제4항의 규정에 따른 기준에 적합하다고 인정하여 공고하는 측정기기의 경우에는 별도의 정도검사를 받지 않아도 된다.

○ 교정용품의 검정

같은 법 제12조에 측정기기에 사용하는 교정용 표준지 또는 표준가스 등 “교정용품(較正用品)”을 공급하거나 사용하는 자는 당해 교정용품에 대하여 환경부장관의 검정을 받아야 하며, 다만 「국가표준기본법」 제15조의 규정에 따라 표준물질의 인증을 받은 교정용품으로서 제3항의 규정에 따른 검정기준에 적합한 경우에는 별도의 검증을 받지 않아도 된다.

○ 검사대행자의 지정·위탁

같은 법 제13조에 환경부장관은 제11조 및 제12조의 규정에 따른 정도검사 및 검정에 관한 업무를 환경부장관이 지정하는 자(이하 “검사대행자”라 한다)에게 위탁할 수 있으며, 검사대행자로 지정을 받고자 하는 자는 대통령령에서 정하는 기술능력·시설 및 장비 등을 갖추어 환경부장관에게 지정신청을 하여야 한다.

○ 검사대행자의 지정 기준

같은 법 시행 규칙(안)에 검사 대행자의 지정 기준을 정하고 있으며, 기술능력으로 기술자의 해당분야 기사 및 기능사 자격증 소지자로 기준을 정하고 있고 해당 분야 시설 및 장비 기준을 정하고 있다.

○ 환경측정기기 형식승인·정도검사 시험 방법

「환경측정기기 형식승인·정도검사 등에 관한 고시」에서 환경측정기기 형식승인·정도검사의 시험 방법과 기준 및 검정용품의 검정 내용, 방법 및 유효기간 등에 대해 규정하고 있다. 각 환경측정기기에서 당해 오염물질을 측정하기에 적합한 구조와 일정한 수준 이상의 성능을 유지할 수 있는 성능 등에 대한 기준과 검사 방법 등을 정하고 있다.

○ 환경측정기기 검사기관 사후관리 운영

환경측정기 검사기관 사후관리 운영 규정(국립환경과학원 예규 제 390, 2006)에
서 환경측정기기 검사기관의 사후관리 운영 규정을 정하고 있다.

검사대행자에 대한 운영실태 조사는 정기 및 특별조사로 구분하며, 정기조사는 모든 검사대행자에 대하여 매 2년마다 실시하고 특별조사는 검사대행과 관련된 민원이 있을 때, 환경부장관, 국립환경과학원장이 필요하다고 인정할 때 등에 실시하는 것으로 되어있다. 사후관리 방법은 현지평가위원회를 구성하고 운영 실태를 조사하기 위하여 현지평가를 실시한다.

현지평가위원회의 구성은 국립환경과학원 환경측정기준부장을 위원장으로 하여 국립환경과학원 내 각 분야(대기환경, 배출시설, 수질환경, 실험환경, 먹는물, 토양지하수, 자동차) 전문가 7인 이내로 구성한다. 위원장은 대상기관별 현지평가계획을 수립하고, 평가반장을 임명하여 현지 평가를 실시한다. 현지평가는 현장보고, 현장순회, 항목별평가, 평가결과의 정리 등의 내용을 포함하며 다음과 같은 사항을 평가한다.

① 검사기준 및 성능시험방법의 적정성여부
② 인력 및 시설, 장비 등의 확보 및 적정성여부.
③ 검사자료의 작성 및 성적서 발급의 적법성
④ 계량법에 의한 검사기기 및 검·교정 이행 여부
⑤ 기타관련 자료의 보관 및 관리

나. 조직, 인력 등 현황

환경측정기기 형식승인·정도검사 평가 주관기관은 국립환경과학원으로 원내 환경측정기준부에서 본 업무를 총괄하고 있다. 환경측정기준부 내 정도검사를 위한 관리 인력은 측정기준연구과의 인력으로 운영되고 있으며 검사기관의 사후관리를 위한 평가위원회를 각 분야별로 7인 정도의 위원으로 구성하고 있다.

환경분야 시험·검사 등에 관한 법률 시행규칙(안)에 규정되어 있는 형식승인을 받아야하는 환경측정기기는 총 7개 분야 27개 측정기기 종류로서 자동차(8), 대기(4), 수질(8), 소음·진동(2), 토양(1), 먹는 물(2), 실내공기질(2) 분야가 있다.

검사 대행기관은 현재 8개 기관으로 각 분야 별 시험항목을 지정받고 있으며, 환경관리공단, 산업기술시험원, 한국표준과학연구원, 교통안전공단, (주)리가스부설 가스분석과학연구소, 한국수자원공사, 서울시 상수도연구소 및 부산시 수질연구소에서 검사 대행 업무를 수행하고 있다. 다음 표 2-7에 2007년 8월말 기준으로 분야별 환경측정기기의 형식승인 정도검사 대행기관 및 교정용품 검정대행기관 지정현황을 보여 주고 있다.

다. 현황 분석 및 문제점

□ 검사대행기관 지정 제도

검사 대행기관 지정에 대한 지정/승인/관리 등의 업무 체계를 살펴보면, 지정기준에 있어 장비와 인력 기준 만을 제시하고 있다.

검사기관의 적합성 평가 국제 기준인 ISO 17020 에서는 인력 기준에 있어 현행의 환경 관련 제도처럼 자격 요건이 구체적으로 명시되어 있지 않고 해당 당사자가 업무의 양이나 내용을 가지고 판단하여 동 업무수행자를 기술 인력으로 인정기구에 등록하도록 되어 있다. 또한 기술 인력은 동 업무의 수행을 위한 기술적인 지식과 경험이 갖추고, 적절한 교육훈련이 되어 있어야 한다. 인정기구에서는 상기의 사항에 대해서 실제업무수행능력을 평가하며 자격을 인정받은 기술 인력 외에는 업무를 수행할 수 없도록 되어 있다. 또한 시설, 장비는 당사자가 업무수행에 필요/불필요를 판단하여 확보하고 업무에 적합하게 운영되고 있음을 인정기구로부터 인정받아야하며 인정기구에서 기준을 정해줄 수도 있다.

현재 검사 기관 지정체계에서 장비나 인력 면에서 법적, 제도적 분야에 해당하는 일반 요건의 관리 체계는 일부 갖추어져 있다고 판단할 수 있으나 품질 시스템의 사후관리 등 품질요건항목은 불충분한 상태이다. 따라서 검사기관은 법에 정한 장비, 인력등 기본적인 지정 및 등록요건은 갖추어야겠지만 국제적인 추세에 따라 장비, 인력의 운영 및 기술적 측면에서 국제적인 품질체계에 대한 기준을 정할 필요가 있다.
환경측정기기 형식승인·정도검사 방법

○ 환경측정기기 형식승인 성능시험 기준 강화
미국, 유럽 등의 환경측정기기 형식승인 조건은 환경조건(온도, 습도, 진동 등)에 대한 내성 시험 및 장기간에 걸친 현장시험 등이 적용되고 있으나 국내의 경우 측정기의 기본 성능시험 항목만을 검사하고 있어 실제 측정기를 현장에 설치하여 사용할 때 현장 환경조건에 따라 문제점이 발생하는 경우가 있다. 따라서 국내 환경 측정기기 형식승인 시험 기준을 강화할 필요가 있다.

○ 측정 장비 형식승인, 정도검사 대상 확대
부부 대기 및 수질분야 자동측정기 등을 대상에 추가 포함할 필요가 있다. 총 유기탄소자동측정기 등은 널리 사용되고 있으나 현재 형식승인 대상에서 제외되어 있다.

○ 새로운 측정기술에 대한 유효성 검증 절차 강화 필요성
현재 새로운 측정방법에 의한 측정기가 도입되었을 때 대체성능시험방법에 의한 측정기 성능시험방법이 적용되고 있으나 대체성능시험방법에 대한 유효성 검토 과정이 미흡하므로 미국 EPA의 ETV(Environmental technology verification) 제도 등을 참고하여 시험 표준안 제정 절차에 따라 검증 절차를 강화할 필요가 있다.
새로운 측정방법에 의한 측정기술에 대하여 시험방법 및 기준의 제정에 필요한 표준화 사업에서의 투자가 필요하다.

○ 환경측정기기 정도검사 제도의 개선
현재의 환경측정기기 정도검사 시험방법의 항목은 상시 모니터링 장비의 성능 안정성 시험을 주로 하고 있으며 측정기기의 측정값 정확도 유지를 위한 정도관리 부분의 시험항목, 절차 등이 제외되어 있으므로 환경측정기기 정도관리 제도에서의 측정값 정확성 관리를 위한 시험절차 도입이 필요하다.
교정 대상 측정장비(굴뚝유량계, 가스측정장치 등)에 대하여 기준의 정도검사 대상 장비와 분리하여 시험방법을 제정하는 것에 대한 검토가 필요하고, 현재의 정도검사 시험방법으로는 측정기의 정확도 유지에 문제가 있으므로, 별도 교정을 받도록 하는 방안의 도입도 필요하다.
4. 환경측정 표준화 제도

가. 환경오염공정시험방법

「환경분야 시험·검사 등에 관한 법률」에 환경오염공정시험기준의 제정 및 적용에 대하여 정하고 있다(제6조 내지 제8조). 이 법률에 따라 「대기환경보전법」등 9개 법률에 규정되어 있는 환경오염 물질, 환경오염 상태 및 유해성 등의 측정·분석·평가에 관한 사항을 통합 관리하도록 되어 있다.

또한, 환경부장관은 환경오염물질, 환경오염상태 및 유해성 등에 대한 측정·분석·평가 등의 통일성을 기하기 위하여 대기오염물질, 소음·진동, 실내공간오염물질 및 수질오염물질 등 10개 분야에 대한 환경오염공정시험기준을 정하여 고시하도록 하고, 환경 분야 관계 법령이 정하는 바에 따라 환경오염물을 기록·제출·공표하거나 행정처분의 근거로 사용하고자 하는 경우에는 환경오염공정시험기준을 적용하도록 하고 있다.

분야별 시험·검사가 통합·관리됨에 따라 효율성이 향상되고, 환경오염공정시험기준이 고시되어 행정처분 등의 근거로 사용될 수 있도록 측정결과에 대한 신뢰도가 향상될 것이다. 환경오염공정시험기준은 같은 법 제6조에서 정하고 있으며 내용은 다음과 같다.

```
<환경분야 시험·검사 등에 관한 법률>
제6조 (환경오염공정시험기준) ①환경부장관은 환경오염물질, 환경오염상태, 유해성 등의 측정·분석·평가 등의 통일성 및 정확성을 기하기 위하여 다음 각 호의 분야에 대한 환경오염공정시험기준(이하 "공정시험기준"이라 한다)을 정하여 고시하여야 한다. 이 경우 「산업표준화법」 제12조에 따른 한국산업표준이 고시되어 있는 경우에는 대통령령이 정하는 특별한 사유가 없는 한 그 규격에 따른다.
1. 「대기환경보전법」 제2조제1호의 대기오염물질 및 제1호의2의 기후·생태계변화 유발물질
2. 「소음·진동규제법」 제2조제1호의 소음 및 제2호의 진동
3. 「다중이용시설 등의 실내공기질관리법」 제2조제3호의 오염물질
4. 「악취방지법」 제2조제1호의 악취
5. 「수질 및 수생태계 보전에 관한 법률」 제2조제4호의 폐수 및 같은 조 제7호의 수질오염물질
```
6. 「먹는물관리법」 제3조제1호의 먹는물
7. 「폐기물관리법」 제2조제1호의 폐기물
8. 「유해화학물질 관리법」 제2조제7호의 유해화학물질
9. 「토양환경보전법」 제2조제2호의 토양오염물질
10. 「잔류성유기오염물질 관리법」 제2조제1호의 잔류성유기오염물질
②환경부장관은 공정시험기준을 제정 또는 개정하고자 하는 경우에는 관계중앙 행정기관의 장과 협의하여야 한다.
③공정시험기준의 제정 또는 개정 절차 등에 관하여 필요한 사항은 대통령령으로 정한다.

□ 공정시험방법 제·개정 현황 분석

현재 환경관련법상 명시되어 있는 환경 분야별 환경오염물질 항목은 유해화학물질을 제외하고 239개이며, 환경오염공정시험방법으로 제정되어 있는 오염물질 항목은 239개이지만 환경관련법상 오염물질이지만 시험방법이 없는 환경오염물질이 있다.

각 분야별 규제항목과 환경오염공정시험방법으로 제정되어 있는 항목을 보면 다음 표 2-8과 같다.

표 2-8. 환경오염공정시험방법 제정 현황

<table>
<thead>
<tr>
<th>항목</th>
<th>계</th>
<th>대기</th>
<th>수질</th>
<th>먹는물</th>
<th>소음·진동</th>
<th>실내 공기질</th>
<th>토양</th>
<th>폐기물</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준 항목 수</td>
<td>239</td>
<td>62</td>
<td>40</td>
<td>62</td>
<td>8</td>
<td>10</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>시험 항목 수</td>
<td>239</td>
<td>49</td>
<td>45</td>
<td>68</td>
<td>9</td>
<td>10</td>
<td>22</td>
<td>17</td>
</tr>
</tbody>
</table>

○ 환경오염공정시험방법 제·개정 절차

환경오염공정시험방법 개정절차에 관한 업무처리지침(환경부 예규 제75호, '92.2.6 제정)에 따라 제·개정 절차를 수행하며, 환경오염공정시험방법 심의위원회 운영규정(국립환경연구원 예규 제210호, '95.7.18 제정)에 따라 제·개정안 심의를 실시하여 규정 제정을 한다. 다음은 환경오염공정시험방법 제·개정 절차를 표로 보여주고 있다.
제·개정 요청 환경부, 위원회, 소위원회

제·개정 초안 작성 국립환경연구원 또는 용역으로 작성

소위원회 심의 소위원장을 포함, 8명 이내로 구성

위치회 심의 위원장을 포함, 15인 이내로 구성

제·개정 초안 검토 환경부 사업부서

제·개정 안 심의 중앙환경보전자문위원회
(해당 분과위원회)

고시 환경부 장관

□ 공정시험방법 현황 분석 및 검토

환경오염공정시험방법의 작성 체계 및 내용이 국제기준에 맞는 표준체계로 구성되어 지고, 공정시험방법에 의한 분석결과의 국제적 동등성 확보와 과학적 타당성 확보를 통해 공정시험방법의 국가 표준규격으로서의 위상을 확보할 필요가 있다.

현재의 분야별 환경오염공정시험방법은 그 시술체계가 상이한 실정이다. 이의 통일화를 위하여 국립환경과학원에서는 표준화된 지침을 만들고 시험방법을 점차 이 지침에 따라 개정하고 있으나 모든 시험방법이 지침을 따르는 것이 아니므로 지속적으로 작성체계, 단위체계, 분류체계, 용어 등을 표준화 할 필요하다.

또한 환경오염공정시험방법 중 실제로 검증되지 않고 줄지어 불분명한 시험방법이 존재하여 현장 활용도가 떨어지는 경우가 발생하고 있다. 1970년대 중반부터 시험방법을 재정합으로써 범용적으로 사용할 수 있는 낮은 수준의 환경오염공정시험방법이 존재하여 최단 분석기기에 시험방법의 도입이 신속하지 못한 경우가 발생하고 있다. 그리고 새로운 측정기술의 도입 시 측정방법의 유 효성 검증 체계가 확립되어 있지 않아 새로운 측정기술의 시장 진입이 어려운 문제점이 있다.

이러한 문제점을 해결하여 환경분야 국가표준으로서의 위상을 확고히 하기 위해서는 다음과 같은 내용이 추진되어야 할 것이다.

○ 환경오염공정시험방법 제·개정 표준화지침에 따른 지속적인 제·개정 마련
○ 사용 중인 환경오염공정시험방법 검증에 의한 준수, 폐기 여부 검토
○ 국제적 기준, QA/QC가 포함된 환경오염공정시험방법 제·개정으로 시험법의 국내·국제 활용도 증대
○ 분야별 미 제정 시험법 중 유해한 순서에 따른 환경오염물질 시험법 우선 제정
○ 첨단 분석기술, 선진 시험방법, 연구 중인 이론에 대해 시험방법 도입을 위한 확인과 검증 체계 확립
○ 해외 선진 측정분석법, 기 개발된 분석기기, 시험방법의 실제 확인과 검증
○ 시험법 제·개정 연구 환경화를 통해 분석기기, 분석기술의 국산화를 증진하고 환경 분야 시험검사에 관한 산업 육성 촉진
○ 정확하고 신뢰성 있는 시험법 확보로 시험법 관련 국제기구와 국제기준에 주도적으로 참여

국립환경과학원에서는 환경오염공정시험방법 제·개정 체계 확립을 위하여 환경오염공정시험방법 개선 연구를 추진 진행 중에 있다. 그러나, 유용한 시험방법의 제정에는 많은 연구비가 요구되므로 시험방법의 제·개정에 국제 기준과 유효성 검증 등의 절차를 적용하기 위해서는 연구비의 확대 투자가 필요할 것으로 판단된다. 때문에 충분한 기간과 예산 확보를 통해 단계적인 제·개정 절차를 추진할 것을 권한다.

나. 환경 분야 국가측정표준 소급성 체계

「환경분야 시험·검사 등에 관한 법률」제5조에 환경부장관은 시험·검사 등의 운영체계를 확립하고 이의 유지·발전을 위하여 환경오염 측정기술의 정밀도 및 정확도 향상을 위한 사업, 측정기기에 대한 국가측정표준에 관한 소급성(遡及性) 유지에 관한 사업을 추진토록 명시되어 있다.

환경측정 분야의 국가 측정표준 소급성 체계는 측정기기의 교정 등에 의한 국가 측정표준소급성 체계와 인증표준물질(CRM, Certified reference Material)에 의한 소급성 체계로 이루어진다. 특히 환경측정분석은 물질량을 측정하는 시험이 주를 이루고 있어 실험실에서 사용하는 표준시료 즉 인증표준물질의 측정표준소급성 체계 확립이 필요하다. 그러나 현재 환경 시험분석에 사용하는 표준시료에 대한 규정이 인증표준물질에 의한 소급성 체계 연결고리를 갖지 못하고 있는 상황이다.

예를 들어 대기환경을 측정하는 기기의 교정에서 중요한 요소로 작용하는 교정용 표준가스의 표준소급체계가 제도적으로 아직 확립되지 않다. 환경시험검사법에 의하면 환경측정기기의 교정에 사용하는 표준가스 등을 공급하거나 사용하는 자는 환경부장관의 검정을 받도록 되어 있다. 그러나 현재 운용되고 있는 법규에서는 국가

현재 환경측정기관 검사 대행기관 중 환경부 지정 표준가스 검정기관이 환경측정에 사용하는 표준가스를 검정하고 있으나 검정기관의 인정 기준에서 국가표준에의 소급성을 보증할 수 있도록 하기 위하여 국제적 수준의 숙련도 시험 참가 등을 명시하는 제도적 장치가 없다.

다음 그림 2-5는 환경 분야의 측정표준 소급성 체계와 국제적 인정기구와의 연결체계를 나타낸 것으로 국가 측정표준 및 국제적 인정기구와의 연결 고리가 확립되어 있지 않은 상태이다.

그림 2-5. 환경분야 측정 표준 및 시험 연결체계

다. 인증표준물질 생산 및 공급 체계

환경 분야의 측정, 분석, 시험 등에서 측정표준에의 소급성과 정확성을 확보하는 데 있어 인증표준물질은 매우 중요한 요소이다. 따라서 국가 표준에의 소급성 확립이라는 측면에서 인증표준물질 전달체계를 구축하는 것은 매우 중요한 분야이다.
그러나 현재 환경 분야 정밀관리의 문제점은 국가표준에의 소급성이 보장되는 인증 표준물질을 사용하도록 분명하게 명시되어 있지 않는데 있다. 따라서 환경 분야의 각 측정항목 별로 필요한 표준물질에 대하여 국제적 연결고리를 갖는 인증표준물질 전달 체계를 확립하는 것이 필요하다. 이를 위해 국내외적으로 인증표준물질 생산기관에 대한 조사를 수행하여 환경 분야 측정분석시험기관들이 이를 활용할 수 있도록 하는 기반을 구축할 필요가 있다. 또한 표준물질의 사용주기 등과 같이 인증표준물질을 사용하는 기준이 되는 내용이 실려 있는 사용 표준 절차서를 개발하고 환경 분야에 필요한 인증표준물질을 전문적으로 연구개발하기 위한 장기 계획이 필요하다.

국제적으로 합의된 표준물질(Reference Materials : RM)의 정의는 국제표준화기구 (ISO) 산하 표준물질위원회(ISO/REMCO)에서 발행한 ISO 시리즈 30 규격에 다음과 같이 적혀 있다. “표준물질은 측정기기의 교정, 측정방법의 평가 또는 재료에 값을 부여하는 것에 사용하기 위하여 하나 이상의 특성값이 충분히 균일하고 적절하게 확정되어 있는 재료 또는 물질을 말한다.”

인증표준물질(Certified Reference Material : CRM)은 특성치를 표현하는 단위의 정확한 실현을 위하여 소급성이 확립된 방법에 따라 하나 또는 그 이상의 특성치를 인증한 인증기관에서 인증표준물질로서 각 인증치에는 정해진 신뢰도 수준에서 불확도가 표시되어 있다. 따라서 인증표준물질은 시험·분석 데이터의 신뢰성과 보편성을 높이고 국가 표준에의 소급성을 확보하는데 중요한 역할을 한다. 화학 및 재료물성의 계측에 있어서 표준물질의 역할은 질량측정에 있어서 분동과 거의 비슷하다. 표준물질과 관련된 ISO/IEC 지침은 다음과 같다.

- ISO/IEC Guide 30(표준물질 관련 용어 및 정의)
- ISO/IEC Guide 31(표준물질 인정서의 내용)
- ISO/IEC Guide 32(화학분석에서 교정 및 인증표준물질의 활용)
- ISO/IEC Guide 33(인정 표준물질의 사용방법)
- ISO/IEC Guide 34(표준물질 생산방법의 품질시스템 원칙)
- ISO/IEC Guide 35(표준물질의 인증 - 일반적 및 통계학적 원리)

5. REACH 대응 체계 현황

REACH(Registration, Evaluation, Authorisation and Restriction of Chemicals)는 EU 역내에서 연간 1톤 이상 제조, 수입되는 모든 화학물질의 유해성을 평가하여 등록 후 사용하도록 하는 제도로 국내에서는 신화학물질관리제도라고도 한다. 이 제도는 EU의 기존 40여개 화학물질관련법령을 통합하여 단일화한 것으로 2007년 7월에 발효되었으며 적용 대상이 방대하여 역대 국제환경규제 중 가장 강력한 환경규제로 부상하고 있다.

REACH 등록대상은 화학제품 자체는 물론 전자제품, 자동차, 생활용품 등의 화학제품 안에 들어있는 화학물질도 해당되어 총 3만여 종에 이르 것으로 예상되고 있다. REACH 관련 업무는 EU의 경우 유럽화학물질청(ECA: European Chemical Agency, 2008년 신설예정)에서 담당하게 되며 우리나라의 대응부서는 (Competent Authority)는 환경부로 지정되어 있다. 따라서 환경부에서는 REACH 대응센터를 설립하여 REACH 제도의 파악, REACH 대응 산업계 요구사항 파악 및 지원방안 마련, 산업계 사전등록 및 등록 지원체계 마련, 요소기술(기술서류 및 화학물질 안전성정보서 작성법, 유해성 예측프로그램 개발 등) 및 인프라확충개선(국내 GLP기관 지원, 육성 등), 국내 화학물질관리제도 개편을 위한 법, 제도 및 조직의 정비 등 대응을 서두르고 있다.

REACH 등록을 위한 자료(데이터)는 OECD의 우수실험실 운영기준을 갖춘 GLP(Good Laboratory Practices)기관에서 측정한 결과만이 인정되므로 REACH 대응을 위한 GLP 기관의 양적 질적 육성이 매우 중요하다 하겠다. 현재, 우리나라의 경우 GLP기관의 인정 활동은 대상물질에 따라 담당 기관이 다르며, 그림 2-6에서 보는 바와 같이 일반 화학물질의 경우 국립환경과학연구원(환경부), 농약의 경우 농촌진흥청(농림부)이 그리고 의약품의 경우 의약품안전국 국립독성연구소(보건복지
부 식약청)에서 담당하고 있다. GLP기관에서 생산된 시험데이터는 EU내 대리인을 통하여 EU화학물질등록에 등록을 하도록 되어 있다.

국내 GLP기관의 수는 국립환경과학원에서 지정한 8개 기관을 포함하여 총 18개 기관이 있으며 화학물질분야 8개 기관에서 생산 가능한 REACH 시험항목은 22개에 불과하여 현재로서는 상당부분 외국 GLP로의 시험의뢰가 불가피한 상황이다. 외국에 시험을 의뢰하는 경우 고액의 시험비용이 해외로 유출되는 문제와 더불어 국내 기업의 기밀이 유출될 가능성이 있어 국가적 차원에서의 GLP 육성은 시급한 과제 할 수 있다.

그림 2-6. REACH 대응을 위한 국내 GLP 인정체계 및 화학물질등록 흐름도

6. 교육, 인력 현황

환경측정 전문 인력 양성은 체계 운영과 국제환경변화의 대응에 매우 중요한 요소이며, 환경측정은 법의 집행이 수반되는 규제분야이므로 주로 공무원이 담당하고 있으며, 공무원들의 교육훈련은 공무원교육훈련법 시행령 제7조, 제8조, 제17조 및 중앙인사회원회의 매년도 공무원 교육훈련 인사지침에 따라서 기본교육 및 전문교육으로 구분되며, 민간영역의 측정대행업체를 포함한 환경산업체 및 환경기초시설
에 종사하는 기술 인력에 대한 법정교육은 환기법, 토양환경보전법, 폐기물관리법, 하수도법, 오염수법, 등 관련 개별법에 근거하여 국립환경인력개발원에서 14억원 (2007년도)의 예산으로 실시하고 있고 민간업체 중 KOLAS 인증을 받은 측정대행 업체의 경우 인증 유지를 위하여 건재사시험연구원과 화학시험연구원에서 해당 분야 교육을 받고 있다. 한국표준과학연구원에서도 정밀측정교육 프로그램 내에서 환경측정분야의 교육훈련을 실시하고 있다. 최신기술정보는 관련 학회인 실내공기질학회, 대기환경학회, 환경공학회 등을 통하여 최신기술동향을 파악할 수도 있다.

□ 국립환경인력개발원

공무원과 민간인을 대상으로 기본교육, 전문교육, 국제환경교육, 법정교육, 수탁교육, 특별교육 프로그램을 실시하고 있으며 2007년도에는 10,264명(공무원 6,571명, 민간인 3,693명)을 목표로 교육을 실시하고 있다.

이 중 환경분야 측정분석과 직접적인 관련이 있는 교육과정은 2007년도에 총 13개 과정으로 연간 총 21회의 교육이 있고 교육 예상인원은 850여명이다.

교과과정 중 환경측정기술요원과정 정도관리 교과목을 강화하고 있으며 실질적 분석능력을 향상하기 위해 실습교육을 강화하기 위한 계획을 추진하고 있다.

그러나 인정제도 관련 인력에 대한 교육과정으로 정도관리 심사관, 시험기관 품질책임자, 기술책임자에 대한 교육과정의 편성이 부족한 실정으로 외부기관, 또는 외부강사를 통한 국제기준의 품질관리 교육 과정을 좀 더 편성할 필요가 있다.

표 2-9. 국립환경인력개발원의 측정분석 교육과정 현황(2007년)

<table>
<thead>
<tr>
<th>과정명</th>
<th>총 회수/회(년)</th>
<th>총 예상 수료인원/명(년)</th>
</tr>
</thead>
<tbody>
<tr>
<td>대기중 악취 및 VOCs 측정검사 과정</td>
<td>총 1회</td>
<td>36명</td>
</tr>
<tr>
<td>대기측정검사 과정</td>
<td>총 1회</td>
<td>36명</td>
</tr>
<tr>
<td>먹는물 수질 검사 과정</td>
<td>총 2회</td>
<td>55명</td>
</tr>
<tr>
<td>비량유기물 측정검사 과정</td>
<td>총 1회</td>
<td>18명</td>
</tr>
<tr>
<td>소음·진동측정검사 과정</td>
<td>총 1회</td>
<td>39명</td>
</tr>
<tr>
<td>수질측정검사과정</td>
<td>총 2회</td>
<td>46명</td>
</tr>
<tr>
<td>자동차공해측정검사과정</td>
<td>총 2회</td>
<td>79명</td>
</tr>
<tr>
<td>특정대기유해물질측정검사과정</td>
<td>총 1회</td>
<td>44명</td>
</tr>
<tr>
<td>폐기물 측정 심사과정</td>
<td>총 1회</td>
<td>16명</td>
</tr>
<tr>
<td>기기분석이론과정</td>
<td>총 1회</td>
<td>30명</td>
</tr>
<tr>
<td>대기측정기술요원과정</td>
<td>총 3회</td>
<td>36명</td>
</tr>
<tr>
<td>수질측정기술요원과정</td>
<td>총 4회</td>
<td>30명</td>
</tr>
<tr>
<td>환경 분석 정도관리과정</td>
<td>총 1회</td>
<td>30명</td>
</tr>
</tbody>
</table>
한국표준과학연구원

정밀측정교육 전문가 과정에 화학분석의 불확도 평가, 가스분석기술, 방사능 측정 과정을 포함하고 기술자 과정에 환경측정기술을 포함하고 있다.

한국화학시험연구원

교과과정으로는 사이버교육, KS A ISO/IEC 17025 운영실무(시험, 교정기관), KS A 17020 운영실무(검사기관) 평가사, 측정불확도 추정 교육과정을 운영하고 있다.

한국건자재 시험연구원

KOLAS 교육, 건설기술자전문교육, 기술교육, PL 교육을 실시하고 있으며, 측정 대행업체 요원들이 KOLAS 유지를 위하여 품질체계와 불확도 평가 분야에서 교육을 이수하고 있다.

환경측정 분석사 제도

환경분야 기술인력은 첫째, 환경기술자격증제도(참조 측정대행업 기술인력 기준) 둘째, 학력 및 경력(기기정도검사 및 표준물질 검정 대행기관, 각종 평가 관련 인력) 셋째, 환경측정 분석사제도(우대제도) 등 크게 3가지로 구분하여 운영되고 있으며 앞에 기술한 바와 같이 “환경 분야 시험검사 등에 관한 법률”에서 형식승인 정도 검사 대행기관 인력 및 측정강비 기준을 규정하여 환경부장관이 지정하고 등록을 허가하도록 하고 있다. 이 법에서는 또한 인력의 기준, 교육, 평가 와 더불어 측정분석업무의 전문성을 향상시키기 위해 환경측정분석사 제도를 신설하여 법적 제도적 및 법적 절차를 하고 있다. 측정분석의 신뢰성 제고를 위하여 다른 나라에서도 비슷한 제도가 실시되고 있는데 미국에서는 환경분석화학자(Environmental Analytical Chemist) 및 환경분석기술자(Environmental Analytical Technician) 제도를, 일본에서는 환경측정분석사 제도를 이미 실시하고 있다. 법에 정한 환경측정분석사의 시험기관은 국립환경인력개발원이 교육기관은 국립환경인력개발원 및 환경부 장관이 지정하는 기관으로 교육의 기본방향, 교육수요조사의결과 및 수요의 장기 추세, 교육과정의 실시계획, 교육과정별 교육의 목표 과목 기간 인원, 교재편찬계획, 평가방법등을
정해 환경부장관에게 보고하도록 되어있다.

환경측정 분석사 제도 입법예고에 따르면, 환경측정분석사 검정 응시자격은 기사자격취득자 또는 4년제 대학졸업자로서 졸업 후 2년 이상 실무 종사자 등으로 하고, 검정분야는 우선 수요가 높은 대기 및 수질분야를 실시하고 향후 수요를 고려하여 폐기물 등 기타 분야로 확대할 계획이다. 검정방법은 제1차 필기시험과 제2차 실기시험으로 구분하여 실시하되, 실기시험에 중점을 두고 있으며, 평균 70점 이상 득점하여야 검정에 합격되도록 하도록 정하고 있다. 환경측정분석사 제도의 응시자격, 시험과목, 교육과정은 아래의 내용과 같다.

측정대행업 등록기준에 환경측정분석사를 고용토록 의무화할 경우, 새로운 시장진입 규제가 되므로 시행 초기에는 국립환경과학원, 시·도 보건환경연구원, 환경관리 공단 등 공공기관에 환경측정 분석사를 우대하도록 권장사항으로 추진하고 향후 경제적 여건을 고려하고 업계의 의견수렴 등을 거쳐 측정대행업체 등의 시험·검사 기관에서 환경측정분석사를 의무 고용하도록 하는 방안이 필요하다.

무엇보다도 장비, 시설, 인력교육의 분야에 있어서도 환경분야 시험검사의 품질 체계를 확립하는 방향으로 관리 및 교육이 이루어져야 기기정도관리 및 실험실측정정도관리제도가 실효성 있게 운영될 수 있고 실제 시험분석결과의 신뢰성이 향상될 것이다.
제 3 절 국내 환경분야 현황 종합

지금까지 살펴본 것처럼 현재 시행되고 있는 환경 분야의 시험·검사 기관 관리 제도(정도관리, 정도검사, 교정용품 검정)등은 과거 보다 국제 기준에 맞춰 변화해 가는 과정에 있으나 국제 수준에 부합하기에는 아직도 부족한 면이 있으며 앞으로 보완하여야 할 부분이 상당히 있다. 환경 분야 시험·검사 결과의 신뢰도에 대한 논란이 일어날 때 이를 불식할 수 있을 정도로 국민들에게 확실한 믿음을 제공할 수 있고 국제적 동등성을 확보할 수 있는 국제 기준에 의한 시험기관 정도관리 체계의 확립이 필요한 시점이다.

환경 분야 시험검사 기관 정도관리 체계는 “환경기술개발 및 지원에 관한 법률”과 “환경분야 시험검사에 관한 법률”이 근거 법 역할을 하고 있으나 정도관리 및 정도검사 제도를 선정하고 시험기관 인정제도를 도입하기 위해서는 전체적으로 법령을 정비하여 일관된 법체계가 이루어지도록 하는 것이 필요하다. 또한 환경분야의 특성상 인정제도를 필수규정으로 운용하여야 하므로 이에 대비하기 위해서도 법령 내용을 정비하여 공인시험·검사기관의 성적서 만을 인정할 수 있도록 하고 부처별 인정사항이 서로 인정되어 통용될 수 있도록 일관된 체제로 만드는 것이 필요하다.

환경부의 정도관리 제도를 보면 현재 환경관련 법에서 규제하는 항목 수는 수질 분야 40항목, 대기 62, 먹는물 62, 실내공기질 10, 토양 17, 폐기물 28, 소음·진동 8 등 239 항목이 있으며 이 외에 유해화학물질 분야에 560개의 유독물 관할물질 항목이 지정되어 있고, 95개 항목의 공정시험방법이 제정되어있다. 환경 관련법에서 규제하는 항목들에 대하여 원칙적으로 정도관리의 대상에 포함되어야 한다. 환경과학원에서는 연차별로 그 항목 수를 확대하는 계획을 세우고 있으며, 2005년 27개 항목에서 2007년 현재 수행 중인 정도관리 항목은 50개에 이르러 2년 사이에 100%의 증가를 보이고 있다. 법적인 요구를 충족시키기 위해서는 규제 항목이 모두 포함될 수 있도록 정도관리의 대상 항목수를 늘려야 하는 것도 중요하지만 제대로 된 정도관리 기준시료를 조제 공급하기 위해서는 많은 시간과 노력이 필요하다는 것과 품질체계가 갖추어지지 않고 예산의 증액이 미미한 현실에서 급격한 항목수의 확대는 정도관리의 부실을 초래할 수밖에 없다. 정도관리 예산의 부족뿐만 아니라 예산의 집행 방법에 있어서도 외부용역 형태로 집행하도록 행정적인 절차를 정하고 있어 지속적이고 안정적인 숙련도 시료의 개발이 어려운 설정이다. 또한 숙련도 시험을 위한 기준 시료의 조제 및 공급 체계를 국제 기준에 맞게 다시 수립하여야 할 필요가
있다. 숙련도 시험을 위한 국제 기준은 ISO/IEC Guide 43으로 두개의 규격으로 되어 있다. 43-1은 숙련도 시험 프로그램의 개발 및 운영에 대한 것이고, 43-2는 시험 인정기준에 의한 숙련도 시험 프로그램의 선정 및 활용이다. 현재의 정도관리 숙련도 시험 수준으로는 국제적 동등성을 확보할 수 있는 시험방법으로 평가하기는 여러 가지 문제가 있을 수 있다. 또한 숙련도 시험 주관기관으로서의 국제적 상호인정 연결고리체계도 준비되어 있지 않아 정도관리 결과의 국제적 신뢰도를 확보하기 위한 체계의 수립이 필요하다.

환경분야의 시험분석결과나 측정대행업소의 신뢰도를 증진시키기 위해서는 ISO 17025에 따른 품질체계의 구축과 국가표준에의 소급 체계 확립이 필요하며, 측정대행업체에 대해서도 수준 향상과 측정의 신뢰성 확보를 위한 정부의 지원대책과 자체적인 노력이 필요하다. 측정대행업의 경우에는 추가로 영세성을 벗어나서 대형화를 유도하여 국제적 경쟁력을 키우도록 하는 것이 바람직하다. 장기적으로는 정부나 공공기관의 시험·검사 업무를 분담할 수 있게 함으로써 작은 정부를 지향하는 정부 시책 방향에도 부합할 수 있을 것이다. 실제로 영국의 경우는 시험기관 인정기구인 UKAS를 구축하면서 정부의 측정분석 관련 시험·검사 업무를 상당부분 UKAS의 공인을 받은 민간 시험·검사기관에 위탁하고 있다. 이러한 체제로 바꾸기 위해서는 측정 대행업체의 체제 정비와 함께 대형화를 도모하면서 신뢰도를 보증할 수 있는 체제의 도입이 요구된다. 동시에 측정대행업체들에게 문호를 개방하여 대기와 수질 이외의 분야에서도 능력을 갖추면 서비스를 제공할 수 있도록 하는 것이 바람직한 것으로 판단된다.

환경분야 시험검사는 일반 공업제품에 대한 시험검사와 달리 규제적 차원의 특수성을 갖고 채취과정에서 따라 측정결과가 크게 달라지므로 시료채취 및 측정절차를 표준화하며, 표준의 전달과 보급에 있어 절대적으로 필요한 인증표준물질의 사용을 확대해야 할 것이다.

이와 더불어 인력의 운영이나 교육, 중장기 계획에 있어서 새로운 분야나 품질의 측정체계에 증점을 두어야할 필요성이 있으며 국제적인 협력관계에 있어서도 환경분야에 많은 정책과 협약들이 진행되고 있으므로 환경 시험검사 분야에서 협력하여 선진화 할 수 있는 일을 적극적으로 발굴하여 활성화해야 할 것이다.
제 3 장 환경시험․검사 선진국 현황분석

제 1 절 미국의 환경시험․검사 운영 체계

1. 미국의 환경측정분야 소급성 확보체계

NACLA(National Cooperation for Laboratory Accreditation, 국립시험소인정협력 기구)는 민간부문, 비영리, 자발적 조직의 성격을 띠고 1998년에 발족되었으며 그 설립목적은 미국시험소인정을 주관하기 위한 기구로서 시험 및 교정 시험소들의 능력을 인지하기 위한 시스템개발과 그들의 시험 및 교정 성적서의 세계적인 수락을 촉진하기 위함이다.

서비스에 의존하는 미국 수출주체, 기업, 그리고 조직들과 관련된 인정을 부여받은 시험소들은 조정기구의 부재로 인해 불필요한 중복과 서로 모순되는 인정표준들과 필수요건들로 인해 비효율성을 초래해 왔다. NIST(National Institute of standards and Technology, 국립표준기술연구원)는 2000년 5월 19일자 연방등록(Federal Register)에 제안하여 2000년 7월 13일 NIST와 NACLA는 양해각서(Memorandum of Understanding, MOU)를 체결하였다. 두 기관은 미국 내 시험 및 교정 시험소들을 평가하고 인정하는 100개 이상의 민간부문과 정부프로그램을 조정하는 역할을 묻어보고 NIST는 미국과 세계 다른 지역들과의 상호 인지 협약들이 NACLA가 인정하고 있는 시험소 인정 기관들의 권한위임기관으로서의 역할을 수행함을 그 내용으로 하고 있다. 따라서 이로 인해 인정시험소들의 수락을 향상시키고 미국 내수와 다른 국가들과의 국제무역을 증진시킬 전망이다.

이와 더불어 2006년 11월 6일 TNI(The NELAC Institute, 국립 환경시험소 인정 연구원)와 A2LA(American Association of Laboratory Accreditation, 미국시험소 인정연합) 간에 양해각서가 체결되었는데, 그 내용은 두 기관의 관계를 공고히하며, A2LA가 TNI를 통해 수령도시험 제공자의 인정자(PTPA)로서 역할을 계속하여 다는 사실을 확인하는 내용을 담고 있다. 미국 국가표준체계 내의 환경측정 소급성 유지 체계에 대한 그림을 보면 이해를 높일 수 있다.
2. 미국의 환경시험소 국가인정시스템의 발자취

가. 초창기-1980년대
미국의 환경시험검사 인정 프로그램의 역사적 유래를 살펴보면 1978년 음용수 인증프로그램이 설립되어 1980년대부터 주정부(state) 프로그램들이 다른 환경매체들로 확대되기 시작하였고 1980년대부터 EPA(Environmental Protection Agency, 환경보호청) 계약 시험소 프로그램(Contract Laboratory Program)이 사실상의 국가 프로그램으로 자리매김하기 시작하였다. 초기 프로그램이 시작되었을 때의 효과를 보면 시험검사가 일관적이지 않았고 실제로는 존재하지 않았고 주들(states)간 상호의존관계가 전혀 없었으며, 모든 환경 분야에서 시험소인정이 가능치 않았으며 이용자들이 정보에 전혀 접근할 수 없었다는 점에서 이 프로그램들은 대체적으로 불충분하게 보였다.

나. 성장기-1990년대
1986년 의회보고서에서 EPA로 하여금 단일한(uniform) 국립환경시험소인정프로그램의 실현가능성과 타당성을 조사하게 하여 1990년 EPA의 내부 활동그룹인 환}

그림 3-1. 미국의 국가표준체계내에서 환경측정 소급성 유지
경감시관리평의회(Environmental Monitoring Management Council, EMMC)는 단일한 국립 프로그램이 가능한 선택이며 EPA는 모든 이해당사자 대표들에게 자문을 구하기 위해 연방자문위원회를 설립할 것을 제안하였다.

NELAC은 합의표준개발과 합의표준채택이라는 중요한 기능을 포함하고 있다. 구체적으로 초기 기능으로는 단일한 환경시험소 인정 표준들을 개발하고, 환경시험소 인정프로그램에 사용될 표준들을 채택하고, 주 대리국들과(Accrediting Bodies)의 인지를 위한 시스템을 개발하고, 이 프로그램에 찬성하여 참여하기로 결정한 주들이 자발적으로 이 프로그램을 시행하도록 돕는 것이었다. 역사적으로 그 역할의 변천사를 살펴보면 1995년부터 1997년까지 환경시험소 인정표준들을 개발하여 1997년에 이 표준들을 승인하였고, 1999년 1월 환경시험소에게 인정을 수여하는 당국들(Accrediting Authorities)을 지정하였고 2001년 1월 24일 주요시험소들에게 인정을 수여하였다.

NELAC은 1995년 설립되었을 당시 EPA, 각 주들, 그리고 다른 연방기관들의 공동규제를 받고 주, 연방 그리고 지역 정부 이해관계자들의 동등한 자발적 협력관계로 운영되었다. CNAEL과 고위 EPA 관리들은 NELAC은 그 시작부터부터 자급자족.
자족해야 한다고 명시했고 실제 프로그램의 목표가 자립형(self-sufficiency)이었지만 EPA는 간사의 지위에서 매년 관리예산을 NELAC에 제공했다. 하지만 NELAC는 중요한 한계점을 지니고 있었는데 이는 EPA와 각 주들이 필요를 충족시키기 위한 오직 주와 연방 정부 대표들만이 투표권을 행사할 수 있었고 민간 부문에게는 오로지 연방 자문 위원회법(FACA)하에 공인된 ELAB(Environmental Laboratory Advisory Board, 환경 시험소 자문 이사회)를 통해서만 의견을 제출하는 기회가 제공되었지만 표준채택에 참여할 기회는 주어지지 않았다.

다. 과도기-2000년대 초반

2001년부터 서로 다른 주들 혹은 다른 정부 기관들의 인정 활동들 간의 협동을 장려하는 것을 목적으로 11개 주(states)의 인정수여당국들(Accrediting Authorities)에 의해 NELAP(National Environmental Laboratory Accreditation Program, 환경 시험소 국가 인정 프로그램)이 수행되기 시작했다. NELAP을 합의표준을 제정하고 채택하는 NELAC의 지원을 받았으며, 인정수여당국들(Accrediting Authorities)은 NELAP의 승인 하에 합의표준들을 이행하였다. NELAC과는 달리 NELAP은 현재까지도 처음에 만들어진 그대로 그 승인된 권위를 유지하고 있다.

3. 미국의 환경시험소 국가 인정 시스템 현황

NELAC과 INELA는 EPA의 재정지원으로 협력관계(Partnership)을 시작하여 가능한 선택을 탐험해왔으며 수년 동안의 변화하는 프로그램을 거쳐 각 기관 대표 위원회는 TNI 만들기 위한 행동에 착수하여 NELAC과 INELA가 결합하여 2006년 11월 6일 TNI(The NELAC Institute, 국립 환경 시험소 인정 연구원)가 설립하였다. 이로서 환경 시험소들과 감시 공동체들이 단일 국립 환경 시험소 인정 프로그램을 확보하기 위한 장기 목표를 향해 거대한 도약이 실효되었다.

가. TNI의 목표

TNI는 미국에서 단일한 국립 표준 하에 환경 데이터를 생산에 직접적으로 연관된 실체들의 인정을 위한 시스템을 유지 증진시키며 지역사회의 필요들에 적절히
반응하여 공개적이고 포괄적인 과정을 통해 알려진 그리고 문서화된 품질의 환경 데이터의 생성을 촉진하는 데 그 목적이 있다.

나. TNI의 본질적 기능

TNI에 의해 착수된 본질적인 활동은 시험소 인정을 목적으로 사용하기 위한 합의표준의 개발이다. 이 표준들은 화학, 미생물학, 독성학, 방사화학, 공학 그리고 기타 적절한 자격을 갖춘 개인들에 의해 준비되고 전적으로 혹은 부분적으로 개정될 것이다. 새로운 TNI 표준은 특정한 사용자 그룹의 특정한 요구들을 각각 충족시키기 위해 개별적인 문서들로 돕기 위해 마련된 모듈들로 구성될 것이다. 예를 들면, 한 모듈은 인정을 획득하고 유지하는 것을 추구하는 일련의 과정을 설명하며, 다른 모듈은 숙련도 제공자들이 반드시 만족시켜야 할 필수요건 등을 설명한다.

TNI 표준들은 개발하는데 사용되는 정책은 "표준개발을 관리하는 정책 (Policies Governing Standards Development)"에 기술되어 있다. 표준개발 접근 방식은 모든 이해관계자들이 모든 과정에서 충분한 합의절차를 가지고 만들어졌 다. 이 정책들은 NTTAA (National Technology Transfer & Advancement Act, 국가 기술 이전 및 발전법)에 근거하여 우세함, 열린 성격, 이익의 균형, 적절 한 절차, 합의, 그리고 탄원절차를 포함하는 OMB Circular A-119 (the Office of Management and Budget, 관리예산처)의 필수요건 들을 충족시켜야만 자발적인 합의표준 조직으로서 TNI가 ANSI(American National Standards Institute, 미국국립표준원)에 의해 인정을 받을 수 있다.

다. TNI의 회원자격

TNI의 회원자격은 민간, 공공, 그리고 학문적 부문들에서 시험소 인정 문제들에 관심을 가진 어떠한 주체에게도 공개되어 있다. 합의 표준 기관으로서 회원들은 규 힌을 유지하도록 분류될 필요가 있다. 첫째, 시험소에게 인정을 수여하는 주체들 (Accreditation Body)로서 연방정부당국들(Federal Government Authorities)과 주들 (States), 그리고 인정 프로그램을 운영하는 연방내기관들(예, EPA)에게 주어지며, 둘째, 환경 시료 채취나 시험을 수행하기 위해 인정을 부여받는 시험소들 (Accredited Laboratory)로서 산업기관, 자치도시, 대학, 주, 연방 시험소 들이며, 셋째, 기타 인정프로그램들을 운영하지 않고 있는 정부 대리국들, 인증을 받지 않은 시험소들, 숙련도 시험 제공자들, 컨설팅들, 기기 제조업자들, 변호사들, 데이터 사용자들 등과 시험소 인정에 이해관계가 있는 모든 자들이 포함되어 있다.
라. TNI의 조직과 각 부분의 기능

□ 최고이사회(Board of Directors): 10-18개의 각 부문의 장들(Directors)로서 균형 잡힌 이해관계자들의 대표로 구성된 이사회이다. 최고이사회에는 인정 수여 당국들 3곳 이상, 인정을 부여 받은 시험소 3곳 이상을 포함해야 한다. 2007년 3월에 선거가 개최되었고 선거가 개최될 때까지 인수위원회가 임무를 감당했다. 본 이사회는 핵심임무로서 예산관리를 포함한 조직의 감독, 통제 및 방향설정이며, 필요하다면 프로그램 행정전문가를 지정하고 활동수준을 결정하며, 조직전체의 매년 예산을 검토승인하며, 조직차원의 영향을 위한 정책들을 검토하는 활동 등을 수행한다.

□ NELAP 이사회 (National Environmental Laboratory Accreditation Program Board, 국립환경시험소인정프로그램 이사회): 시험소 인정을 위한 시스템 실행에 관한 최종 권위를 가지고 있다. 구체적인 임무들로 인정 주체들(Accrediting Bodies)의 적합성을 검토 승인하며, 숙련도 시험 이사회에 의해 개발된 수락 허용한계들 을 채택하며, 시험소 인정 시스템을 채택하며, 불만사항들을 접수하고 적절한 주체에게 전달하며, 인정주체들(Accrediting Bodies)이 합의표준들을 일관되게 적용하도록 책임을 진다.

□ 시험소 인정 위원회 (Laboratory Accreditation Committee): NELAP 이사회와 숙련도시험 이사회와 협력하여 시험소 인정 시스템을 개발하고, 인정을 부여받은 시험소들의 국가 데이터베이스를 설계하고 감독한다.

□ 합의 표준 개발 조정 이사회(Consensus Standards Development Coordination Board): TNI의 가장 우선적인 임무인 합의표준들을 개발하고 채택하기 위한 프로그램을 지도하며, 다른 위원회의 역할과 책임을 규정하고, 직무인력(task forces)들과 연구그룹들(study groups)을 공인하고, 매년 다른 모든 위원회의 활동을 검토하고, 표준들의 개발과 채택을 위한 절차가 TNI의 필수요건에 부합하는지 책임을
진다.

□ 기술지원(Technical Assistance) 위원회 : 단일 국립 시험소 인정 프로그램의 운영을 촉진시키기 위해 시험소들과 인정 주체들(Accrediting Bodies)이 인정 프로그램들을 잘 이행하도록 도울 수 있는 도구들(tools), 주형(templates), 조언(mentoring) 프로그램을 개발하며, 이해관계 공동체의 요구들과 관련된 훈련프로그램을 제공한다. 구체적인 업무로서 인정을 부여받은 시험소들의 데이터베이스를 구축유지하며, TNI의 활동사항을 정보화하기 위한 웹사이트를 구축유지하며, 시험소평가인들(Assessors)에게 교육훈련을 제공하고, 시험소들을 위해 교육훈련과 기술지원을 제공한다.

□ 전문가위원회(Expert Committees) : 숙련도 시험위원회: 시험소 숙련도 시험과 숙련도 시험 시료들을 위한 단일 표준을 개발한다. 이 표준에는 시료 제공자들의 선정기준, 숙련도 시험 시료들의 사용과 시험소 인정에 필요한 데이터를 위한 프로토콜들, 숙련도 시험 감독 주체들/숙련도 시험 제공자의 인정자들(PTOB/PTPA)의 선정기준을 포함한다.

□ 현장 평가(On-Site Assessment) 위원회: 현장평가를 위한 단일 표준을 개발한다. 이 표준은 또한 평가의 최소 비도수와 평가인들(Assessors)의 초소한 교육, 경험, 그리고 훈련 필수요건들을 언급한다.

□ 품질체계(Quality Systems) 위원회: 환경 시험소들에서의 품질 체계들을 위한 단일 표준을 개발한다. 품질 체계의 기본요소들은 시험소 운영에 있어서 품질 관리를 위한 조직의 구조, 책임자들, 업무, 과정들, 그리고 자원들(예: 시설, 인력, 장비)을 포함하고 있다.
인정 수여 주체(Accreditation Body) 위원회: 인정 수여 주체들의 운영을 위한 표준을 개발한다.

야외 활동 (Field Activities)위원회: 야외 시료채취와 측정 조직(FSMO)의 인정을 위한 표준을 개발한다.

정책 위원회: TNI 정책개발을 위한 자원으로서 각 프로그램들의 정책이 TNI의 목적에 일관성을 갖게 부합하는지 검토하고, TNI를 위한 일반정책들을 개발하고, 회원들로부터 접수한 정책들에 대한 요구들을 검토 평가하여 최고이사회에 추천한다. 그 밑의 최고이사회가, TNI 전체에 미치는 영향을 평가한 후, 최후 채택 및 사용을 위해 모든 결정들을 내린다.

기타 하위위원회(Subcommittees)

국가 데이터베이스 (National Database) 위원회, 소규모 시험소(Small Laboratory) 위원회, 비NELAP 주 (Non-NELAP State) 위원회, 평가인 포럼 (Assessor Forum), 행정 위원회(Administrative Committee), 웹사이트 위원회, 회의 개최 위원회, 재정 감사 위원회, 후보 추천 위원회

TNI의 운영원리

TNI는 최고이사회(Board of Directors)에 의해 관리되는 비영리, 과학적, 자발적 합의조직이다. TNI는 그 설립취지에 초점을 맞춘 자치(self-governing)프로그램들로 현재 조직화가 진행 중에 있다. 시험소인정시스템(Laboratory Accreditation System, LAS)의 핵심프로그램은 시험소인정위원회, NELAP 이사회, 그리고 숙련도 시험이사회의 공조체계로 구성되어 있다.

기존 NELAC의 최고이사회(Board of Directors)는 NELAC에서 TNI로 옮겨가는 과도기 동안 NELAP에서 제기된 문제들을 계속적으로 다루며, 새로운 조직이 만들여지고 프로그램들이 제대로 역할을 할 때까지 숙련도시험 이사회를 지원하고 있다. 비록 TNI로 변화하더라도 NELAC의 합의표준은 공공기록으로 남을 것이다. TNI로 완전히 옮겨가기 전에 인정 수여 당국들(accrediting authorities)을 인지하기 위한 프로그램이 필요하다.

TNI는 전문가위원회들에 의해 개발된 인정 표준들을 체택하기 위해 합의(consensus)절차를 따르 것이며, 자발적으로 주들(states)에 의해 인정 프로그램의 수행은 계속될 것이다. 그리고 모든 결정에 있어서 가능하면 "균형"의 개념을 사용
할 것이다. 이 균형이란 특정 이해관계 그룹이 TNI의 특정 위원회나 최고이사회에서 우세해지는 안 되며, 이해관계 그룹들은 인정 프로그램들을 운영하는 조직, 인정을 부여받은 시험소 등으로 구성될 것이다. 하지만 NELAP 이사회는 이 균형의 개념에서 예외가 될 수 있다.

바. TNI 운영 예산 및 재정 시스템 그리고 EPA의 지원

국가 환경 시험소 인정 시스템에 대한 EPA의 지원은 EPA는 관리자가 아니라 동반자로서 그 어느 때보다도 더욱 강화되고 있다. 2006년 12월 15일 EPA는 INELA, NEMC(국립환경감시회의), NSF(National Science Foundation, 국립과학재단), 그리고 NFSTC(National Forensic Science Technology Center, 국립법경과학기술센터)와 4개의 협동 계약들을 체결하였다. INELA는 TNI의 표준개발과 기술지원을 제공하기로 하였고, NEMC는 국가 데이터베이스를 지원하기로 하였고, NSF는 표준개발 절차를 지원하기 위한 프로그램을 제공하기로 하였고, 그리고 NFSTC는 NELAP, 시험소 인정 시스템, 숙련도시험, 그리고 기술지원 프로그램들을 위한 프로그램 행정가 지원을 하기로 하였다. 이 지원을 통해 TNI는 자립형 (self-sufficiency) 운영의 토대를 구축했다.

TNI가 만들어 지기 전 2005년과 2006년 INELA의 예산은 매년 미화 약 $360,000(3억6천만원)이다. 이 비용에는 행정활동에 소요되는 일체의 경비, 매년 2회 전체 정례 회의에 소요되는 경비, 그리고 4-5개의 협동 계약(cooperative agreements)과 지원금(grants) 하에서의 활동 비용들을 포함한다. NELAC은 EPA로부터 행정 지원을 계속 받아 왔기 때문에 별도의 예산체계를 확보하지 않고 있다. TNI가 만들어지면 NELAC 이사회와 INELA 이사회로부터 각각 9명으로 총 18명으로 구성된 임시(Transition) 위원회가 해야 할 첫 번째 실행항목은 임시 운영예산을 검토하여 2007년 6월 15일까지 보고서를 최고이사회에 승인을 위해 제출해야 한다. TNI의 재정 감사 위원회는 2005년도 2006년도 INELA 기록들을 검토한 결과, INELA는 모든 평상시의 회계장부 기록을 위해 독립적인 회계법인을 이용해지만 INELA의 재정시스템에 대해 어떠한 독립적인 감사도 수행되지 않았으며, 임시위원회는 재정적 건강을 평가하기 위한 신중한 과정이 필요하다고 지적했다. 이 예산에는 TNI가 추구하기로 계획한 새로운 프로그램들과 관련된 추가 비용들을 포함시켜서 2007년도 예산은 수입 $410,850(4억1천8백여만원), 지출 $410,235(4억1천2백여만원)로 결정되어 있다. NFSTC와 NSF로부터의 지원은 포함시키지 않은 것이다.

TNI는 2010년까지 단기적으로 예상되는 필요들을 만족시키기 위한 안전한 재원을 확보하고 있다. EPA는 TNI가 완전히 자립형 구조가 될 때까지 지원을 통해 중
요한 역할을 할 예정이지만, 이 지원은 미래 TNI 재정의 오직 일부분임이 될 것이므로, TNI는 장기간의 재정 독립 가능성을 모색하기 위한 전략적 계획을 세우는 노력을 하고 있다.

사. TNI 환경 시험소 인정시스템 개발 규범 문서화

부문(Sector)은 독특한 필수요건 들을 가진 신원을 확인할 수 있는 인정 프로그램으로서 제 1부문 환경과 제 2부문 야외 시료 채취와 측정이 있다.

단위(Module)는 특정한 필수요건 들로서 다른 기본단위들과 함쳐서 한 권을 형성한다. 제 1부문 제 1권은 7개의 기본단위들로 구성되어 있으며 이 기본단위들은 제 1단위 숙련도 시험, 제 2단위 품질시스템들의 필수요건들(ISO/IEC 17025:2005(E)) 제 2절), 제 3단위부터 제 7단위까지는 5개 학제(Asbestos 시험, 화학 시험, 미생물학 시험, 방사화학 시험, 독성학 시험)에 대한 각각의 품질시스템들의 필수요건들로 구성되어 있다. 제 1부문 제 2권은 3개의 단위들로 구성되어 있는데, 제 1단위 일반 필수요건들(IS)(ISO/IEC 17011:2004(E) 제 2절), 제 2단위 숙련도

그림 3-3. 미국의 환경시험소 인정체계

아. TNI의 환경시험소 국가인증을 위한 숙련도시험 운영 현황

TNI 숙련도 시험 체계 그림에 나타난 바와 같이, 숙련도 시험 프로그램의 구조는 분리되고 독특한 역할들과 책임들을 가진 5개의 주요 그룹들로 표준결정당국, 숙련도시험제공자의 인정자들, 숙련도 시험 제공자들, 시험소들, 그리고 인정수여주체들이다.

표준 결정 당국(Standard Setting Authority, SSA): 시험소 인정을 위한 합의표준을 개발하고 결정하는 어떤 단체나 조직으로서 TNI가 맡고 있다. 이 표준의 이행을 계획하고 감독하며, 숙련도 시험 분야들, 수학 기준과 필수요건들의 규칙들, 그리고 보고에 필요한 요소들을 결정하며, PTPA를 감독하고 승인한다. PTP들과 해당 PTPA간의 필수요건 등의 해석과 의견불일치에 대한 최종 해석자로서 그리고 중재자로서 역할을 한다.

□ 숙련도 시험 제공자의 인정자들(Proficiency Testing Provider Accreditors,
PTPA: PTP들에게 인정을 수여하도록 SSA(즉, TNI)에 의해 승인을 받은 조직으로서, PTP들이 그들이 주관하는 각 시험소의 숙련도 시험 연구들과 적용 가능한 표준들을 충족하는지 보증하는 업무를 감시하고 이를 통해 PTP들에게 인정을 부여하기 위한 프로그램을 확립하고 시행한다.

숙련도 시험 제공자(Proficiency Testing Providers, PTP): SSA지정 PTP에 의해 인정을 받아 숙련도 시험 프로그램들을 제공하는 개인, 민간 조직, 혹은 정부 단체로서, 숙련도시험 시료들을 생산하고, 보증하고, 시험소에 분배하고, 출판된 수행능력 기준들에 대비하여 연구결과를 평가하고, 시험소와 해당 AB, 그리고 해당 PTPA에게 그 결과들을 보고한다.

인정을 부여받은 시험소 (Accredited Laboratories): 민간(영리목적)부문, 비영리 부문 혹은 주들(States)이 운영하는 모든 시험소들.

1차 인정 수여 주체 (Primary Accreditation Bodies, PAB) 혹은 인정 수여 당국(Primary Accrediting Authorities): 인정분야들에서 어떤 시험소의 전체 품질 시스템, 현장 평가, 그리고 숙련도 시험 수행능력을 평가하는 책임을 지고 있는 인정 주체로서 TNI의 NELAP 이사회가 승인한 주들(States)과 EPA가 맡고 있다.

2차 인정 수여 당국 (Secondary Accreditation Bodies, SAB): 어느 한 인정분야에서 1차 인정 수여 주체로부터 받은 인정에 근거하여 동일 분야에서 시험소에게 인증을 부여하는 인정 주체다.

숙련도 시험 단위는 인정을 받기 위한 필수요건들, 분석을 수행하기 위한 필수조건들, 수락 가능한 결과들과 교정 조치 그리고 인정 상실, 4가지 부분을 포함하고 있지만, 인정수여 주체들의 필수요건들, 숙련도시험 제공자들의 필수요건들, 숙련도 시험 관리의 필수요건들은 포함되어 있지 않다.

인정을 받기 위한 필수조건들로는 첫째, 모든 분야의 숙련도 시험에 대해서, 18개월의 적용기간 내에, 최소한 15일의 간격을 가지고, 미지의 단일한 농도의 2개 시료들에 대해 성공적인 분석결과를 내야하고, 둘째, 약 6개월의 간격으로 매년 2회의 숙련도 시험 시료들을 계속적으로 참여해야 한다.

분석의 필수요건들로는 동일한 분석자가 동일한 장비로 동일한 품질관리 하에 평상 시료들같이 다루고 분석해야 하며, 마감일자까지 결과를 보고해야 하며, 정보
의 교환에 제한들이 있다.

수락 가능한 결과는 반드시 수락 한계들내에 들어야 하며 수락 결과가 아니어야 한다. 만일 수락 한계 내에 들어오지 못하면, 원인분석을 하고 수정 조치(Corrective Action)를 위한 시료들을 분석해서 보고해야 한다.

숙련도 시험에 참여하지 않거나, 다른 시험소에 의해 생성된 결과를 보고하거나, 가장 최근에 3번의 숙련도 시험에 대해 2번의 결과가 수락 불가능한 결과들을 냅거나, 수정 조치 행동 보고를 하지 않았을 경우에는 인정을 상실하게 된다.

시험소 인정을 위한 숙련도 시험분야는 아래와 같이 매질에 따라 비음용수, 음용수, 그리고 고상 화학물질로 분류하며, 2007년 1월에 보완 확립되어 2007년 7월 1일부터 유효한 기준으로 총 716 항목의 분석물질(Analyte)에 대해 농도범위, 수락기준, 그리고 숙련도 시험 보고 한계(Proficiency Test Reporting Limit)를 설정했다.

□ 비음용수(Non-Potable Water) 분야: 총 239항목

- 미생물 6항목, 미량 금속 25항목, 요구량 4항목, 광물 14항목, 영양분 7항목, 기타 분석물질 8항목, 살충제 21항목, 휘발성방향족 7항목, 휘발성 할로겐탄화수소 23항목, 염기/중성유기화합물 47항목, 산화합물 14항목, 수용성 PCBs 7항목, 제조차 4항목

- 추가: 미량 금속 2항목, 살충제 5항목, 기타 분석물질 1항목, 휘발성 할로겐탄화수소 1항목, 산화합물 1항목, 유기 살균부산물 2항목, 저농도 PAH 16항목, 저농도 질소방향족 및 질소아민 1항목

□ 음용수(Drinking Water) 분야: 총 202항목

- 미생물 3항목, 미량 금속 23항목, 광물 6항목, 무기 살균 부산물(DBPs) 4항목, 기타 분석물질 14항목, 규제 VOCs 23항목, 비규제 VOCs 31항목, 살충제 19항목, 제조차 13항목, 유기 살균부산물 11항목, Alipate/Phthalate 2항목, PAH 1항목, Carbamates/Vydates 8항목, Dioxin 1항목

- 추가: 미량 금속 2항목, 살충제 2항목, PAH/Phthalates 20항목, 살충제 2항목, 제조차 6항목, Carbamates 2항목

□ 고상 화학물질(Solids and Chemical Materials) 분야: 총 275항목

- 미량 금속 27종, 기타 분석물질 3종, 휘발성방향족 8항목, 휘발성 할로겐탄화수소 18항목, 휘발성 Ketones/Ethers 4항목, 중간농도(Medium Level) 휘발성방향족 8항목, 중간농도 휘발성 할로겐탄소수소 19종, 중간농도
Ketones/Ethers 4종, 염기/중성물질 38종, 산화합물 10종, PCBs 7종, 기름(Oil)내 PCBs 4종, 살충제 22종, 제초제 4종, 석유탄화수소 4종, 저농도 PAHs 16종

□ 추가: 미량금속 1항목, 광물 6항목, 영양분 3항목, 기타 분석물질 1항목, 휘발성 방향족 2항목, 휘발성 할로겐탄화수소 14항목, 휘발성 Ketones 1종, 중간농도 휘발성 방향족 2항목, 중간농도 할로겐탄화수소 14항목, 중간농도 휘발성 Ketones/Ethers 1항목, 염기/중성화합물 7종, 산화합물 5종, 살충제 9종, 제초제 2종, 질소방향족/질소아민 11항 목

자. 주요 성과 및 향후 전망

새 명칭에 반영된 바와 같이 TNI는 환경부 산하 NELAC의 전통적인 합의표준 프로그램과 비영리 자발적 민간조직인 INELA의 합의표준 제정과정(consensus process)활동을 결합시켜 단일 조직체이다. 이 결합에 내재된 가정들로는 이 두 기관이 합쳐지더라도 각 기관의 핵심 고유 기능들은 계속 유지시켜 나갈 것이며, NELAC를 자립형(self-sufficiency)으로 신속히 변화시켜 줄 것이며, 시험소들과 다른 이해관계자들을 덜 분열시킬 것 등 더 강력한 조직으로 변화될 것을 내포되어 있다. TNI는 한 단계 높은 수준의 국립 환경 시험소 인정을 이행하기 위한 준비가 되어 있고, 인정 필수요건 등을 개선해 나갈 것이다. 또한 더 많은 주체들(Accrediting Bodies)로 승인할 것이고, 이해관계자들의 필요에 더욱 부응할 것이며, 기술지원을 제공할 예정이다. 개인 혹은 조직으로서 회원가입과 위원회가입을 통해 TNI를 지원해달라고 홍보하고 있다.

4. 미국의 환경측정분야 세부 인정 프로그램

가. NELAC 숙련도 시험 시행자 인정을 위한 A2LA 프로그램 절차서(A2LA, 2005)

- 미국시험소인정연합(A2LA)는 "교정 및 시험 연구소 능력에 대한 일반 요건"을 인정 원칙으로 이용하여 광범위한 전국 시험소 인정 시스템 운영을 전담
- 이 절차서는 TNI에 숙련도 시험 시료를 제공할 수 있는 자격 인증을 원하는 숙련도 시험 시행자의 A2LA 인정을 위한 일반 요건을 명시하고 있다.
- NELAC 숙련도 시험 프로그램 시행자에 대한 A2LA 인정 프로그램은 주로 NELAC 표준, 구체적인 요건조건들과 함께, 국제적으로 인정되는 숙련도 시험 프로그램 기획 및 실행 요건의 준수를 통해 자체 능력의 증명을 원하는 숙련도 시험 시행자를 위해 설계되었다.
- NELAC 숙련도 시험 시행자들을 위한 A2LA 인정 프로그램은 음용수, 비음용수, 토양, 화학 물질, 대기 배출, 미생물학, 방사 화학 및 환경 독성학과 분야의 환경측정기준들을 포함한다.
- 아울러 NELAC 표준, 2장, 섹션 2.1 및 부속서 A.2에 확립된 기준에 열거된 바와 같이 NELAC PT 제공사업자로 인정되는 구체적인 평가 요건은 아래 사항을 포함한다.

- ISO 가이드 34: 2000 참고 자료 생산업자 능력에 대한 일반 요건
- NELAC, 2장: 2003 능력 시험 (및 관련 부속서)
- ISO/IEC 17025: 1999 시험 및 검/교정 시험기관의 능력에 대한 일반 요건
- NELAC, 5장 (2003)의 관련 조항
- 수질 능력 시험 연구를 위한 EPA 국가 표준, 기준 문서 1998.

- 구체적인 체크리스트는 전술한 제반 요건을 포함하여 작성되었다. 평가기관을 위한 확인 목록과 신청 양식, 본 절차 매뉴얼에 수록된 요건을 충족시키지 못하는 NELAC 숙련도 시험 시행자는 인정하지 않으며 또한 인정을 갱신하지 않는다는 것이 A2LA의 방침이다.
- A2LA는 A2LA 공인 검/교정 시험기관이 가급적 공인 숙련도 시험 시행자들이 숙련도 시험 참가를 위한 ISO/IEC 17025 요건을 준수하도록 권고하고 있다.
- A2LA는 종업원과 하청업자가 본인의 평가 및 NELAC 능력 시험 제공사업자와의 접촉 결과 취득하는 기밀정보 일체가 관리하여 기밀성을 유지시켜야
한다. 기밀정보는 NELAC 능력 시험 제공사업자의 명시적인 서면 허가 없이 공개할 수 없다.

- A2LA는 PT 인정 프로그램을 실행하는 동안 지속적인 상용 숙련도 시험 프로그램을 운영할 수 없다.
- 효과적인 시험기관 기술 능력 평가에 필요한 경우 개별 시험기관과 함께 측정 감사를 수행하기 위해 인공물이나 참고 원료를 활용할 수 있는 권한은 A2LA에 있다.
제 2 절 영국의 환경시험·검사 체계

1. 영국사례 선정배경

영국의 환경시험·검사 체계는 법 및 제도정비를 통해 중앙집권적 체계개편을 하는 상의할방식이 아닌 제도마련은 중앙기관에서 시작하고 현장에서 필요성을 인식하여 점차적으로 제도의 확산을 도모하는 상향식 방식을 택하여 이루어졌다. 정부주도형 환경시험·검사체제정비에 비해 비효율적 분산정책이라는 비난도 있지만, 시장성의 원리를 이용하여 사업자가 환경측정값의 신뢰성을 확보로 얻을 수 있는 경제적 이익을 보장하고, 환경측정인증제도로부터 얻어지는 수입을 제도정비에 재투자함으로써 환경시험검사의 발전을 도모하는 유기적 구조를 갖추고 있다.

시행착오를 거쳐 환경시험 및 측정체계의 정착과 성장 단계에 이른 영국의 환경시험·검사 체계는 현재 그 효용성을 인정받아 독일과 양해각서를 체결하여 대기측정에 대한 시험 값을 서로 인정하고 홍콩에 제도이전을 하는 쾌거를 이루었다. 이것은 선진제도의 도입을 통해 자국의 환경측정에 대한 질적 향상을 이루고자 하는 대표적 예로 우리는 선진제도의 현황분석을 통해 우리 실정에 맞는 목표를 설정하고 환경시험·검사 체계에 대한 발전계획을 수립하고자 한다.

2. 영국의 환경시험·검사 인정체계

영국은 세계 3대 표준강국이다. 최근 정부발표 보고에 따르면 영국 내 표준과 연계된 연간 이익은 7억 파운드이고 한해 표준과 관련하여 쓰이는 통상산업부1) (DTI : Department of Trade and Industry)의 예산은 6천만 파운드에 이른다. 영국은 통일된 인정절차를 확보하고 다양한 인정기구의 활동에 따른 경제비용을 절감하기 위해 정부가 1995년 단일인정기구인 UKAS(United Kingdom Accreditation Service)체제를 도입하였다. UKAS는 비영리 사립기관으로 국제협정표준, 인증서발급, 시험, 검사, 교정 등의 평가서비스를 제공하며 1995년 8월 DTI와 체결한 양해각서(MOU)에 따라 운영된다. 조직은 정책자문위원회(Policy Advisory

1) 2007년 6월 새로 취임한 브라운 총리의 정부 조직개편으로 통상산업부(DTI)가 없어지면서 DTI의 대부분 업무는 새로 구성된 "사업, 기업 및 법정비부" (DBERR: Department for Business, Enterprise & Regulatory Reform)에서 이양받았으며, 국가 표준체계 업무는 기술혁신과 연관이 크다고 판단하여 "혁신, 대학 및 기술부" (DIUS: Department for Innovation, Universities and Skills)로 이관.
Committee), 기술자문위원회(Technical Advisory Committee) 그리고 이들로부터 인정활동에 관한 자문을 받아 최종 의사결정을 하는 이사회(Board of Directors)로 구성되어 있다. 특히, 시험 측정기관인 국가 물리 연구소(NPL: National Physical Laboratory)와 함께 정부 조직인 환경식품지역부(DEFRA: Department of Environment, Food and Rural Affairs)가 정책자문 위원회의 회원으로 활동하고 있는 것으로 미루어 환경정책 및 요구사항을 UKAS 활동에 능동적으로 반영할 수 있는 구조를 갖추고 있다고 볼 수 있다.

영국 측정자문위원회 (MAC: Measurement Advisory Committee)는 영국 표준체계에 대한 DTI 예산프로그램의 효율성 증진을 위해 자문하는 비정부 공공기관(NDPB: Non-Departmental Public Body)이다. MAC은 다음과 같은 분야에 영국 표준에 전략적 자문 역할을 담당하고 있다.

영국 내 혁신과 경쟁을 뒷받침하는 표준체계의 효율성
- 국가표준의 질적 향상을 위한 DTI의 우선과제
- 영국 정부의 표준정책지원에 대한 전략, 균형 그리고 폭넓은 목표

2005년부터 약 2년간에 걸쳐 수행되었던 국가표준체계의 전략적 검토 보고서를 통해 DTI는 효율적인 국가표준체계관리를 이유로 자문위원을 DTI 내부 체제로 끌어들이고자 하는 의사를 표명했고 그 독립성을 유지하려는 MAC의 즐다리기는 계속되고 있다.

환경시험, 검사에 있어서 중추적 역할을 하는 기관은 영국 환경청(EA: Environment Agency)이다. 관료주의적 정부 조직에서 기업 경영원리를 도입해 행정서비스의 획기적 개선과 규제개혁을 추진한 영국 정부는 1988년 각 부처와 산하기
관에서 행정 집행업무를 따로 분리하는 책임운영기관 형태인 ‘에이전시모델’을 도입했다. 영국 환경청은 법적 권한을 가진 독립행정기관으로 시험소에 대한 법적 규제가 가능하고 조직 관리와 인사, 재무 등에서 광범위한 자율권을 보장받는다. 반면 매년 성과목표와 사업계획을 작성해 중앙정부에 보고해야 하고 에이전시 기관장이 장관과 체결한 기본계약문서는 최소한 3년에 한 번씩 검토해 평가를 받아야 한다. 또 기업의 사외이사와 같은 외부평가위원들을 임명해 활동과 실적을 감시토록 하고 있다. 이러한 효율적 운영의 비결은 성과목표에 대한 명확한 평가와 결과에 따른 인센티브 제공 그리고 공개적인 보고체계 등으로 요약될 수 있다. 뿐만 아니라 영국 환경청은 관공서가 환경규격의 인증취득을 지원하는데 그치지 않고 96년 말 중앙관서로서는 세계 최초로 환경경영인증 ISO14001을 취득함으로써 관공서 스스로가 인증취득에 좋은 본보기가 되었다.

산하 5개의 연구기관을 두고 2,800여명의 과학자를 고용해 운영되는 DEFRA는 환경시험·검사체계의 직접적 영향을 미치지는 않지만 체계에 대한 과학적 근거를 제시하고 환경시험·검사와 관련된 정치적 사안에 결정권을 가지고 있는 정부부처이다. 최근 3년간 DEFRA의 두드러진 전략을 살펴보면 정책개발 및 집행에 있어 과학을 적극적으로 활용하기 위해 과학 및 혁신 전략을 수립하여 연간 R&D 분야에 155백만 파운드 그리고 연구, 모니터링, 조사, 평가 등 전체 과학 분야에 325백만 파운드를 투자해왔다. DEFRA 과학 및 혁신 전략의 과학 활동분야는 천연자원의 보존 및 이용, 해양 및 해안환경, 농촌경제 및 지역 활성화, 공공 및 동물보건, 기후 변화 및 기타 환경위기, 지속가능한 농업 및 식품 이상 6가지이다.

1900년에 설립된 NPL은 1995년 DTI 계약에 의하여 Serco Group 소유의 자회사인 NPL Management Limited (NPLML)에 의해 운영되고 있다. 특히 NPL은 대기질 측정망의 소급성 구축에 중요한 역할을 한다. 대기질 측정소에서 측정된 값은 DEFRA가 공중보건에 대한 정보를 제공하여 영국 법이 EU법에 부합하도록 돕고 더 나아가 대기질 모델링과 연구 목적에 이용된다. NPL을 통하여 제공되는 소급성과 데이터 품질은 다음이 세 가지 방법을 통하여 이루어진다.

- 국가 오존 규제 준비를 포함하여 모든 도시 및 농촌에 설치된 자동측정망에 정확한 인증 규격을 제공한다.
- 농촌 자동 측정망과 런던 대기질 측정망을 일 년에 4차례 방문한다.
- 데이터 포로세스와 통계적 분석을 통한 측정 망 자료의 상호인증 값 비교를 통해 성능품질 향상을 도모한다.
먹는 물 관리나 석면 관리등과 같은 특정 분야에 대한 환경시험평가 및 성능관리는 DEFRA가 개별적으로 관리하고 있다. 먹는 물 관리의 경우, 상수도법(Water Supply regulations)와 먹는 물 시험 특별법 (DWTS: Drinking Water Testing Specification) 기준에 따라 시험소관리를 하고 석면관리의 경우, 석면관리법(Control of Asbestos Regulations 2006)에 의해 모든 시험소는 UKAS로부터 ISO17025 기준에 따라 공인시험기관 인정을 받아야 한다.

1998년 사기업 SCS(Sira Certification Service)와의 라이센스 계약으로 시작된 환경모니터링 인증제도 MCERTS(Monitoring Certification Scheme)는 영국의 단일 환경시험 및 측정계획이며 현재 10개의 하위 프로그램에 의해 운영된다.

MCERTS를 중심으로 삼각론 영국의 환경시험 운영체계는 그림 3-4와 같다. 영국 환경청이 환경시험.측정에 관한 별도의 인증계획 MCERTS를 관리하고 대기, 수질, 토양의 측정관련 규제 항목에 대한 측정 장비 인증과 자격증 인증은 SCS, 분석기관 인정업무는 UKAS에 위탁하여 운영되고 있다.

그림 3-4 영국의 환경시험.측정 체계

SCS와 UKAS 그리고 환경청이 3개월마다 정기적 미팅을 개최하여 MCERTS 운 영현황 및 방향을 점검하고 DEFRA의 지역자치단체(Local Authorities)와 DTI의배출가스거래부(Trade Emissions)가 간접적으로 MCERTS와 연관되어 있다.

3. 환경 측정 인정 제도 MCERTS

가. MCERTS 정의
MCERTS (Monitoring Certification Schemes)란 1998년 영국환경청이 도입한 환경 측정에 관한 인증제도로 인증 상품 및 서비스에 대한 국제 공인 규정과 영국의 수자원법, 대기법, 오염방지 및 제어법 그리고 EU 지침을 포괄하는 광범위한 제도이다. 측정과 장비의 성능 및 품질과 기술 자격증은 다음의 기본규정에 따라 평가된다.

- 모니터링과 시험기기 검사를 위한 ISO 17025
- 검사를 위한 EN 45004
- 상품 인증을 위한 EN 45011
- 기술 면허증을 위한 EN 4501

나. MCERTS 도입 배경
MCERTS 도입이전, 영국의 환경시험 및 측정은 시험인정기구인 UKAS가 영국 정부의 환경 측정분석 관련 시험·검사 업무를 UKAS의 공인을 받은 민간시험·검사 기관에 위탁하고 있는데 ISO 17025 규정이 광범위하고 불분명하므로 환경 측정수준의 스펙트럼이 다양하여 성능평가 및 관리에 어려움을 겪었다. 그리고 전 세계적으로 많은 나라에서 시험이나 검사결과의 신뢰성을 향상시키고 해외에서 측정값에 대한 수용을 확대시키고자 시험기관이나 검사기관의 제3자 인정제도를 도입하여 운영하는 국제적 변화와 EU내 환경측정의 동등성 확보에 대한 시급성 등 외부적 환경요인이 MCERTS 도입에 영향을 끼쳤다. 이와 같은 외·내부의 환경변화 상에서
영국은 날로 증가하는 환경측정의 수요에 대응하고 건실한 환경측정산업의 성장을 도모할 체계정비가 필요했다. 이에 영국 환경청은 환경측정의 정도 관리를 위해 MCERTS를 소개하고 유럽과 국제표준에 따라 기기의 품질인증, 개인의 능력인증과 시험소인가를 실시하였다.

다. MCERTS 목표 및 일반사항

MCERTS 목표는 적절한 방법과 성능보증 및 관리(QA/QC: Quality Assurance/Quality Control), 숙련된 기술자 그리고 철저한 계획을 통한 측정값의 성능 향상이다. 인증된 기기와 방법을 통하여 증대되어가는 측정요구사항을 만족시킬 수 있는 국적 수준의 측정값을 제공하기 위해 환경측정 시험소가 첫 단계로 ISO 17025 인증을 받고 세분화된 MCERTS의 규정을 따르게 함으로써, 환경측정 및 시험검사 간의 신뢰성을 확보하고자 한다.

초기자본 약 100,000파운드(약 2억)로 시작된 MCERTS는 전체 운영 예산 중 200,000파운드(약 4억)를 영국환경청이 관리예산으로 확보하고 EU 환경법 계정 및 변화에 따른 MCERTS 제도 개선을 하고 있다.

라. MCERTS 하위 프로그램 및 인증절차

MCERTS는 현재 대기, 수질, 토양분야에 대한 다음의 10개 하위 프로그램에 의해 운영된다.

☐ 대기
 - 연속 대기오염 모니터링
 - 굴뚝 배출가스 모니터링
 - 대기 오염도 모니터링
 - 휴대용 배출 모니터링 기기
 - 동속 시료채취기를 이용한 모니터링

☐ 수질
 - 연속 방류수 수질 모니터링
 - 방류수 차가 측정
 - 방류수에 대한 직접적 독성 분석
 - 휴대용 수질 모니터링 기기
방류수에 대한 직접적 독성 분석(DTA)은 EU 지침 중 “통합적 관리 시스템”(IPPC: Integrated Pollution Prevention and Control)에 의해 강제규정 (Mandatory Requirement)으로 정해져 있고 나머지는 자율규정(Voluntary Requirement)이다. 따라서 제약, 식품 및 음료 등을 포함하는 광범위한 제조업장에서는 ‘환경보호법 (1990)’에 정하는 방류수 및 배출가스 기준에 적합한 배출물질을 방출하는 것을 증명하기 위해 MCERTS가 인증하는 DTA 시험을 해야 한다.

MCERTS 인증 절차는 그림 3-5와 같이 7단계로 진행된다.

MCERTS 인증을 원하는 업체나 시험소는 SCS에 상담을 의뢰하고 안내서를 받아 MCERTS의 정의, 인증의 요구사항 및 구비서류, 검사계획에 따른 필요서류, 절차서, 현장 및 실험실 검사에 사용되는 시험소 세부사항 등을 이해한다. 상담이 끝나면 SCS는 시험 프로그램을 수립하여 해당 업체 또는 시험소가 소유한 자료 중 MCERTS 요구조건에 만족하는 것을 분리하여 향후 검사를 받아야 할 항목을 선정하여 시험 계획을 수립한다. 신청기관은 정리된 시험계획에 따라 자료를 수집하여 시험 보고서를 제출하고 SCS는 자체 기술지원 전문가를 통해 신청품목의 기술적 측면과 검사계획에 대한 인증평가를 실시한다. 시험평가가 끝나면, 현장 감사를 통해 보고서 내용을 재확인하고 SCS인증 서비스 최고 책임자인 인증위원회를 통해 최종 심사를 거친 뒤 MCERTS 인증서가 발급된다.
마. 대기 측정 분야에 대한 MCERTS 현황

MCERTS 인증제도에서 가장 활발하게 시행되고 있는 영역은 대기측정 분야이 다. 영국은 2000명의 목숨을 앗아간 1952년 런던 스모그를 계기로 1956년 대기 법 을 제정하여 관리하고 있으며 이러한 역사적 배경으로 대기측정 분야에 대한 관심 이 상대적으로 높다.

오랫동안 굴뚝배기가스 모니터링의 인증을 담당했던 UKAS는 1998년부터 영국 환경청의 MCERTS 체제로 범위를 확대하여 인증업무를 하고 있다. MCERTS를 위 한 ISO17025 인증은 앞으로도 계속 환경청과 굴뚝배기가스 모니터링 업체의 고객에게 신뢰를 줄 것이다. 이러한 신뢰도 확보를 위해 수행되는 평가방법 중 하나는 불시방문 및 암행평가이다. 이는 인증 사이클에서 인증을 받은 기관의 일상적 운영에 대한 정보를 제공하고 몇몇 업체에서 제기되는 문제점을 발견할 수 있는 수단이 된다. 그 동안 고객과 환경규제 업무를 담당하는 직원들이 불시방문 및 암행평가가 중요하다는 것을 인지했음에도 불구하고 평가방법이 충분히 활용되지 않아 UKAS는 2007년 3월 1일 불시방문 및 암행평가를 시범적으로 시작하여 약 18개월 동안 실시할 방침이다. 실시된 불시방문은 기본적으로 기술적 문제와 관련된 측정 방법에 초점을 두지만 경영 체계에 대한 요소도 평가된다.

감리 자격증을 소지한 전문가의 데이터베이스는 SCS가 인증업체에 대한 자료는 UKAS에서 각각 관리한다. MCERTS 감리원 자격인증은 기존의 오염물질 감리원을 경험, 교육 및 시험을 기준으로 합법적 자격을 부여하며, SCS는 UKAS로부터 BS EN ISO/IEC 17024:2003 '적합성평가-자격증 운영조직에 대한 일반적 조건'에 대한 인증을 받아 영국환경청을 대신하여 인증제도를 운영하고 있다. 2007년 연속 배기가스 모니터링(CEM) 분야에 MCERTS 감리원으로 등록된 인력은 총 780명이다. 약 300여명은 MCERTS 체제 이전 감리원으로 MCERTS가 요구하는 감리원 요건에 만족하지 못할 경우 자격을 박탈하는 등 강력한 제재조치를 취하고 있다. 자격증은 개인의 경험, 교육, 그리고 시험에 따라 입문, 1급 그리고 2급으로 총 3단계로 나뉜다. 굴뚝 배기가스 모니터링 분야에 있어 2002년부터 2006년 12월까지 발급된 MCERTS 1급 자격증은 158건, 2급은 233건으로 총 391개의 자격증이 발급되었으며 진급절차는 다음과 같다.

□ 입문: 산업체에서 처음으로 굴뚝 모니터링 업무를 담당하는 감리원은 업무에 대한 소개를 받은 후 동시에 굴뚝 배출가스 모니터링과 관련된 위험물질 관리와 위험성 평가 등의 업체가 규정하는 연수를 받게 된다. 모든 연수와 현장업무는 2급 자격증을 가진 기술자에게 직접 지도 받아야 하고 입문자는 최소 10회 이상의 현장
업무와 규정된 시험을 통해 6개월에서 1년 내에 1급 기술자로 진급하게 된다.

□ 1급 : 수공 굴뚝 배출가스 모니터링에 원리를 인지하고 있는 자로써 입문자와 함께 2급자격증 소지자의 지도를 받고 있음을 증명해야 하고 해당 사업체내에 2급 자격증소지자가 없을 시에는 MCERTS 자격증의 규정이 정한 교육을 정기적으로 받아야 한다. 관리 기술자격증(TE: Technical Endorsement) 시험에 응시할 수 있으나 현장 보고, 검토 그리고 위험성 평가에 대한 자격은 없다. 최소 6개월 이상의 1급 근무경력과 10회 이상의 현장업무 경험을 갖추어져야 합니다. 관리 기술자격증(TE) 시험에 응시할 수 있다. 최소 6개월 이상의 현장보고, 검토 및 위험성 평가의 자격이 주어지며 입문자와 1급 자격증 소지자를 지도 할 수 있다.

개인의 굴뚝배출가스 모니터링의 현장업무 실시 기록은 오염측정협회(STA: Source Testing Association)에 신고하여 경력을 인정받아 기술 진급시험 응시 때 증빙자료로 제출해야 한다.

관리기술 자격증(TE)은 다음의 다섯 가지로 분류된다.

- TE1 : 등속 샘플링 기술을 이용한 미립자 모니터링
- TE2 : 다상(Multi-phase) 샘플링 기술
- TE3 : 수동 가스/증기 측정 기술
- TE4 : 기계를 이용한 가스/증기 측정 기술
- TE5 : 등속 샘플링 기술을 이용한 미립자 분류

TE1은 기본기술이며, TE1 소지자가만 TE2와 TE5 자격시험에 응시할 수 있다.

1급과 2급 자격증은 5년간 유효하고 자격증 소지자는 2년 이상의 연속휴지기를 가질 수 없다. 관리 기술 자격증(TE) 또한 유효기간이 5년이며 자격증 갱신을 위해서는 새로운 기술과 지식을 습득했다는 것을 다음으로 증명해야 한다.

- 최소 25차례 현장 모니터링을 실시
- TE1과 관련된 5차례의 현장 모니터링 또는 TE1을 제외한 관리 기술 자격증에 대한 각각의 현장 모니터링
- 굴뚝배출가스 모니터링의 위험물질 확인 및 위험성 평가에 대한 최근 기술
보유
- 굴뚝배출가스 모니터링의 위험물질 확인 및 위험성 평가에 대한 교육 참석의 사항을 증명하지 못할 경우 시험을 통하여 보유 지식을 증명할 수도 있다.

이와 같은 제도의 원활한 이행과 보급을 위해 오염측정협회(STA), 굴뚝 배출가스 모니터링업체를 대표하여 UK 무역협회, 스코틀랜드 환경보호청(SEPA: Scottish Environment Protection Agency) 그리고 북아일랜드 환경부의 환경 및 문화재 보호과는 공동으로 MCERTS 굴뚝 배출가스 측정 안내서를 발간하여 시험소, 자격증 소지자, MCERTS인증을 받은 기구가 갖추어야 할 최소한의 능력기준을 소개하고 있다.

바. MCERTS를 통한 국제협력
이와 같은 상호인증 및 제도이전을 통해 얻어지는 로열티는 프로그램 보완에 재투자되어 MCERTS제도의 지속적 발전에 기여한다.

사. MCERTS 수행의 난관 및 향후 방향
MCERTS 수행의 어려움은 크게 인력부족, 운영 자금난, 그리고 제도 모니터링의 부족 3가지로 나눈다. 첫째, 환경청 내 MCERTS 담당직원은 5명 그리고 SCS의 MCERTS 인증 담당직원은 6명으로 부족한 인력으로 인해 행정처리가 늦어지는 등 문제도 발생하여 인력보충이 시작된다. 둘째, MCERTS 운영자금의 대부분이 해당업체 및 시험소가 부담하는 인증비로 중당되고 실제적으로 환경청으로부터의 지원금이 없는 상황에서 가격대비 MCERTS 인증확득의 만족도 및 이익이 아직은 많다.
이 미흡한 것이 현실이다. 끝으로, 가격대비 평가분석 (CBA: Cost and Benefit Analysis)이 어려운 환경 분야의 특이성으로 경제적 평가가 현실적으로 어려운 가운데 제도자체에 대한 모니터링이 부족하다는 것이 전문가의 평론이다.

대기분야의 MCERTS는 환경단계로 더 이상의 추가항목이 없을 것이고 영국환경청의 환경 모니터링 및 분석 팀과의 인터뷰에 따르면 12개월 내에 수질분석에 대한 새로운 항목이 추가될 예정이다. 또한 토양환경 측정 분석의 수요증가로 이 분야에 대한 추가사항이 기대된다고 한다. 영국환경청, SCS 그리고 오염측정협회 (STA)는 2005년부터 지금까지 해마다 MCERTS 워크숍을 개최하고 있다. 2007년 4월 MCERTS 워크숍은 환경청의 법률적 제도변경 및 모니터링 기술개개 목적으로 개최되었지만 예상 밖으로 환경시험 및 측정과 관련된 업체 관계자 및 학자, 법조인, 공무원 그리고 일반인까지 참석해 MCERTS에 대한 높은 관심을 시사했다. 환경청은 앞으로도 계속 이와 같은 워크숍을 개최하여 고객과 환경시험 및 측정기관과의 교감의 기회를 확대하고, 발전을 도모할 방침이다.

MCERTS가 환경청이 처음 규제했던 법적 규율을 넘어 광범위하게 확대되어 갈 것이라는 것이라고 관련 전문가들은 예측하고 있다. 일례로, 당초 규제 항목이었던 ISO 17025 및 ISO Guide 34가 현재는 고정배출가스의 자동 측정 시스템에 대한 새로운 성품 규정 EN 14181과 모니터링 전략 규정 EN 15259가 도입되어 함께 운용되고 있다. 그리고 날로 수요가 증가하는 환경시험·검사 시장현황으로 가격경쟁이 심화되고 있으나 관련 전문가들은 MCERTS의 안정적 정착이 시장의 공정성을 가져다 줄 것으로 전망하고 있다.

4. 환경분야의 정도관리

가. 숙련도 시험

UKAS는 10군데의 숙련도 검사기관을 인정하여 숙련도 시험을 실시하고 있다. 이 중 환경관련 숙련도시험을 시행하는 기관은 LGC(Aquacheck) Ltd.(수질), FAPAS, Central Science Laboratory(수질), LGC Ltd.(수질, 토양), Health Protection Agency Water EQA(수질)이다. 환경 분야 대부분의 숙련도 시험은 LGC의 수질 숙련도시험 (Aquacheck Scheme), 토양오염 숙련도 시험 (CONTEST: Contaminated Land Proficiency Testing Scheme) 그리고 수중 미생물 분석 숙련도 시험 (QWAS: Quality In Water Analysis Scheme) 프로그램을 통해 이루어진
다.

나. 정도관리를 위한 정보제공

표준시료 선택이 난해하고, 시험값에 대한 오차범위가 큰 환경시험의 특이성으로 정부차원의 강도 높은 시험방법규정을 제시하기 어려운 관계로 영국은 MCERTS 체제에서 환경분야의 정도관리를 수행한다. 그리고 국가환경시험소 (NLS: National Laboratory Service)를 설치하여 환경시험분야의 R&D 지원과 시험 서비스, 환경시험 분석에 대한 정보제공을 하고 있다. NLS는 UKAS로부터 ISO 17025 인증획득하고 도양분야의 MCERTS 인증을 받아 시험서비스를 실시하며, 환경시험분석 상임위원회 (SCA: Standing Committee of Analysts)를 두어 정기적으로 첩서(Blue Book)를 발표하여 환경시험분석에 대한 안내 및 정보제공 역할을 담당하고 있다. 현재 하수슬러지의 폐기성가스에 대한 독성물질분석, 배출수의 COD 분석, 도양내 탄화수소 분석, 환경시험의 직접독성 분석 등 15개 분야에 대한 보고서 작성이 진행되고 있다.

5. 시사점 및 결론

영국은 국가 단일 인정체제 내에서 환경관련부처가 정책자문위원으로 참여하여 인정활동에 관한 정책을 제시하여 환경요구사항을 동등적으로 반영하는 구조를 갖다.
추로 있다. 그리고 별도로 환경 분야의 시험 분석 결과나 측정대행업체의 신뢰도를 증진시키기 위해 ISO 17025에 따른 품질체계 구축과 국가표준의 소급체계를 MCERTS계획안을 통하여 적극적으로 실천하고 있다. 그리고 측정대행업체와 실무 담당자에 대한 수준향상과 측정의 신뢰도를 확보하기 위하여 지속적인 모니터링과 교육을 실시한 뿐만 아니라 측정기기에 대한 전문기관의 형식승인을 통하여 장비의 성능을 유지하고 있다.

영국환경청은 MCERTS제도가 단순히 제도의 도입과 운영에서 끝나지 않도록 꾸준히 관리하고 정기적 모니터링을 통한 제도 정비를 하고 있다. 그리고 난로 그 수요가 증대되는 환경시험·측정 시장의 경쟁력 강화와 가격 결정의 공정성에 기여하고자 해마다 워크숍을 개최하여 정보교환의 장을 마련하고 새로운 기술 및 제도를 소개함으로써 MCERTS제도의 지속적인 발전을 추구하고 있다. MCERTS 도입 초기 환경 시험·시험분야에 대한 업체의 낮은 인지도와 국민적 관심이 부족하여 제도의 조기정착에 어려움을 겪기도 했지만 환경오염에 대한 경각심이 높아지면서 제도 또한 더불어 성장했다. 또한 제도 발전을 위해 해당기관이 펼친 노력 또한 성장의 원동력이었다. 이와 같은 MCERTS 인증체제의 성장이 꾸준히 이어진다면 MCERTS 인증은 사용자들에게 환경 분석의 결과 값을 더욱 신뢰할 수 있도록 돕는 것이며 영국이 환경시험·검사의 수준을 높이는 데 큰 역할을 할 것으로 기대된다.
제 3 절 일본의 환경시험·검사운영체계

1. 시험·검사기관 인정체계

일본의 대표적인 인정기구로는 일본적합성인정협회(JAB; Japan Accreditation Board for Conformity Assessment), 일본화학시험검사기관 인정기구(JCLA; Japan Chemical Laboratory Accreditation) 독립행정법인 제품평가기술기반기구(NITE; National Institute of Technology and Evaluation) 산하의 IAJapan (International Accreditation Japan) 등이 있다.

JAB는 적합성평가 제도에 따른 관리시스템을 포함하여 다양한 분야에 대한 인정활동을 수행하는 일본 내 유일한 종합적 인정기관으로 순수 민간 비영리단체이다. JAB는 1994년 11월에 사단법인인 경제단체연합회의 주도아래 35개 산업단체의 지원을 받아 발족하였다. 그 후 세계적인 환경관리시스템(ISO 14000) 심사등록제도 창설의 움직임과 더불어 일본 내 시험검사기관 인정제도 창설의 필요성을 배경으로 하여 1997년 6월에 사업범위를 확대하고 동시에 협회의 명칭도 현재의 명칭으로 변경하였다. JAB는 JIS 또는 국제규격에 대한 적합성평가와 관련된 사업을 수행함으로써 다른 나라와의 상호인정체계를 구축하여 일본 산업경제의 건전한 발전에 기여하는 것을 목적으로 하고 있다.

2002년 4월에 설립된 IAJapan은 민간 인정기구에서 적절히 대응하는데 한계가 있는 시험검사기관 인정분야에 대하여 정부의 인정기구가 이에 관한 몫을 수행해야 한다는 산업체, 학계 및 정부조직의 요구에 따른 것이다. IAJapan이 수행하고 있는 시험검사기관 인정 프로그램(Laboratory Accreditation Programs of IAJapan)은 특정계량증명사업자 인정제도(MLAP; Specified Measurement Laboratory Accreditation Program), 일본교정서비스제도(JCSS; Japan Calibration Service System), 일본국가시험검사기관인정제도(JNLA; Japan National Laboratory Accreditation System), NITE 인정제도(ASNITE; Accreditation System of NITE) 등 4개의 사업으로 구분된다. IAJapan은 JAB, JCLA와 함께 ILAC 및 APLAC 등 시험검사기관 인정에 관한 지역 및 국제기구에 정회원기관으로 참여하고 있으며 이
들 모두 MRA에 서명하였다.

일본의 시험·검사 기관 인정기구 체계를 보면 다음 그림 3-6과 같으며 파란색으로 표시한 인정기구에서 환경 분야 관련 인정 시험을 실시하고 있다.

그림 3-6. 일본의 시험·검사 기관 인정기구 체계

나. 환경 분야 시험·검사 인정체계

일본의 경우 환경 분야의 시험·검사기관에 관한 인정활동을 포괄적으로 수행하는 독립된 인정기구가 존재하지는 않는다. 하지만 환경 분야에 관한 대부분의 인정 활동은 JCLA에서 이루어지고 있다고 할 수 있는데, JCLA는 주로 화학 분야의 시험기관에 관한 인정활동을 수행하고 있다. 이들은 민간분야의 표준방법과 자체 시험방법은 물론 국제 및 국가표준에 의해 검증된 방법에 따라 시험을 실시하는 기관에 대하여도 인정활동을 수행한다. JCLA가 제공하는 환경 분야의 활동은 대기, 물, 토양, 고형 폐기물, 유수 등을 포함하는데 세부 인정범위는 다음 표 3-1과 같다.
표 3-1. JCLA의 환경분야 인정범위

<table>
<thead>
<tr>
<th>분야</th>
<th>소분야</th>
<th>인정범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경</td>
<td>대기</td>
<td>무기가스, 유기혼합물, 중금속, 미립자, 방사성 핵종</td>
</tr>
<tr>
<td></td>
<td>물</td>
<td>각종 품, 환경수 (강, 호수, 바다 등), 폐수 (생활폐수 및 산업 폐수), 중금속, 유기혼합물, COD, BOD, 중질소, 총인, pH, 유기인 혼합물, 방사성 핵종</td>
</tr>
<tr>
<td></td>
<td>토양</td>
<td>총수온, 유기인 혼합물, 총클로로아로제네스, 농업화학물질, PCB, 염소화탄화수소, 중금속, 방사성핵종 등</td>
</tr>
<tr>
<td>고형 폐기물</td>
<td>(Solid Waste)</td>
<td>도시폐기물, 농업쓰레기, 파쇄물 및 광산잔재물, 금속파편, 플라스틱, 총이, 발전소 분진 및 산업폐기물 제거기</td>
</tr>
<tr>
<td>잔류물 (Residues)</td>
<td></td>
<td>염소화다이옥신, 염소화향료 등</td>
</tr>
</tbody>
</table>

JCLA는 환경 분야 이외에 고무 및 플라스틱, 페인트와 도료, 석유, 식품, 석유 등과 같은 화학 산업과 식료품 산업 등 다양한 분야에 대한 인정서비스도 제공하고 있다. JCLA의 시험검사기관 인정에 관한 권한과 책임은 인정심의회 (Accreditation Council)에 있는데 인정심의회 내에 집행위원회 (Executive Committee)를 두어 인정심의회의 결정사항을 집행하도록 하고 있다.

각 평가사들은 집행위원회 산하의 시험검사기관 인정센터 (Laboratory Accreditation Center)에서 활동하고 있으며 전일제로 근무하는 선임 평가사 (Leading assessors)와 시간제로 근무하는 기술 평가사 (Technical assessors)로 구분된다. JCLA의 조직은 그림 3-7과 같다.

IAJapan의 특정계량증명사업자 인정제도인 MLAP은 환경오염의 주범으로 인식되고 있는 다이옥신과 같은 미세 물질의 정확한 측정을 통한 데이터의 신뢰성 향상을 위하여 도입된 제도로서 비교적 최근인 2002년 4월부터 시행되고 있다.

MLAP 사업의 시행과 함께 다이옥신과 같이 특정 환경유해물질과 관련이 있는 시험검사기관은 MLAP을 통하여 NITE로부터 인정을 받을 수 있는데, 그 절차는 그림 3-8에 나타난 바와 같이 일반적인 인정절차와 크게 다르지 않다. MLAP이 인정하는 분야는 대기 중 다이옥신의 농도와 수질 및 토양의 다이옥신 농도 등을 포함하고 있다.

이상에서 살펴본 바와 같이 일본의 경우 환경 분야 시험·검사기관에 대하여만 인정활동을 수행하는 단일한 인정기구가 존재하지 않는데, 이것은 다양한 인정기구의 활동을 수용하고 있는 일본 인정제도의 특성에서 기인한다고 할 수 있다. JCLA
가 환경과 연관이 있는 분야를 많이 다루고 있고 특정 환경유해물질에 대해서는 IAJapan이 MLAP을 운영하고 있으며 JAB에서는 적합성 평가의 일환으로 환경관리 시스템 심사등록제도와 관련된 인정등록사업 활동을 하면서 환경 분야에 관한 인정 활동도 수행하고 있기 때문에 별도의 독립 인정기구에 대한 필요성을 느끼지 못하는 것으로 보인다.

그림 3-7. JCLA의 조직표

그림 3-8. MLAP의 인정절차

※ 지정 인정기구가 있는 경우 신청 기관은 NITE 이외 해당 지정인정 기구에 인정을 신청할 수 있음.
제 4 절 독일의 환경 시험⋅검사 운영 체계

독일의 시험기관 인정체계는 시험, 인증 및 검사기관을 DIN (German Institute for Standardization), EN (European Safety Standards) 45000 표준시리즈에 따라 인정하고 있는데, 인정은 관련 연방 혹은 주 정부의 부처나 이들 부처로부터 권한을 위임받은 인정기구의 소관사항으로 되어 있다. 분야마다 인정기구가 별도로 있어 다양한 인정기구가 독일인정심의회 (DAR; German Accreditation Council)에 참여하고 있다.

한편, 시장의 요구에 따라 자율영역에서도 인정활동을 수행하는 기구가 필요하게 되었는데, 이에 대응하기 위하여 독일의 산업계는 시험 및 인증기관에 대한 인정을 수행하는 인정협회(TGA: Association for Accreditation)를 비롯한 여러 인정기구를 설립하였다. 현재 자율영역에서의 DAR 대표권은 TGA가 조정하고 있다.

DAR는 독일 내 연구기관 및 인정기구의 품질체계 및 기술능력의 강화를 목적으로 1991년 3월에 설립되었다. DAR는 인정기구가 아니며 그림 3-9에 나타난 바와 같이 영역별 각 인정기구의 활동을 조정하는 역할을 수행한다. 연방정부로부터 지원을 받고 있는 DAR의 주요 업무는 다음과 같다.

① 시험, 교정, 인증 및 검사기관의 인정에 관한 독일 내 활동 조정
(필수영역과 자율영역을 모두 포괄하고 있으며 인정활동을 하지는 않음.)
② 독일 내 인정 등록명부 D/B 관리 및 운영
③ 국가를 대표하여 인정과 관련한 유럽 및 국제기구에 참여

DAR의 이사회는 임기 2년의 회장 및 부회장, 자율영역과 필수영역의 인정기구를 각각 대표하는 2인 및 정부 부처인 BMWi(Federal Ministry for Economic Affairs and Technology)와 독일산업연합체(BDI: Confederation of German Industry)를 각각 대표하는 2인 동 총 6인으로 구성된다. 인정기구의 경우 현재 TGA와 ZLS가 이사회에 참여하고 있으며, 이사회는 농협에서 결정된 사항을 수행하며 필요시 농협 개회개최의 긴급한 주요 사안에 대하여 의사결정을 할 수 있다. DAR의 사무국은 현재 베를린에 있는 연방재료시험연구원(BAM: Federal Institute for Materials Research and Testing)안에 위치하고 있는데, 사무국 운영예산은 BAM의 일반예산에 포함되어 있으며 BAM은 예산을 결정할 때 사무국과 협의를 한다. TGA 역시 DAR 운영 예산에 일부 기여를 하는데 이에 관한 세부 사항은 BAM과 TGA 사이의 협의를 통하여 이루어진다.
DAR의 회원기관은 인정기구를 포함하여 연방 및 주 정부와 산업체 대표로 구성되어 인생정책에 영향을 미치며 인정제도의 조정에 기여하는 기관의 대표로 구성된 다. 신규회의가 있는 자율영역에서는 TGA에 의하여, 필수영역의 경우에는 연방 및 주 정부 대표위원회와 BMWi에 의하여 결정되며 DAR의 전체회의에서 이를 승
인한다. DAR는 각 회원기관의 활동을 지원하기 위하여 다음과 같이 4개의 위원회 를 두고 있다.

① Committee ABT: 인정결과에 관한 평가사 훈련 프로그램
② Committee ATF: 기술적 문제에 관한 권고사항
③ Committee AIZ: 유럽 및 국제기구에서 독일인정제도의 이익 증진을 위한 활동
④ Committee AZ: 자율영역 및 필수영역에 관한 조정, 지원 및 인정 절차에 관한 규정

환경영역에 관한 인정은 해당 산업과 관련된 각 인정기구에서 수행하고 있다. 예컨대, TGA의 경우 자율영역에서 환경 분야 경영시스템과 환경 허가사의 요원 에 관한 인정활동을 수행하며 DAP는 환경 분야의 시험・검사기관에 관한 인정활동 을 수행하고 있다. 아울러, DASMIN은 식품분야 분야의 환경 분석에 관한 인정활 동을 수행하고 DAU는 필수 영역에서 환경관리 분야의 인증기관 인정과 환경관리 기기의 인증 및 관리에 관한 시스템을 인정한다.

특히 DACH는 화학적 분석과 관련된 환경 및 대기, 환경독성에 관한 생물학적 분석 등의 분야에 대한 시험・검사기관의 인정과 제품 인증기관의 인정에 관한 활 동을 수행하고 있어 DAP와 함께 환경 분야의 가장 포괄적인 인정기구라 할 수 있 다. DACH는 1992년 설립된 민영기관으로 프랑크푸르트에 사무국을 두고 있으며, 평가사들이 5개 그룹으로 나누어져 있는데 이 중에서 안전과 환경 분야 평가사들이 따로 분류되어 있다.
제 3 절 결 론

1. 미국 환경 시험 체계가 갖는 시사점

과거에 미국은 환경부 주도로 환경측정 체계를 구축해 왔으며, 환경측정 표준의 개발, 승인, 적용에 합의에 근거하기 보다는 비교적 폐쇄적이고 관 주도의 단일시스템(환경부, 각 연방 주들)으로 운영해 왔다. 이 과정에는 미국 환경부가 국내외 급변하는 환경측정에 대한 수요와 규제사항들을 단독적으로는 제대로 파악하고 대응해 나갈 수 없다는 판단을 내린 것으로 추정된다. 그 이유로서 최근에 미국 시험소 인정 연합기구인 A2LA의 중재로 환경측정 합의표준 개발단체인 INELA를 환경측정 표준 채택과 적용 기구인 NELAC에 부속시키 TNI를 출범시켰으며 이 TNI라는 국가 단일 인정 체계 내에서 각 환경 측정 이해 당사자들을 참여하도록 유도하고 있다.

TNI 구조는 정부의 기능을 승인에 한정시키고 즉 그 핵심적인 중거로서 환경측정 표준 인정체계의 전반적인 승인업무를 제외한 모든 핵심 업무들은 민간주도의 단일 시스템의 활동을 연방정부기구들이 연합하여 적극적으로 지원하는 형태로 TNI의 장래를 시작한다는 점이다. 그 내용을 보면 환경측정에 있어서 합의표준 개발과 개발된 표준을 채택하고 그리고 채택된 표준이라는 잣대를 효과적으로 적용하기 위한 자기충족 구조를 만들어 가는 목표를 달성적으로 추구하고 있음. 즉, 모든 기능들을 민관 통합의 일원화 체계로 자기충족구조를 목표로 운영되고 있다.

모든 환경 측정 표준의 개발은 말 그대로 합의에 그 근거를 두고 있다 (즉, 합의 표준이라 함). 시간이 소요되더라도 관련 각계 이해 당사자들의 진정한 합의를 바탕으로 제정함으로써 민간 전문가 집단들의 개발 내용들을 충분히 검토하고 수렴하기 위한 의사결정 과정을 시행하고 있다. 모든 합의표준들은 문서화시켜서 보존하며 이 과정 또한 입법 절차처럼 제정, 개정, 폐지 등을 겪으며 효과적인 의사소통을 위해 문서표준화를 단행하고 있다.

위와 같은 내용으로 볼 때, 미국 환경 측정 체계의 급변하는 상황은 미국 국가 전반의 이익을 제고하고 동시에 기능이 민간이 주도하지만 동시에 국가적 차원의 관리가 용이한 국가소급성의 추구가 가능한 강력한 단일 청구를 구축하는 것으로 이해할 수 있다.

현재 우리나라의 환경측정 분야도 국가적 특수성을 어느 시점까지 인정받을 수 있는지 누구도 예측할 수 없으므로, 최근 WTO를 중심으로 급변하는 전 지구적 금융통화 단일 운영체라는 우산아래 국제 통상량의 비약적인 증가와 국제 무역절서
의 제한 및 무역 기술 장벽의 적용 범위가 하루가 다르게 확대되고 있는 상황을 예의 주시하여 시의 적절하게 대비해야 할 시점에 와 있다.

따라서 미국의 환경측정 관리시스템의 변화들로부터 규모는 아직 미국에 견줄 수는 없지만 그 역할에 있어서는 환경부의 주도로 변화해 온 우리나라 환경측정 체제에 적합한 문제해결의 실마리를 도출할 수 있는 충분한 이유를 미국의 모델로부터 얻을 수 있을 것이다.

2. 영국 시험검사 체계의 시사점

영국은 국가 단일 인정체제 내에서 환경관련부처가 정책자문위원으로 참여하여 인증활동에 관한 정책을 제시하여 환경요구사항을 능동적으로 반영하는 구조를 갖추고 있다. 그리고 별도로 환경 분야의 시험 분석 결과나 측정대행업의 신뢰도를 증진시키기 위해 ISO 17025에 따른 품질체계 구축과 국가표준의 소급체계를 MERTS 계획안을 통하여 적극적으로 실천하고 있다. 그리고 측정대행업체의 신뢰도를 확보하기 위하여 지속적인 모니터링과 교육을 실시할 뿐만 아니라 측정기기에 대한 업무관관의 정식승인을 통하여 장비의 성능을 유지하고 있다.

영국환경청은 MERTS 제도가 단순히 제도의 도입과 운영에서 끝나지 않도록 관리하고 정기적 모니터링을 통한 제도 정비를 하고 있다. 그리고 날로 그 수요가 증대되는 환경시험·측정 시장의 경쟁력 강화와 기각 결정의 공정성에 기여하고자 해마다 워크숍을 개최하여 정보교환의 장을 마련하고 새로운 기술 및 제도를 소개함으로써 MERTS 제도의 지속적인 발전을 추구하고 있다. MERTS 도입 초기 환경 측정·시험분야에 대한 업체의 낮은 인지도와 국민적 관심이 부족하여 제도의 조기정착에 어려움을 겪기도 했지만 환경오염에 대한 경각심이 높아지면서 제도 또한 더불어 성장했다. 또한 제도 발전을 위해 해당기관이 필적 노력 또한 성장의 원동력이었다. 이와 같은 MERTS 인증체제의 성장이 꾸준히 이어진다면 MERTS 인증은 사용자들에게 환경 분석의 결과 값을 더욱 신뢰할 수 있도록 독려할 것이며 영국이 환경시험·검사의 수준을 높이는 데 큰 역할을 할 것으로 기대된다.

3. 일본 시험검사 체계의 시사점

일본에는 3개의 인정기구가 존재한다. 환경과학 자체가 종합과학분야의 결과 마찬가지로 관리자체의 성장이 꾸준히 이어진다면 MERTS 인증은 사용자들에게 환경 분석의 결과 값을 더욱 신뢰할 수 있도록 독려할 것이며 영국이 환경시험·검사의 수준을 높이는 데 큰 역할을 할 것으로 기대된다.
가지로 환경분야에 대한 인정은 매체에 따라 다양하게 나뉘어질 수도 있을 것이다. IAJapan에서는 MLAP를 통하여 다이옥신 등 특정 유해물질 시험검사 기관에 대한 인증을 하며, JCLA에서는 환경 등 일반적인 화학분야 시험검사기관에 대한 인증을 하고 있다. 이러한 경우, 각 인정기구의 역할 분담을 명확히 한다면 인정기구 간의 부조화는 최소화 될 수 있을 것이다. 단지 우리나라의 경우 다양한 인정기구가 필요한 지 또는 하나의 인정기구 만으로도 인정활동이 가능한 것인지에는 전문성 확보, 업무의 효율성 유지 등에서 검토되어야 할 것으로 본다.

4. 독일 시험검사 체계의 시사점

독일은 인정위원회(DAR)에서 필요영역과 자율영역으로 구분으로 인정협의체를 운영하고 있으며 환경분야는 다양한 협의체에서 인정하고 있다. 환경분야 시험검사기관에 대한 인정은 주로 DAP, DACH에서 수행하고 있으며, 특히 DACH는 화학적 분석과 관련된 환경 및 대기, 환경독성에 관한 생물학적 분석 등의 분야에 대한 시험·검사기관의 인정과 제품 인증기관의 인정에 관한 활동을 수행하고 있어 DAP와 함께 환경 분야의 가장 포괄적인 인정기구라 할 수 있다. DACH에서는 환경독성에 관한 생물학적 분석분야 인정도 하고 있는 것이 특징이다. 우리나라라도 곧 생태독성제도가 도입된다면 생태독성시험기관의 인정이 필요할 수 있으며 이 경우 기존 인정제도로 시험검사기관을 인정할 것인지 또는 GLP에 따라 인정할 것인지에 대한 논의가 필요할 것이다.
제 4 장 환경 분야 시험・검사 발전 기본 계획

제 1 절 환경 분야 시험・검사 등의 운영 체계

1. 시험검사 지정/인정제도

가. 인정 제도

현재 우리나라 환경 분야의 독립적인 인정기구는 없으나 실질적으로 인정기구와 유사한 운영체계가 존재하고 있으며 그 에로서 정도관리, 숙련도 시험, 측정분석기관 지정제도, 환경측정기의 형식승인 및 정도검사 제도를 들 수 있다. 범정부 차원에서 국가 전체적으로 하나의 인정기구만 있으면 된다는 주장과 각 부처마다의 전문성을 살려서 각 부처에서 주관하는 인정체계를 만들고 이를 종합하는 협의회가 있으면 된다는 주장이 서로 엇갈리고 있어 현재 이에 대한 기획연구가 진행되고 있는 중이다. 단일인정기구의 대표적인 예로서 영국의 UKAS가 거론되고 있으나 그 내용을 자세히 들여다보면 실질적으로는 환경 분야의 전문성을 살리면서 이 분야를 주관하는 MCERTS와 같은 위탁 운영기관이 별도로 있다. 미국이나 캐나다, 독일 등의 여러 국가들은 역사적 배경 때문에 인정체계가 복잡하다. 현재 EU에서는 시장의 통합과 관련하여 인정체제의 통일을 시도하고 있는데 한 나라에 하나의 인정기구만 둔다는 원칙이지만 이를 유연하게 운영하여 여러 인정기구를 두어야 되도록 하여야 인정기구간의 충돌이 일어나지 않도록 하는 방향으로 흐르고 있다. 달리 말하여 인정기구간의 경쟁은 피하겠다는 것이 그 골자이다.

한 나라에 하나의 인정기구만을 두어야 한다는 주장과 각 부처별로 인정기구를 두어야 한다는 주장의 논리적 배경을 보면 진자의 경우, 효율성과 대표성에 중점을 두고 있고 후자의 경우는 책임과 전문성에 중점을 두고 있다. 양자 중에서 어느 것을 택할 것인가를 결정할 때 관련 규정의 성격을 참고할 필요가 있다. 환경이나 의료, 식품 등의 경우, 대부분의 규정이 강제규정에 속하는 것들로서 법적인 책임과 직접 연관이 있다. 따라서 인정기구의 신뢰성을 더욱 중요하게 고려하지 않을 수 없다. 실제로 KOLAS가 주로 관리하고 있는 산업분야 인정 및 숙련도 시험 운영반 해도 범위가 넓어 국제적인 수준으로 관리가 어려운 상황이며 이에 따라 국제적인 MRA를 체결하였다하여도 부실한 인정으로 인해 국내외적인 분쟁 발생 시 품질체
제 검증 과정에서 부족한 점이 드러날 수도 있다. 그러므로 강제규정과 관련된 영역에서는 효율성보다도 책임성이 더욱 중요하게 부각될 수밖에 없다. 이러한 상황을 고려한다면 인정기관은 각 부처마다 전문성을 살려서 각기 운영하되 이 인정기관가 국제적 요구사항인 ISO 17011에 따라 제대로 운영되고 있는지 감사하고 또 국가적으로는 인정기관 관련 국제기관에서 한국을 대표하는 역할을 담당하는 인정기관 협의체(가칭 인정위원회)를 두는 방안이 적절할 것으로 판단된다. 아래의 그림 4-1은 이와 같은 논리에 따라 도출된 국가적 차원의 인정체계(안)를 나타낸 것이다.

그림 4-1. 정책제안 1. (인정체제의 정비)

만약 하나의 인정기관, 즉 KOLAS 만을 수용할 경우, 환경 분야의 지정기관이나 측정대행업체 등의 기관들은 모두 KOLAS의 인정을 받아야 한다. 현실적으로 KOLAS의 운영인력 숫자와 내용을 살펴볼 때 과연 그만한 전문성을 지니고 있으며 또 환경 분야의 시험검사에 대한 책임을 질 수 있는가에 대해서 검토한다면 쉽사리 그만한 전문성을 지니고 있는지에 대해 검토한다면 쉽게 그러한 알림이 나오지 않는다. 산업자원부 기술표준원(적합성평가제도팀)에서 운영하는 KOLAS의 인적 구성은 살펴보면 환경, 식품, 의약, 법의학, GLP 등에 대한 기술적 부족으로 인정업무능력 및 사후관리능력이 미비하며 특히 환경분야에서는 별도의 환경분야 구분이 없이 대분류 화학시험 분야 중에서 수질, 폐수 및 폐기물, 대기, 토양, 실내 및 기타 환경으로 구분하여 운영하고 있는 실정이다. 그리고 150여명의 전문평가사(전체 420여명)가 화학분야 전체 인정업무 평가를 담당하고 있으며 숙련도시험의 자체실시가 불가능하여 외국의 숙련도시험에 참가한 결과로 객관적 평가를 하고 있다. 환경부 관련 법률들을 살펴보면 설계적으로 인정기관
체제와 유사한 운영체계가 이미 가동되고 있으므로 국립환경과학원 산하에 인정기구를 별도로 두어 통일된 운영 체제를 구축하는 것도 바람직할 것이다.

아래의 그림 4-2는 국가측정표준 체계와 관련 기관들의 역할을 고려하여 구상한 인정기구의 조직과 협조체계를 나타낸 것이다. 공인 시험검사기관들의 국가 측정표준 소급성을 보장하기 위하여 국가측정표준 대표기관인 한국표준과학연구원과는 협력을 위한 양해각서를 체결하여 국가측정표준이 원활하게 공급되도록 하였다. 또한 환경분야의 공정분석 표준화를 위하여 표준개발을 담당하는 기관으로서 국립환경과학원 내지는 환경기술개발기립과 상호 협력 각서를 체결함으로써 국립환경과학원이 직접 표준을 개발하거나 혹은 환경기술개발기립의 자금 지원을 받는 여타 관련 기관에서 개발을 하도록 하였다. 인정기구는 별도로 운영하되 환경부 장관의 영내지는 고시에 근거를 두도록 하는데 이것은 국가표준기본법 시행령 제16조에서 각 부처의 장은 필요할 경우 인정기구를 설치하여 운영할 수 있도록 규정되어 있는 것을 근거로 한 것이다. 만약 인정위원회(가칭)가 이른 시일 안에 발족하지 않는다면 인정기구 간의 경쟁이나 상호 중복을 피하기 위하여 KOLAS와 환경부의 인정기구 (가칭 NASEL, National Accreditation Scheme for Environmental Laboratories) 간의 MOU 체결을 추진하는 것도 바람직할 것이다.

![Diagram](image-url)

그림 4-2. 환경분야 인정기구 체계도

인정기구의 활동 대상이 되는 기관들로서는 숙련도 시험 주관기관, 시험법정기 관, 검사기관, 인증표준물질 생산기관, 환경측정기기 검사대행기관, 그리고 환경인증
기관을 고려할 수 있다. 이들 분야에서 활동하는 기관들로서는 숙련도 시험의 경우
정도관리가 여기에 포함되며 주관기관은 현재 국립환경과학원이다. 시험분석기관으
로서는 각 지방환경청, 유역환경청, 측정대행업체 등이 포함된다. 검사기관으로서는
검사대행기관이 여기에 포함되며 현재 검사대행기관에서 하고 있는 교정용 물질의
검사는 여기에서 분리하여 인증표준물질 생산기관의 범주에 넣는 것이 업무의 성격
상 합리적이다. 현재 환경 분야의 인증표준물질 생산업체는 없으나 환경 분야의 소
급성을 확립하는 데 있어 인증표준물질이 매우 중요한 역할을 담당하고 있으므로
이 분야의 생산기관이 이른 시일 안에 세워질 수 있도록 지원하는 것이 중요하다.
형식승인기관으로서는 현재의 형식승인기관이 포함되며 측정기기에 대한 정도검사
시행기관도 대상이 된다. 이것은 환경 분야의 법정 계량과 연관이 있다. 환경 인증
기관은 환경인증을 발행하는 기관들에 대한 인정활동도 인정기구의 업무 영역에 포
함되며 그 대상은 현재의 환경인증기관들이다. 아래의 표 4-1은 이 내용을 정리한
것이다.

표. 4-1. 인정기구의 활동 내용과 대상 기관 및 업무

<table>
<thead>
<tr>
<th>업무</th>
<th>현재의 대상 기관/체제</th>
<th>현재 업무 주관기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 시험감사기관 인정</td>
<td>지방환경청, 유역환경청, 측정대행업체</td>
<td>지방자치단체</td>
</tr>
<tr>
<td>2. 숙련도 시험 시행</td>
<td>정도관리 대상 기관</td>
<td>국립환경과학원</td>
</tr>
<tr>
<td>3. 검사기관 인정</td>
<td>검사대행기관</td>
<td>국립환경과학원</td>
</tr>
<tr>
<td>4. 인증표준물질 생산기관 인정</td>
<td>교정용 물질검사기관</td>
<td>국립환경과학원</td>
</tr>
<tr>
<td>5. 형식승인기관 인정</td>
<td>형식승인기관, 정도검사시험기관</td>
<td>국립환경과학원</td>
</tr>
<tr>
<td>6. 환경인증기관 인정</td>
<td>환경인증기관</td>
<td></td>
</tr>
</tbody>
</table>

아래의 그림 4-3은 인정기구와 측정표준, 그리고 성문표준의 상호 연관성을 보인
것으로서 인정기구의 바탕이 되는 각 분야별 국제표준과 함께 관련 국제기구를 부
기하였다. 특히 인정기구는 ISO 17011을 만족하여야 하며 그 핵심 내용은 주기적으
로 전문가의 평가(peer review)를 받아야 한다는 것이다. 이 부분은 국가적으로 정
부 부처의 인정기구를 아우르는 인정기구 위원회(가칭)가 만들어진다면 이 위원회
에서 담당하는 것이 현실적일 것이다. 그리고 국제기구에 대한 국가대표 역할도 이
위원회에서 하는 것이 합리적일 것이다.
나. 환경 시험검사 기관의 인정과 국제 기준

시험·검사 기관에 대한 폼질인정 체계와 연관이 있는 국제 규격은 ISO 17025 (정정 및 시험기관의 자격에 대한 일반 요구사항), ISO 17020(검사기관 운영에 대한 일반기준), ISO GUIDE 65(제품인증기관에 대한 일반 요구사항) 등이며 이들 국제 규격에서 요구하는 사항은 조직, 인력, 기술(시설, 장비, 방법)요건으로 구분할 수 있다. 이 규격의 내용을 조직과 인력, 기술 분야로 나누어 부연 설명하면 아래와 같다. 그 내용을 보면 상당히 유연하게 운용할 수 있도록 되어 있으며 인력에 대한 자격요건도 경험기간이나 학력 등의 기준을 기계적으로 적용하는 것이 아니라 실제로 업무 내용을 얼마나 잘 파악하고 있는가를 기준으로 하고 있어 상당히 합리적인 것. 아래의 내용 중에서 핵심이 되는 중요한 점은 기술요건 중에서 측정결과에 대한 국제적 신뢰도 보증을 위해 교정/측정 등의 모든 작업이 국가측정표준에의 소급 성 확보라는 관점에서 이루어져야 한다는 것이다.
조직

공인 시험⋅검사 기관들에 대해 요구되는 조직 체계는 ISO 9000시리즈의 품질경영 및 품질보증을 위한 조직체계와 유사하며 대부분 ISO 9000시리즈의 사항을 인용해온 것으로 환경 분야에서 적응할 경우 해당조직이나 부서의 여건에 맞도록 탄력적인 운용이 가능하다. ISO 규격의 모든 세부 규정은 지침 및 요건만을 정하고 있으며 실제 시행은 상황 및 적용 대상에 따라서 정하여 쓸 수 있으나 ISO의 원칙에서 벗어나지 않아야 한다는 것이 기본 원칙이다. 구체적으로는 조직의 체계가 품질보증이 가능하여야 하고, 잘못된 결과에 대해서 사후관리가 가능하고 물적 배상 등의 책임을 질 수 있는 시스템이어야 한다. 예로서 이를 대비한 보험가입 등을 들 수 있다.

경영책임자는 조직의 최고 경영자가 맡거나, 최고 경영자로부터 위임을 받아 독립적인 업무를 수행할 수 있는 부서장으로 지정하여야 한다. 이것은 품질보증의 의지와 방향을 정하고자 하는 것이 목적이다. 구매, 인사, 경영 등 모든 조직의 행위는 ISO의 지침에 부합하도록 규정되어 있어야 하고 이의 실행을 확인할 수 있는 조직체계를 요구하고 있다.

인력

ISO에서 규정된 인력은 현행의 환경 관련 제도처럼 자격 요건이 구체적으로 명시되어 있지 않고 해당 당사자가 업무의 양이나 내용을 가지고 판단하여 동 업무수행자를 기술 인력으로 인정기구에 등록하도록 되어 있다. 또한 기술 인력은 동 업무의 수행을 위한 기술적인 지식과 경험을 갖추고, 적절한 교육훈련을 이수하여야 한다. 인정기구에서는 상기의 사항에 대해서 실제업무수행능력을 평가하며 자격을 인정받은 기술 인력 외에는 업무를 수행할 수 없다.

시험검사기관은 자격이 있는 기술책임자와 품질책임자, 그리고 기술요원을 확보하여야 한다. 품질책임자는 1인이면 되고, 기술책임자는 기술분류 분야마다 확보하여야 한다. 기술요원은 세부적인 품질절차서와 품질지침서(공정시험방법 혹은 시험검사 지침서)에 규정되어 있는 내용을 수행할 수 있는 기술을 갖춘 사람으로서 업무량을 충분히 처리할 수 있는 인원이 확보되어 있어야 한다. 업무의 성격과 양에 따라 기술책임자와 품질책임자는 겸임할 수 있으나 양쪽 분야의 지식, 경력, 교육, 자격 요구 사항을 각각 만족하여야 한다.

기술

기본적으로 시설, 장비는 당사자가 업무수행에 필요/불필요를 판단하여 확보하고
업무에 적합하게 운영하고 있음을 인정기구로부터 인정받으면 된다. 인정기구에서 기준선을 정해줄 수도 있다. 측정 방법의 경우도 당사자가 절차 및 방법을 정하여 그 타당성은 인정기구로부터 인정받으면 된다. 새로 공포된 시험검사사례에서는 기본적으로 산업규격에 정한 방법과 환경오염공정시험방법 그리고 국제협약에 의한 측정식법의 운영 사항을 규정하고 있으나 ISO 17025 등 국제적인 추세에 따라 유효성이 충분히 입증되고 측정 목적에 부합하는 측정방법도 인정되어야 할 것이다.

다. 인정기구 설치 방안

□ 환경분야 인정기구의 방향

환경분야의 인정기구는 환경 분야 특수성을 감안하여 운영함으로써 시험·검사 기관의 시험, 분석능력을 높여 시험분석 신뢰도를 향상시키는데 돕는다. 또한 현재의 복잡한 범위 및 관련 규제에 따른 운영 체계를 일관성 있게 재조정함으로써 효율성을 높인다. 이와 같은 목적을 달성하기 위해서는 장기적으로 보아 현재와 같은 국립환경과학원 내부 조직으로서가 아니라 국립환경과학원 산하의 기관으로 두되 독립적으로 운영될 수 있도록 체계를 갖추는 것이 바람직하다. 그 순서는 다음과 같이 추진할 수 있을 것이다.

① 국립환경과학원 내부 정관 개정
② 현 환경측정기준부를 개편하여 인정기구관련 업무 전담부서로 전환하여 인정기구를 출범
③ 공인시험검사기관 지정 및 평가, 관리 권한을 인정기구로 이관(관련 범위 개정)
④ 숙련도 시험, 정도관리를 인정기구에서 추관하고, 장기적으로는 숙련도시험, 정도관리 주관 기관을 외부 용역화 하며 인정기구의 인정대상에 포함되도록 함. (예산 절감 및 효율 향상)

인정기구의 주요 역할은 크게 두 가지이다. 하나는 인정대상기관에 대한 심사이고 다른 하나는 기술적 수준을 유지하기 위한 활동이다. 인정대상기관에 대한 심사는 인정기구의 고유업무로서 다른 곳에 이관할 수 없으나 기술적 수준을 유지하기 위한 활동의 일환으로 시행되는 숙련도시험이나 정도관리는 이를 주관하는 기관을 지정하여 운영할 수도 있다. 본 보고서에서는 1안으로서 인정기구가 이를 직접 주관하는 방안, 그리고 2안으로서 이를 전담하는 기준 숙련도시험센터를 제시하였다.
□ 인정기구 세부 설치 방안

○ 국립환경과학원
- 전담부서(‘환경측정기준부’) 신설 추진 (완료)
 · 4개 과(환경표준과, 계측표준과, 평가인정과, 측정기술과) 30명
 ※ 행자부 등 관련 기관과의 협의에 따라 점진적 확대 추진
- 정도관리 고시 개정 등의 인정제도 관련 기반 구축
 · 세부 하위 지침 마련
- 관련법령 제.개정 추진, 인정기구 설립 근거 마련 (2008~2009년)
 · 인정기구 자체에 대한 것만 아니라 인정기구의 활동 대상이 되는 시험/검사/인증표준물질 등등의 관련 분야 모두 포함
- 전담부서를 독립부서로 확장, 인정기구로 운영 (2009~2010년)
- 환경 시험·검사 인정제도의 국제공인 추진
 (APLAC peer review, 2009~2010년)

○ 환경 시험·검사기관 종합평가(경영 및 기술능력 등) 제도 도입
- '정도관리고시' 개정으로 근거 마련, 숙련도 시험의 일환으로서 인정기관들에 대한 기술적 평가 기반이 됨.
- 기본정도관리(현행 정도관리)와 종합정도관리(검증제도)를 병행 운영
- 자율적 신청에 의한 종합정도관리 실시, 2008년부터 확대 적용

○ 종합정도관리 적합기관에 대한 분석능력 공인 (2008년 이후)
- 환경 시험·검사기관 적합성 평가 및 검증서 교부

□ 환경 시험·검사 기관 인정위원회 구성

환경 시험·검사 기관 인정 등에 관한 위원회를 구성토록 하고 각 위원회별로 다음과 같은 업무를 부여할 필요가 있다.

○ 시험기관 평가 인정위원회
- 시험기관 평가 기준 및 절차에 관한 사항 심의
- 이의 및 불만처리 해석 및 분쟁 조정에 관한 사항 심의
- 시험기관 인정 및 취소에 관한 사항

○ 환경분석 숙련도 시험 운영위원회
- 숙련도시험 시행기준의 제정 또는 개정에 관한 사항
- 숙련도시험 운영기관의 지정 또는 취소에 관한 사항
- 숙련도시험의 기본계획에 관한 사항
- 숙련도시험 프로그램에 관한 사항
- 숙련도시험 결과 및 조치의 적절성에 관한 사항
- 기타 숙련도시험 운영에 관한 사항
○ 평가사 자격 심의 위원회
 - 평가사자격 부여기준 설정에 관한 사항
 - 평가사자격부여, 등록, 자격취소 및 자격정지에 관한 사항
○ 기술 위원회
 - 분야별 기술기준의 제·개정에 관한 사항
 - 인정분야의 세부분류기준 설정에 관한 사항
 - 기타 현장평가 시 기술적 쟁점사항에 대한 최종해석에 관한 사항
 - 분야(대기, 수질, 토양, 유해물질, 먹는물, 소음환경, 자동차, 기타)별 기술 소위원회
 운영
○ 교육 훈련 운영 위원회
 - 교육기관 지정기준 및 지정절차에 관한 사항
 - 교육기관 지정 및 취소에 관한 사항
 - 교육훈련 기본계획에 관한 사항
 - 교육훈련 프로그램에 관한 사항
○ 환경시험 표준 조정 위원회
 - 환경오염공정시험 기준 심의
 - 환경시험 표준 절차서 심의
 - 시험기관의 국가 측정표준 소급성 유지에 관한 기준 절차
 - 인증표준물질 생산 인정 심의
 - 시험기관 합의표준 심의

☐ 타 인정제도와의 차이점
○ 현장평가에서 환경분석 정확성의 중요한 요건인 시료채취 및 시료관리에 대한 기준을 강화하고 있다. 즉, 시료채취계획, 시료취급절차(용기, 보관온도, 보유시간 등), 시료 사용용도의 기준 등에 대해서도 평가하고 있다.
○ 환경배합법 시행법에 따른 QA/QC를 강화하여 공시료 및 첨가시료 분석, 검출 한계측정, 정밀도측정, 표준물질사용 등의 품질관리절차 확립을 유도하고 있다.
○ 환경분야 인정제도는 환경배합법의 유사 분류 항목에 대한 정도관리를 실시하 고 있으나 KOLAS 인정을 받은 일부 보건환경연구원의 경우, 대기 및 수질에 대해 3~6항목에 대한 숙련도 시험만 시행하고 있다.
환경분야 시험기관에 대해 불필요한 경영요건을 간소화하고 있다. 현 규정이 고객의 입장에서 완벽한 것은 아니지만 시험 · 검사가 주요업무인 환경분야 시험기관의 여건에 맞는 경영요건의 도입을 위해 노력하고 있다. 향후에는 추가적으로 정영검토, 서비스, 고객불만사항 등에 관한 규정을 완화할 필요가 있을 것이다.

다음의 표 4-2에 환경분야 인정제도와 타 인정제도의 차이점을 정리하여 비교하였다.

표 4-2. 환경분야 인정제도와 타 인정제도의 비교

<table>
<thead>
<tr>
<th></th>
<th>환경분야 인정제도</th>
<th>KOLAS / ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>경영 · 기술평가</td>
<td>○기술측면 우선</td>
<td>○경영측면 우선</td>
</tr>
<tr>
<td>분석능력 평가</td>
<td>○직접 숙련도 시험 등 평가</td>
<td>○외부기관의 숙련도 시험결과 수용</td>
</tr>
<tr>
<td></td>
<td>○신청한 모든 매체 및 항목에 대한 평가(1회)</td>
<td>○일부항목에 대해서만 평가(3년마다 1회)</td>
</tr>
<tr>
<td>현장 평가</td>
<td>○QA/QC 실시여부를 현장중심 평가</td>
<td>○QA/QC 실시여부를 문서중심 평가</td>
</tr>
<tr>
<td></td>
<td>○시료채취과정 평가 실시</td>
<td>○시료채취과정 평가 미실시</td>
</tr>
<tr>
<td>기술지원</td>
<td>○시료관리, QA/QC 지침서 등의 기술지침서 배포 · 교육</td>
<td>○기술지원능력 없음</td>
</tr>
</tbody>
</table>

시험 · 검사기관 인정절차

시험 · 검사 기관 인정은 다음의 단계는 기본적으로 구성되어야 한다.

1. 신청평가 : 문서화된 품질시스템의 확립 여부를 판단
2. 숙련도시험 : 시험 · 검사기관 분석능력 확인
3. 현장평가 : 시험 · 검사기관의 환경, 인력, 측정 · 분석기기의 운용 현황 평가 및 확인
4. 사후평가 : 정기평가(숙련도시험 1년, 현장평가 매3년) 및 수시평가(감사 등)

시험 · 검사기관 평가 및 관리항목

시험 · 검사기관 평가 및 관리항목은 인정기구의 규모(인력, 예산 등)에 따라 달라질 수 있으나 아래 사항은 반드시 포함되도록 한다.

1. 조직 및 경영상태
② 품질시스템의 확립여부
③ 인력현황
④ 실험실환경의 적정성
⑤ 분석기기 및 표준물질의 올바른 운용여부
⑥ 시험법검증과 표준작업절차서의 확립여부
⑦ 시료채취와 시료관리 현황
⑧ 시험・검사결과의 기록과 보관
⑨ 내부 QA/QC 시행계획

□ 시험・검사기관 평가 절차도

시험・검사기관 평가 절차도를 보면 다음 그림 4-4와 같이 도시 할 수 있다.

그림 4-4. 시험・검사기관 평가 절차도

□ 인정기구 도입에 있어 고려사항

○ 인정기구의 국제적 수준화

인정기구가 갖추어야 할 요건을 명시하고 있는 ISO 17011에 따라 인정기구의 체제를 갖추도록 하고 인정기구 발족과 함께 가능한 이른 시일 안에 APLAC으로부터 peer review를 받도록 하여 국제적 공신력을 확보한다. 이와 같은 전략에 따라 업무를 추진한다면 환경 분야의 인정기구 체제 조기 정착에 많은 도움이 될 것으로 판단된다.
○ 측정대행업체의 지도·감독기관을 환경부로 다시 이관

현재 측정대행업체의 등록, 인정, 행정 처분 등이 모두 지방 자치단체로 이관되어 있어 기술적 분야에서의 지도 관리가 제대로 이루어지지 않고 있다. 예를 들어 서울시의 경우, 등록업무, 지도, 감독기관을 구청으로 이관한 결과, 지도, 감독 공무원의 전문성이 부족하고 대부분이 위생직 공무원이며, 또한 타 업무를 겸하고 있을 뿐 아니라 시 보건환경연구원과의 기술 협조체계 지연으로 현장 파악 능력이 부족한 실정이다. 아울러 공무원의 학연, 지연 등으로 감독 소홀 등의 현상이 나타나고 있다.

따라서 측정대행업 등록 업무를 인정기구로 이관하고 ISO 17025에 맞는 실험실을 운영하도록 함으로써 보다 정확한 측정분석 결과를 생산할 수 있고 잘못된 측정분석결과로 인한 분쟁의 소지도 해소할 수 있을 것이다.

라. 인정기구 관련 투자 계획

□ 인정제도를 위한 숙련도 시험 시범운영에 총 100백만원 소요
 - 상근 심사관 인건비(전문직 3명) : 약 80백만원
 - 현장평가 및 위크샵 참석 여비 : 약 15백만원
 - QA/QC 자료집 발간 등 : 약 5백만원

□ 인정제도 운영소요예산
 - 심의위원 수당, 평가 수당 및 운영비 등 : 연 200백만원

(2008년 기준)

<table>
<thead>
<tr>
<th>연도</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>인정기구 운영비</td>
<td>2억원</td>
<td>3억원</td>
<td>3억원</td>
<td>4억원</td>
<td>4억원</td>
</tr>
</tbody>
</table>

□ 연구비 산출 근거
 - 2008년도 운영비는 현재의 예산과 KOLAS 예산을 고려하여 책정.
 - 2010년부터 체제가 갖추어지면서 2011년부터 활동량이 늘어날 것으로 예상하여 예산 증액
2. 환경분야 시험·검사기관 정도관리 제도

가. 정도관리 운영 체계 개선

□ 법, 제도 개선

○ 시험기관 정도관리 평가기관(인정기구) 운영 기준
 - 시험기관 정도관리 평가 주관기관인 국립환경과학원 내부 평가 조직(인정기구)에 대하여 국제 표준화 기구(ISO)에서 정한 ISO/IEC Guide 17011(적합성평가 -적합성평가기관 인정에 대한 일반요구사항)을 만족할 수 있는 시스템 및 제기구에서 정한 기준에 적합한 운영기준 확립
 - 환경 시험·검사 기관 정도관리 평가 인정기구 운영 체계 확립을 위한 부처 간 협의 기구 구성
 - 환경시험·검사 기관 정도관리 인정기구와 한국 시험기관 인정기구(KOLAS)와의 상호 인정 협력 체계 협의
○ 시험·검사 기관 정도관리 평가 기준을 국제적 요구조건(ISO 17025, 시험 및 교정 기관 자격에 대한 일반요구사항)에 적합한 기준으로 재개정
○ 시험기관의 국가 측정 표준 소급성 체계 관리 기준 확립
○ 숙련도시험은 현 정도관리 숙련도 시험 평가 제도를 확대 발전, 국제 기준(ISO Guide 43)에 맞게 체계 확립
○ 국제적 동등성을 확보할 수 있는 “기준 숙련도시험 지원센터” 설립 기준 수립
○ 숙련도시험 기준시료 제공 기관 운영
 - 숙련도 시험을 위한 숙련도 기준시료 제공 기관에 대한 세부 규정 및 인정 규정 등을 국제 기준에 맞게 제정
 - 인정기구에서 숙련도 시험 기준 시료 제공 기관 인정 프로그램 운영
○ 숙련도시험 기준 시료 확보
 숙련도 시험 기준시료의 제공에 있어 기준시료의 기준값에 대한 측정 소급성 및 인증값 결정 절차 등을 정도관리 숙련도 시험 관련 운영 지침에 보완
○ 표준물질
 시험기관에서 사용하는 인증표준물질, 표준물질의 기준에 대하여 국가측정표준 소급성이 유지 될 수 있도록 규정 명시

-100-
기준 숙련도 시험 지원 센터 설립

○ 국내 환경 시험분석 기관의 측정능력 향상 및 국제적 적합성 확보를 위한 기준 숙련도 시험 지원센터를 설립 운영.

즉, 기준 숙련도 시험 지원센터는 국제 비교 숙련도 시험에 참가하여 국제적 동등성을 확보할 수 있는 능력을 갖추어야 하며, 기준 숙련도시험 지원센터의 지정 기준은 국제적으로 비교 숙련도 시험 등을 통해 국가 간 상호인정협정(MRA)을 갖춘 기관으로 함.

○ 기준 숙련도시험 지원센터는 한국표준과학연구원과 상호 연계 체계를 갖춘다.
○ 숙련도 기준 시료의 제공에 있어 측정표준 소급성 체계 확보.
○ 기준 숙련도시험 지원센터를 통해 시험기관 측정능력 향상 및 국제적 동등성 확보 기준 숙련도시험 지원센터 운영체계 구성도를 보면 다음 그림 4-5와 같다.

그림 4-5. 기준숙련도시험 지원센터 운영체계(안)

기준 숙련도 시험 지원 센터의 역할
기준 숙련도 시험 지원 센터를 설치하는 경우, 그 센터의 역할은 다음과 같다.

○ 시험·검사기관의 시험 분석능력을 평가하고 성적서의 대외신뢰도를 향상 시
키기 위하여 숙련도시험 프로그램을 운영하며 현 환경측정분석기관 정도관리 제도 숙련도시험 절차를 국제적 기준에 적합한 숙련도시험 방법으로 발전적으로 개선하여 숙련도시험의 운영 기준을 국제 기준인 ISO/IEC Guide 43(시험기관간 비교에 의한 숙련도 시험)의 기준에 적합하도록 확립한다.
○ 기준 숙련도 시험 지원센터를 중심으로 시험기관의 자율적 비교 시험 혈련과정을 통해 시험기관의 측정능력을 단계적으로 향상시킬 수 있는 교육 프로그램을 수립한다.
○ 연차별 숙련도 시험 기준시료의 개발 및 보급 계획을 수립한다.
○ 숙련도 시험 기준 시료 공급기관(PT Provider) 육성 계획을 수립한다.
○ 시험기관의 분석능력을 향상한 사후관리 숙련도시험 프로그램을 수립한다.
○ 시험기관 숙련도시험을 위한 교육 훈련 program을 개발한다.
○ 숙련도시험에 대한 국제교류를 통한 국내 환경시험기관의 국제적 위상 확보
○ 국가 간 상호인정협정(MRA)에 요구되는 비교 숙련도시험과의 연계 계획을 수립한다 (“Tested once and accepted everywhere”)

나. 정도관리 제도의 단계적 발전 계획

□ 기준 숙련도 시험 지원센터 설립을 위한 기반 구축
○ 1 단계 (2008년 - 2009년)
- 국가측정표준대표기관인 한국표준과학연구원 내 숙련도 시험 센터를 기반으로 국제 기준(ISO guide 43)에 의한 1단계 숙련도 시험 프로그램 운영
- 국내 환경시험분석기관에 대한 현황분석 및 단계적 평가 계획 수립
- 숙련도 시험물질 제공 협력업체(PT Provider) 개발 육성 계획 수립
- 국외 현황 및 국내 수요에 의한 분야별 숙련도 시험시료 개발 및 공급 계획 수립
- 숙련도시험 기준시료 제공 기관에 대한 세부 인정 프로그램 수립
○ 2 단계 (2009년 - 2010년)
- 환경분야 시험기관 인정기구의 기준 숙련도시험 지원센터 인정프로그램 수립
- 기준 숙련도시험 지원센터 설립(인정기구와 병행하여 국립환경과학원 내부, 또는 외부에 설립)
- 국가 측정표준 대표기관과 연계하여 기준숙련도 시험 지원센터의 국제적 동등성 확보 계획 수립
- 국제 숙련도 시험 교류 계획 수립
환경 시험·검사 기관 시험분석능력 향상 계획

○ 기준 숙련도시험 지원센터를 통한 시험 기관 측정분석능력 훈련 계획과 연계하여 국제적 동등성을 확보할 수 있는 대표적인 민간시험기관 육성

- 1단계 5년간 국제적 동등성을 확보할 수 있는 5개의 대표 민간시험기관 육성
- 시험기관의 측정 능력을 숙련도 시험을 통해 최고/최저 분석능력을 평가하고 5단계의 등급으로 분류 육성

○ 기준 숙련도 시험 지원센터의 국제 수련도 시험 프로그램 참가, 지역, 국가간 상호 인정 협약 체결

○ 기준 숙련도 시험 지원센터를 통해 시험기관의 국제적 동등성 확보

숙련도시험 항목의 연차 별 확대 계획

○ 숙련도 기준 시료 개발 계획에 따라 연차적으로 단계적 확대
○ 숙련도 기준시료 공급기관 육성계획과 연계
○ 숙련도 기준시료 공급기관의 품질관리 체계 인정 프로그램 수립

숙련도시험 기준 시료 개발 및 공급 계획

숙련도 시험을 위한 기준 시료의 조제 및 공급 체계를 국제 기준에 맞게 다시 수립하여야 할 필요가 있다. 숙련도 시험을 위한 국제 기준은 ISO/IEC Guide 43으로 두개의 규격으로 되어 있다. 43-1은 숙련도 시험 프로그램의 개발 및 운영에 대한 것이고, 43-2는 시험 인정기구에 의한 숙련도 시험 프로그램의 선정 및 활용이
다. 따라서 현재의 정도관리 숙련도 시험은 이러한 규정을 만족하고 있지 않기 때문에 시험검사기관이 국제적 동등성을 확보하기에는 여러 가지 문제가 있음을 알 수 있다. 또한 숙련도 시험 주관기관으로서의 국제적 상호인정 연결고리체계도 준비되어 있지 않아 정도관리 결과의 국제적 신뢰도를 확보하기 위한 체계의 수립이 필요하다.

숙련도 시험 용 기준 시료는 균질성과 안정성, 기준값의 불확도가 평가된 시료를 공급하여야 하며, 신뢰성 있는 정도관리 시료를 제조하기 위해서는 측정표준과 연결고리를 형성할 수 있는 공신력 있는 숙련도 시험 공급기관을 평가하고 인정하는 종합적인 관리체계를 갖추어야 한다. 또한 이를 위한 안정적인 연구비를 지원할 수 있는 예산의 확보가 필요하다.

○ 한국표준과학연구원과 연계하여 숙련도시험 기준 시료 개발 계획 수립
○ 연차별 숙련도 기준시료 개발 공급 계획을 다음 표 4-3과 같이 추진한다.

표 4-3. 숙련도 기준시료 개발 공급 계획

<table>
<thead>
<tr>
<th></th>
<th>‘08</th>
<th>‘09</th>
<th>‘10</th>
<th>‘11</th>
</tr>
</thead>
<tbody>
<tr>
<td>현업 수</td>
<td>실내공기질,폐기물 등 7개</td>
<td>실내공기질,폐기물 등 7개</td>
<td>실내공기질,폐기물 등 7개</td>
<td>실내공기질,폐기물 등 7개</td>
</tr>
<tr>
<td>항목수</td>
<td>60개</td>
<td>80개</td>
<td>90개</td>
<td>90개</td>
</tr>
<tr>
<td>예산</td>
<td>5억</td>
<td>7억</td>
<td>10억</td>
<td>12억</td>
</tr>
</tbody>
</table>

3. 환경측정기기 형식승인 및 정도검사

□ 검사대행기관 지정 인정 제도

검사 대행기관 지정에 대한 지정/승인/관리 기준을 검사기관의 적합성 평가 국제 기준인 ISO 17020 기준에 맞게 재개정하여야 하며, 검사 기관 지정체계에서 법에 정한 장비, 인력 등 기본적인 지정요건과 함께 기술 인력 평가에 있어 동 업무의 수행을 위한 기술적인 지식과 국제 기준의 폼질 교육이 되어 있어야 한다. 인정기구에서는 상기의 사항에 대해서 실제업무수행능력을 ISO 17020의 폼질 기준에 맞게 평가할 수 있는 체계를 갖추어야 한다. 향후 인정기구 체계가 확립되면 검사대행기관 평가 인정을 인정기구에서 관리하도록 ISO 17020 기준에 맞는 검사기관 인
정 프로그램을 수립한다.

“환경분야 시험·검사 등에 관한 법률” 제12조의 교정용 표준디어 또는 표준가스 등[이하 “교정용품(較正用品)”이라 한다]의 검정 제도에 대한 개선 필요하며, 교정용 표준가스 등을 인증표준물질 공급기관 인정 프로그램 규정으로 옮겨 관리할 필요가 있다. 또한, 환경측정기기 검사 대행기관 중 환경부 지정 표준가스 검정기관에 대하여 검정기관의 인정 기준을 ISO Guide 34에 따른 인증표준물질 생산 기관 기준에 따라 관리할 수 있는 기준을 수립한다.

검사대행기관 사후관리 제도에서 국립환경과학원은 환경시험검사 인정기구 내에 검사기관 평가를 위해 평가 위원회를 구성하여 각 분야 별(대기환경, 배출시설, 수질 환경, 설비환경, 먹는물, 토양지하수, 교통환경) 전문 평가사 양성 계획을 수립하고 검 사 기관 평가를 위해 전문 평가사 7인 이내와 인정기구 내 전문위원으로 평가위원회를 구성한다. 위원장은 대상기관별 현지평가계획을 수립하고, 평가반장을 선임하여 현지 평가를 실시하며 현지평가는 현장보고, 현장조사, 현장심사, 평가결과의 정리 등 내용을 포함하며 다음과 같은 사항을 평가한다.

- 검사기준 및 성능시험방법의 적정성여부
- 인력 및 시설, 장비 등의 확보 및 적정성여부.
- 검사표준의 작성 및 성격시 발급의 적법성
- 국가표준기본법에 의한 검사기기 및 검·교정 이행 여부
- 기타관련 자료의 보관 및 관리 등

이를 위해 현재 적용되고 있는 사후관리 평가 규정(국립환경과학원 예규 제390 호, 2006)을 인정기구 내 검사기관 사후관리 프로그램으로 확대 발전시킨다.

□ 환경측정기기 형식승인·정도검사 방법

환경측정기기 형식승인·정도검사 방법에서는 형식승인 성능시험의 기준을 강화하고, 측정 장비 형식승인, 정도검사 대상을 확대하여야 하며, 환경측정기기 정도검사 제도의 개선이 필요하다.

미국, 유럽 등의 환경측정기기형식승인 조건은 환경조건(온도, 습도, 진동 등)에 대한 내성 시험 및 장기간에 걸친 현장시험 등이 적용되고 있으나 국내의 경우 측정기기의 기본 성능시험 항목만을 검사하고 있어 실제 측정기를 현장에 설치하여 사용할 때 현장 환경조건에 따라 문제점이 발생하는 경우가 있다. 따라서 국내 환경측정기기 형식승인 시험 기준을 현장 환경시험 항목을 강화한 시험 기준 수립하여야 한다.
총유기탄소자동차측정기 등은 널리 사용되고 있으나 현재 형식승인 대상에서 제외되어 있으며, 이와 같이 널리 사용되고 있는 일부 대기 및 수질분야 자동측정기 등은 대상에 추가 포함할 필요가 있다.

현재의 환경측정기기 정도검사방법은 상시 모니터링 장비의 성능 안정성 시험을 중심으로 되어 있으며, 측정기기의 측정값 정확도 유지를 위한 정도관리 부분 시험 항목, 절차 등이 제외되어 있다. 따라서, 환경측정기기 정도관리 제도에서의 측정값 정확성 관리를 위한 시험절차 도입 필요하다. 교정 대상 측정장비(굴뚝유량계, 가스 흡식 교정장치 등)에 대하여 기존의 정도검사 대상 장비와 분리하여 시험방법 검토가 필요하며 현재의 정도검사 시험방법으로는 측정기기의 정확도 유지에 문제가 있으며, 별도 교정을 받아야 함에 따라 환경측정기기 정도검사 제도 개선이 필요하다.

□ 신 환경측정기기 기술 평가 제도

새로운 측정기술에 대한 유효성 검증 절차에 대한 강화가 필요하다. 현재 새로운 측정방법에 의한 측정기가 도입되었을 때 대체성능시험방법에 의한 측정기 성능시험방법이 적용되고 있으나, 대체성능시험방법에 대한 유효성 검토 과정이 미흡하다. 이에 따라, 시험 표준안 제정 절차에 따라 검증 절차를 강화할 필요가 있으며, 미국 EPA의 ETV(Environmental technology verification) 제도 등의 모델을 검토할 필요가 있다. 환경 분야 표준화 제정 제도 절차에 따라 새로운 측정기술에 대한 성능 평가 절차를 거쳐 형식승인 성능시험방법 표준안을 규정할 수 있는 프로그램을 수립하여야 한다. 또한, 신 환경측정기기 유효성 평가를 위한 표준화 사업에 다음과 같은 투자가 필요하다.

- 새로운 측정방법에 의한 측정기술에 대하여 시험방법 및 기준의 제정에 필요한 표준화 사업
- 새로운 측정기술에 대한 공정시험방법 표준화 사업과 병행하여 투자 계획 수립

□ 환경 측정망 정도관리 제도 수립

환경측정망(대기, 굴뚝, 수질)은 국가적으로 많은 시설 투자를 통해 환경측정망 infra가 구축되어 있으며, 측정망 실시간 측정자료의 신뢰성 확보를 위해 측정불확정도 평가 및 측정 데이터 유효성 검증 절차의 도입이 필요하고, 이를 위해 환경측정망에 대한 정도관리 제도를 수립하여야 한다. 또한, 환경측정망 연속자동 측정기에 대한 정도관리와 현장 숙련도 평가가 필요하므로, 이는 현재 수행되고 있는 정도검사
(1년)방법이 연속자동 측정기의 기본 성능에 대한 평가로서 연속 사용되는 측정기의 정도관리로는 부족하기 때문이며, 검사대행기관 평가사에 의한 연 2회 현장 정도관리 평가제도 운영계획의 수립이 필요하다. 이와 함께 측정망 유지관리 절차, 측정기의 교정 상태, 측정값의 불확도 등에 대한 현장 방문 평가 체계 수립과 민간업체에 의한 측정망 유지관리 운영 상황에 대한 정도관리 평가가 필요하다.

4. 환경측정 표준화 제도

가. 환경오염공정시험방법

□ 공정시험방법 제·개정 계획

환경관련법상 명시되어 있는 환경 분야별 환경오염물질 항목은 837개로써, 이 중 300개의 오염물질이 환경오염공정시험방법으로 제정되어 있다. 환경 분야별 환경오염물질 항목이 환경오염공정시험방법으로 제정되어 있지 않은 항목들은 단계적으로 환경오염공정시험방법을 제·개정을 추진하여야 하며, 각 분야별 규제항목과 환경오염공정시험방법으로 제정되어 있는 항목을 보면 다음 표 4-4와 같다.

표. 4-4. 환경오염공정시험방법 제정 현황

<table>
<thead>
<tr>
<th></th>
<th>계</th>
<th>대기</th>
<th>수질</th>
<th>먹는 물</th>
<th>소음·진동</th>
<th>실내 공기질</th>
<th>토양</th>
<th>폐기물</th>
<th>유해 화학물질</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준 항목수</td>
<td>799</td>
<td>62</td>
<td>40</td>
<td>62</td>
<td>8</td>
<td>10</td>
<td>17</td>
<td>28</td>
<td>560</td>
</tr>
<tr>
<td>시험 방법 수</td>
<td>334</td>
<td>49</td>
<td>45</td>
<td>68</td>
<td>9</td>
<td>10</td>
<td>22</td>
<td>17</td>
<td>95</td>
</tr>
<tr>
<td>시험 방법 수/기준항목 수</td>
<td>42%</td>
<td>79%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>61%</td>
<td>17%</td>
</tr>
</tbody>
</table>

□ 공정시험방법 제·개정 계획의 필요성

환경오염공정시험방법의 작성 체계 및 내용이 국제기준에 맞는 표준체계로 구성되어 지고, 공정시험방법에 의한 분석결과의 국제적 동등성 확보와 과학적 타당성 확보를 통해 공정시험방법의 국가 표준규격으로서의 위상을 확보할 필요가 있다. 또한 환경분야별 환경오염공정시험방법의 서술체계가 서로 상이하므로 작성체계,
단위체계, 분류체계, 용어 등의 표준화가 필요하다. 아울러, 환경오염공정시험방법 중 실험도 검증되지 않고 출처가 불분명한 시험법이 존재하여 현장 활용도가 떨어지는 경우가 발생하고 있으며, 범용적으로 사용할 수 있는 낮은 수준의 환경오염공정시험방법이 아직까지 존재하고 첨단 분석기기에 의한 분석방법의 도입이 신속하지 못한 경우가 발생하고 있다. 무엇보다 새로운 측정기술의 도입 시 측정방법의 유효성 검증 체계가 확립되어 있지 않아 새로운 측정기술의 시장 진입이 어려운 문제점이 있다. 이와 같은 문제점이 대두되면서 공정시험방법의 제·개정 계획의 필요성이 제기되고 있다.

□ 공정시험방법 제·개정 추진 전략
공정시험방법 개정 체계 확립을 위해서는 사용 중인 환경오염공정시험방법 검증에 의한 존속, 폐기 여부를 결정하고, 국제적 기준, QA/QC가 포함된 환경오염공정시험방법 제·개정 계획에 따른 연차 수행 계획을 수립하여야 한다. 또한, 분야별로 시험방법이 미 제정된 오염물질은 유해성에 따라 공정시험방법을 우선 제정토록 하고, 첨단 분석기기술, 선진 시험방법, 연구 중인 이론에 대해서도 시험방법 도입을 위한 확인과 검증 체계를 확립하여야 한다. 그 후 해외 선진 측정분석기술 및 개발된 분석기기, 시험방법의 실제 확인과 검증이 필요하며, 시험법 제·개정 연구 활성화를 통해 분석기기, 분석기술의 국산화를 증진하고 환경 분야 시험검사에 관한 산업육성 촉진시켜야 한다. 무엇보다도 정확하고 신뢰성 있는 시험법 확보로 시험법 관련 국제기구와 국제기준에 주도적으로 참여할 수 있도록 하여야 한다.

환경오염공정시험방법 제·개정 계획에 대한 연구비 투자 비율이 상당히 낮으므로 시험법 제·개정에 있어 국제 기준과 유효성 검증 등의 절차를 철저히 하기 위해서는 연구비 확대 투자가 필요할 것으로 판단된다. 공정시험방법을 새롭게 국제 기준에 맞게 개정하면서 적은 연구비용 내 단기간에 급하게 개정하는 경우 분석자가 이해하기 힘들거나 분석과정이 명확하지 않고 분석방법의 유효성이 검증되지 않은 시험방법이 마련될 수 있다. 때문에 충분한 기간과 충분한 예산 확보를 통해 단계적인 제·개정 절차를 추진하기 위한 계획을 수립할 필요가 있다.

□ 환경오염공정시험방법 표준화 개발 사업 계획 수립
첨단환경분석기술, 선진 시험방법, 연구 중인 이론에 대한 시험방법 도입을 위한 유효성 검증 및 시험결과 확립을 위한 환경오염공정시험방법 표준화 개발 사업의 추진 필요성이 요구되고 있다. 이는 시험법 제·개정 연구 활성화를 통해 분석기기,
분석기술의 국산화를 증진하고 환경 분야 시험검사에 관한 산업의 육성을 촉진하기 위해서 필요하다. 이로 인한 파급효과는 새로운 측정기술의 선형 표준화 기준 개발을 통해 국제 표준화 기준 선점이 가능하다는 것이다.

표준화 개발 사업을 위한 사업비는 인증표준물질 개발 사업과 함께 환경기술개발 발전홍원 예산에서 별도의 분류로 설정하여 매년 일정 비율 배정되도록 하는 전략을 계획한다. 참고로 일본의 경우, 나노기술분야의 전체 연구비 중에서 1%를 표준화에 강제로 배정하고 있다.

※ 산자부 표준화 사업 예산 179억

항목 : 계속과제 69개, 신규과제 25개(과제 당 약 1억 8천만원)

☐ 환경오염공정시험방법의 국제규격화

현재 환경 관련 공정시험방법을 전문으로 다루는 국제표준기구는 없다. ISO는 주로 공산품의 품질과 관련된 규격에 집중되어 있고 IEC는 전기용품 및 제품, 그리고 ITU는 통신기술과 관련된 표준화를 전문적으로 다루고 있다. 환경오염공정시험 방법은 같은 화학분석이라도 분석 방법에 따라 그 결과가 달라질 수 있고 장기적으로는 국가간 분쟁의 소지가 될 수도 있으므로 공정시험방법을 국제 표준화하는 전략을 추진하는 것이 필요하다. 국내적으로는 동일한 내용의 규격이 KS에 있다면 이것을 준용하여 KS-ES(가칭) 규격으로 운영하여 충돌을 피하면서 KS에 없는 것은 새로이 제정하여 제정과 동시에 국제화를 도모하는 전략을 추진하는 것이 바람직하다. 여기에서 ES는 Environmental Standard의 약어로서 환경 분야 관련 기술 기준 및 규격을 지칭한다. 환경기술진흥원에서 공증기술 개발을 위한 과제 공모를 할 때 표준화를 최종 목표로 한다면 이 목표를 달성하는 것이 용이할 것이다.

나. 환경 분야 국가측정표준 소급성 체계

「환경분야 시험·검사 등에 관한 법률」 제5조(시험·검사 등의 운영체계 확립사업의 추진 등)에 따르면 환경부장관은 시험·검사 등의 운영체계를 확립하고 이의 유지·발전을 위하여 다음의 사업을 추진하여야 한다고 되어 있다.
- 환경오염 측정기술의 정밀도 및 정확도 향상을 위한 사업
- 측정기기에 대한 국가측정표준에 관한 소급성(遡及性) 유지에 관한 사업.

환경측정 분야의 국가 측정표준 소급성 체계는 측정기기의 교정 등에 의한 소급
성 체계와 인증표준물질(CRM, Certified reference Material)에 의한 소급성 체계로 이루어진다. 특히 환경측정분석은 물질량을 측정하는 시험이 주를 이루고 있어 실험실에서 사용하는 표준시료 즉 인증표준물질의 측정표준소급성 체계 확립이 필요하다. 그러나 현재 환경시험분석에 사용하는 표준시료에 대한 규정이 인증표준물질에 의한 소급성 체계 연결고리를 갖지 못하고 있는 상황이다. 따라서 국가 측정 표준 대표기관인 한국표준과학연구원으로부터 측정표준 소급성을 갖는 인증표준물질 개발 및 보급 계획을 수립한다.

현재 운용되고 있는 「측정분석기관 정도관리의 방법 등에 관한 규정」, 「환경측정 기기의 형식승인·정도검사 등에 관한 고시」 등의 규정에 교정대상 측정기기의 국가 측정표준 소급성 유지에 대한 명시와 함께 측정·시험에 사용되는 표준물질에 대하여 국가표준기관에서 제공하는 인증표준물질(PrM, Primary reference material)과 소급성을 갖는 표준물질을 사용토록 명시한다.

다. 환경 분야 표준물질 생산 및 공급 체계

환경 분야의 측정·분석, 시험 등에서 측정표준에의 소급성과 정확성을 확보하는데 있어 인증표준물질은 매우 중요한 요소이다. 따라서 국가 측정표준 소급성을 갖는 인증표준물질 전달 체계를 구축하는 것 역시 중요하다.

인증표준물질은 시험·분석 데이터의 신뢰성과 보편성을 높이고 국가 표준에의 소급성을 확보하는데 중요한 역할을 한다. 화학 및 재료물성의 측정에 있어서 표준물질의 역할은 절약측정에 있어서 분동과 거의 비슷하다. 표준물질과 관련된 ISO/IEC 지침은 다음과 같다.

- ISO/IEC Guide 30(표준물질 관련 용어 및 정의)
- ISO/IEC Guide 31(표준물질 인정서의 내용)
- ISO/IEC Guide 32(화학분석에 있어서 교정 및 인증표준물질의 활용)
• ISO/IEC Guide 33(인정 표준물질의 사용방법)
• ISO/IEC Guide 34(표준물질 생산방법의 품질시스템 원칙)
• ISO/IEC Guide 35(표준물질의 인증 - 일반적 및 통계학적 원리)

선행분야 표준물질 생산기관 인증제도 수립

환경분야 표준물질 생산기관에 대하여 국제 기준인 ISO Guide 34에 맞는 기준을 갖추도록 인증 프로그램과 환경시험기관 인정기구 내에 표준물질 생산기관 인증 제도를 수립하여야 한다. 또한, KOLAS에 의한 표준물질 생산기관 인정제도와 상호 인정체계 협력이 이루어져야 하며, 환경부의 표준가스 검정기관 지정 제도를 표준물질 생산기관 인정프로그램 안에서 재개정할 필요가 있다.

인증표준물질 생산 및 공급 계획 수립

국내외적으로 인증표준물질, 표준물질 생산기관에 대한 조사를 수행하여 환경 분야 측정분석시험기관들이 이를 활용할 수 있도록 하는 기반을 구축하여야 하며, 한국표준과학연구원을 중심으로 하여 환경분야 인증표준물질 개발 공급 계획과 단계적인 환경분야 표준물질 생산기관 육성 계획을 수립하여야 한다. 이와 함께 환경시험 표준가스 생산기관에 대하여 ISO규격에 따른 표준물질 생산 요건(ISO Guide 34)을 단계적으로 갖출 수 있는 계획을 수립한다. 또한 국제적 동등성을 갖추기 위하여 한국표준과학연구원과 연결된 숙련도 시험 프로그램 참가 계획을 수립한다.

환경분야 시험기관에 대하여 단계적인 표준물질 사용의무화 확대를 추진하여야 하며, 국내 미개발 표준물질에 대하여 NIST, IRMM 등 국외 표준기관 생산 표준물질 활용 계획 수립과 한국표준과학연구원 내 구축되고 있는 COMAR(국제표준물질 데이터베이스) 국가코딩센터 사업과 연계하여 환경분야 표준물질의 등록 절차도 수립할 필요가 있다. 다음 표 4-5에 표준물질 생산 관련 기관을 정리하였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>관련 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>표준물질 관련 공공기관</td>
<td>한국표준과학연구원: 국가측정표준기관(NMI), 측정의 소급성 유지 및 표준물질, 숙련도시료 보급, 숙련도시험 수행</td>
</tr>
<tr>
<td></td>
<td>KOLAS: 표준물질생산기관 인정프로그램 운영 중</td>
</tr>
</tbody>
</table>

표 4-5. 표준물질 생산 관련 기관
<table>
<thead>
<tr>
<th>연도</th>
<th>표준물질 및 숙련도시험 기준시료 개발 계획</th>
</tr>
</thead>
</table>
| 2008 | 대기: 온실가스 측정용 CRM, 실내공기질 분석용 CRM(4종)
수질: 중금속 및 무기물 용액 CRM(Pb, Hg, As), 배수 분석용 CRM
토양/폐기물: 유해원소 분석용 토양 CRM(4종) |
| 2009 | 대기: 대기분석용 표준용액(5), 실내 공기질 분석용 CRM(4)
수질: 중금속 및 무기물 용액 CRM (F, Cl-, SO₄²⁻), TCE, PCE 분석용 CRM
토양/폐기물: PCB분석용 CRM, 유해원소 분석용 토양 CRM(5)
토양/폐기물: 기타 POPs 관련 CRM(1) |
| 2010 | 대기: 대기분진 중 중금속 CRM, 대기 중 유해가스 감시, 실내공기질 분석용 CRM
수질: 중금속 및 무기물 용액 CRM(Cd, Cr), 유기염제류 분석용 CRM(1,1-디클로로에틸렌, 사염화탄소, di(2-에틸)인산トル)
수질 규제 농
약 분석용 CRM
- 토양/폐기물: 환경감시용 토양 방사능 CRM.
- 토양/폐기물: 기타 POPs 관련 CRM(2)

2011
- 대기: 대기분석용 표준용액(2), 실내공기질 분석용 CRM(4)
- 수질: Haloacetonitrile 분석용 CRM, 비스페놀A 분석용 표준용액, 중금속 및 무기물 용액 4 CRM(Ba, Br, Se, 6가크롬), BTEX 분석용 CRM
- 토양: 환경감시용 토양 방사능 CRM(2)
- 토양/폐기물: 기타 POPs 관련 CRM(3), 다중 원소 분석용 표준용액

2012
- 대기: 미량 VOC, 악취, 독성물질 CRM, 실내공기질 분석용 CRM(5)
- 수질: TBT, TPT 분석용 유기용액 CRM, THM분석용 CRM

5. 교육, 인력 육성 계획

인력 육성 계획은 실습위주의 교육을 통한 분석인력의 능력 배양을 목적으로 온라인 교육을 통한 상시교육체계 유지하여야 하며, ISO 17025 기준에 따른 품질관리 교육을 강화(품질책임자, 기술책임자 과정 교육 등 추진)하여야 한다. 또한, 시험기관 인정제도 도입에 따른 평가사 교육과정을 전문 분야별로 평가사 양성 교육프로그램을 수립하여 품질관리 교육 프로그램을 개발하여야 한다. 이에 대한 추진방안으로는 환경측정기술요원과정 등 14개 측정분석 과정의 실습 시간을 강화함으로써 실습중심의 교육과정 도입과 교육과정을 내용별로 세분화, 전문화하여 실제적으로 도움을 주는 교육과정으로 개편이 필요하다.

※ 정도관리의 경우, 대기, 수질 등 분야별로, 시료채취, 분석 등 내용별로 정도관리 교과목이 세분될 수 있음

또한, 현재 국립환경인력개발원 평가사 교육과정을 내실화하고 평가사 교육과정이 운영되고 있는 교육기관을 활용하는 등 개선이 요구된다.
- 평가사 과정 연 4회 (기수별 25명 교육)
- 기술책임자 과정 연 4회 (기수별 25명 교육)
- 품질책임자 과정 연 4회 (기수별 25명 교육)

국제적 기준(ISO 10015: Guideline for training quality management)에 준하는 시스템을 갖춘 교육기관을 인정함으로써 교육기관의 개선 및 국제적 규격에 부합되도록 하여야 하며, 실무 경험이 풍부한 연구기관 및 현장 근무자를 통한 교육으로 실
무적용 가능한 교육을 추진하며, 사이버 교과목을 신설·활용함으로써 상시 교육체제를 유지하도록 하여야 한다.

교육과 인력 육성을 위한 예산으로 시험기관 인정제도 평가사 등에 대한 소집교육 및 품질관리 교육을 강화하는 등 3개 과정 신설 및 운영하는데 117백만원(교육비, 원고료, 강사료 등을 필요 경비로 1인 6만원으로 계산)이 소요되는 것으로 추정된다.

(백만원)

<table>
<thead>
<tr>
<th></th>
<th>'08</th>
<th>'09</th>
<th>'10</th>
<th>'11</th>
<th>'12</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>정도관리 평가사</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>기술책임자</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>품질책임자</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

또한 환경분야 시험·검사 등에 관한 법률에 처음으로 도입된 측정분석사 제도는 그 활용도가 높지 않으면 측정분석사에 대한 호응도가 저조할 것이다. 현재도 많은 자격증이 있기 때문에 환경분야 관련법령에서 측정분석사를 우선적으로 활용하는 못할지정형 측정대행업의 기술인력 요구증 악청이나 각종 지정/인정제도의 인력 요구에 활용될 수도 있도록 인센티브를 부여 할 수 있는 제도적 장치 마련이 필요한 것으로 판단된다.

6. 시험검사 기관 국제협력

가. 인정기구의 국제적 공인 획득

인정기구(NASEL)의 국제적 신뢰도를 확보하기 위해서는 인정기구가 ISO 17011에 부합되게 조직되었고 이에 따라 운영되고 있다는 것을 제3자로부터 확인을 받는 peer review를 받을 필요가 있다. 현재 국립환경과학원이 APLAC 의 준회원이므로 인정기구 출범을 위한 모든 기본 체제가 갖추어지면 APLAC에 의한 peer review를 받도록 하며 인정기구로서의 체제가 갖추어진 것을 국제적으로 공인받는 전략을 추진하는 것이 바람직하다. 시기는 이르면 2009년, 늦으면 2010년으로 하면 무리가 없을 것이다.
나. 환경오염공정시험법 관련 국제 표준화 교류계획

환경오염공정시험법의 국제화를 위해서는 한중일 3국의 관련 기관들이 공동으로 국제 규격화를 추진할 수 있도록 하기 위한 협조체제를 구축하여 공정시험법의 공동 개발, 상호 비교시험, 국제표준화를 위한 공동보조 등을 추진하도록 한다. 현재의 ISO시험방법 중에는 환경오염공정시험방법에 있는 시험방법보다 복잡하여 활용도가 떨어지는 것이 있는 반면 환경오염공정시험법이야 JIS에는 더 나은 시험방법이 있으므로 이를 국가간 협의로 국제표준화하는 방안이 필요하다. 국제표준화는 ISO의 범주에 해당하면 ISO 규격화를 추진하며 현재 ISO에 대한 국가 대표는 기술표준원이므로 기술표준원과 협조체제를 구축한다. 만약 ES가 성격상 ISO에서 다루기에 적합하지 않거나 ISO의 규격 제정에 걸리는 시간이 너무 길거나 할 경우, 3국의 환경 관련 기관들이 협의하여 유럽연합에서 운용하는 EN과 같은 지역표준을 개발하여 AES(가칭, Asian Environmental Standards)를 제정하는 전략을 추구할 수도 있을 것이다.

현재 환경 분야의 표준이나 기술적 문제를 다루는 국제적 전문기구가 없다. 부분적으로 몇몇 국제기구에서 환경 관련 문제를 다루고 있으나 대부분 환경 보호에 중점을 두어지고 있다. 환경 분야의 표준과 관련된 활동이 국제적으로 필요하나 현재로서는 인식 부족으로 인해 소홀히 다루어지고 있을 뿐만 아니라 국제적으로 관심의 대상이 되지 못하고 있다. 이 문제를 해결하기 위해 장기적으로 3국이 공동보조를 취하면서 환경 분야의 국제적 문제, 표준 규격체제, 환경표준 확립 및 공급 등의 일을 담당할 WEO(가칭, World Environment Organization)를 구축하는 방안을 협의할 수도 있을 것이다.

다. 인증표준물질의 공동개발

환경분야의 국제적 동등성을 확보하기 위해서는 인증표준물을 바탕으로 한 소급체계의 구축이 절대 필요하다. 환경 분야의 인증표준물질은 매체에 따라 갖추어 야 하므로 종류가 많고 이것들을 모두 한 기관이 개발한다면 비용과 시간이 많이 걸린다. 이것을 감안하여 일체적으로는 한중일 3국간 인증표준물질 공동 개발을 위한 국제협력을 추진하고 장기적으로는 국제적으로 인증표준물질과 관련된 활동을 가칭 WEO를 중심으로 추진하는 방안을 검토하는 것이 바람직하다.
라. 국제숙련도 시험 참가

환경측정 결과가 국제적으로 인정을 받기 위해서는 APLAC, ILAC 등 국제기구 활동과 아울러 국가 간에 실시하는 숙련도시험에도 꾸준히 참가하여 측정능력을 인정받아야 한다. 외국의 경우 숙련도 시험기관은 인정기구가 인정을 하고 인정기구는 숙련도시험 프로그램개발, 숙련도시험의 유효화 기준 개발 등 기술적 지원을 하고 있다. 환경분야에서 숙련도 시험을 실시하는 기관들을 지원하는 기관들과 협력하고 환경측정의 핵심적 항목에 대해 그 기관의 자문을 받아서 프로그램에 참여하는 것이 바람직하며 이와 관련된 해외기관들은 다음과 같다.

유럽시험기관 연합(EUROLAB)은 1990년에 EEC와 EFTA 소속 국가의 시험기관 대표들이 서명한 양해각서에 의해 설립되었다. 설립목적은 유럽시험기관들의 의견을 대변하고 활동의 중복을 피하기 위한 조정을 하고 정보교류를 위한 정기간행물 발간과 워킹그룹 활동, 측정품질의 증진을 위한 활동 등을 수행하기 위한 것으로서 주로 유럽관점에서 시험소간 상호비교와 숙련도 시험을 실시하고 있다.

최근 들어 화학분야의 숙련도 시험 문제를 집중적으로 다루기 위하여 EA/EUROLAB/Eurachem(EEE-PT) WG가 구성되었다. EEE-PT는 숙련도 시험 교육, 숙련도 시험의 평가, 측정불확도의 단계적 실시, 숙련도 시험 제공기관에 대한 기술지원 등에 대해 논의 중이다.

샘플링에서 유발되는 측정불확도 관련 문제를 다루기 위해서 별도로 EUROLAB/Eurachem/CITAC/Nordeast WG가 구성되었다. EEE-PT를 위해 저렴한 숙련도시험 개발 및 준비, 숙련도시험실시를 위한 연구개발에 필요한 재원을 EU로부터 확보하였고, 숙련도시험의 유효화 기준이 이 WG에서 정의되었다. 숙련도 시험에 대하여 EEE-PT WG에 위임된 사항은 다음과 같다.
- 시험기관 인력과 인정심사원의 교육
- 측정과 분석에 대한 숙련도시험과 관련한 기술자문과 정책개발
- 다음 주제들에 대한 정책과 가이드라인의 준비
 · 인정과 실험실 운영에서 cost-effective 숙련도시험의 가능성 검토와 확인
 · 숙련도시험 유효화 기준의 개발
 · 숙련도시험 프로그램 성과와 시험소 인정간의 상관관계 연구
 · 숙련도시험의 중재와 상호비교의 특별한 필요에 대한 확인
 · 지역기구가 또는 APLAC과 같은 지역 공동체들과 협력 및 상호비교에 대한 조건과 원칙에 대한 토의
 · 국내 또는 국제숙련도시험프로그램을 운영하는 조직과 협력
숙련도시험과 관련하여 유럽위원회(EC) 연락관과 협력창구 유지

NATA는 표준물질생산기관, 화학시험, 건자재시험, 생물학적 시험, 측정과학기술과 역학시험 분야 등에서 해당기관의 인정을 하는데 필요한 숙련도시험을 개발하기 위하여 사전 조사를 실시한다. 모든 시험기관들은 NATA PT 정책(policy circular #2)에 따라 적어도 2년에 한차례씩 주요 측정분야 숙련도시험에 참가해야 한다.

NATA는 숙련도시험프로그램을 더 이상 직접 운영하지는 않지만 프로그램의 기술적 수준을 높이 유지하기 위하여 기술적인 관여를 계속하고 있다. 최근 NATA는 숙련도 시험을 강화하면서 다음의 내용들을 강화하고 있다. 숙련도 시험주관기관의 정기적 숙련도 시험 프로그램 제공, NATA의 기술적 지원, 특수 분야에서는 NATA가 직접 프로그램 구축, 제공하는 등이다. 숙련도시험은 인정분야에서 필수적이며 NATA는 요구에 따라 프로그램을 제공하는 PT 제공기관 역할을 수행한다. 숙련도시험의 정기적으로 제공됨에 따라 시험기관들은 적합한 숙련도시험기관과 프로그램을 선택할 수 있게 되었으며 경우에 따라서는 일부 프로그램에 의무적으로 참여할 것을 요구하고 있다. 다음 항목들은 NATA 산하기관에서 제안된 숙련도시험 항목이다.

- 생물학적 시험 : Carcass hygiene, 물 등
- 화학시험 : 환경(수질, 토양 등), 식품(과자, 곡물, 와인 등), 표면도장(페인트), 건자재 : 콘크리트, 아스팔트 등
- 역학시험 : 체인, 금속조직, 섬유, 펄프
- 비파괴 : 초음파 두께측정, 철용접의 초음파탐상

측정 및 표준물질연구소(IRMM)는 EC 집행위원회 산하 7개 연구센터의 하나로서 환경 문제와 식품안전성 확보를 위한 측정문제를 다루기 위해 1993년에 설립되었다. IRMM의 주요 기능은 인증표준물질의 생산과 보급이지만 시험소간 비교도 실시하고 있으며 그중에는 국제측정평가프로그램(IMEP), 숙련도시험, 측정방법 유효화, 기기교정심사가 있다. 생수 중의 Hg, Pb, Cd, 분석에 대해 숙련도시험을 실시하고 있다.
제 2 절 환경 분야 시험 · 검사 발전 추진 계획

1. 시험 · 검사 발전 연차별 추진계획

가. 시험 · 검사 운영체계 년차별 추진계획

<table>
<thead>
<tr>
<th>년도</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>인증제도 구축운영</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>인증기구 설립 추진</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>인증기구 관리 부서 운영</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>국제 인증기구 peer review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOLAS와 MoU</td>
<td>APLAC/ILAC MoU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>특집 인증기구 운영</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>속련도 시험 프로그램 운영</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>속련도시험 인정 기준 (ISO 43) 개정</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>기초속련도시험 지원센터 설립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>표준연 속련도시험 지원센터 운영</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>속련도시험 기준시리즈 개발 계획 수립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>속련도 기준시리즈 응급기관 육성</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

나. 연구개발 년차별 추진 계획

<table>
<thead>
<tr>
<th>년도</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>형식승인 경도검사 선진화</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>형식승인 시험검사 기준 강화</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>형식승인 범위 확대</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>신 환경측정기술 평가체계 확립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>표준화 개발 사업 추진</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경 측정방 정도관리</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>측정항 정도관리 제도 확립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>측정사례의 측정정 정도관리 평가 제도 추진</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>공정시험법법 제대개</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연차별 공정시험법 제개정 계획 수립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경오염공정시험법 국제 규격화</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>공정시험법 표준화 개발 사업 추진</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>국가환경표준 소급성 제도 확립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>인증표준물림 인증 프로그램 수립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>표준물림 생산 기관 육성</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>인증표준물림 개발 계획 수립</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>국제 환경규제 다음 인증표준물림 개발 기반 구축</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
다. 교육훈련 및 인력양성 년차별 추진계획

<table>
<thead>
<tr>
<th>연도</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경측정 체계운영교육</td>
<td>인정제도 운영 관련 법/제도 교육 개발</td>
<td>속련도 시험 체계</td>
<td>프실 교육 강화(기술책임자/품질책임자 과정)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>전문기과정</td>
<td>제품환경(REACH, RoHS, WEEE), 기후협약 등 기술 교육</td>
<td>GLP 교육</td>
<td>시험기준 인정 평가자 교육</td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경측정 기술교육</td>
<td>수질 / 대기 / 토양 / 실내공기 질 측정교육(실습 교육 강화)</td>
<td>환경측정 병합 평가</td>
<td>절단환경측정분석 기술교육</td>
<td></td>
<td></td>
</tr>
<tr>
<td>표준품질 생산, 보급, 사용교육</td>
<td>표준품질 인증제도</td>
<td>표준품질 취급 및 사용</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

라. 국제협력 년차별 추진계획

<table>
<thead>
<tr>
<th>연도</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경부야 국제기구활동 지원</td>
<td>기후협약 등 국제협약 이행 및 국제기구 활동 지원</td>
<td>국제환경기구(WGO) 설립 제안</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경측정 국제적동등성화보</td>
<td>ISO/IEC 17025, GLP 체계 확립</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer Review</td>
<td>ILAC 가입추진</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>국제시험소 인정기구 활동강화</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>해외숙련도 시험 준비</td>
<td>해외숙련도 시험 실시</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경측정 국제신호비용</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
시험·검사 발전 연차별 소요예산 내역

(단위 : 억원)

<table>
<thead>
<tr>
<th>구분</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 체계 운영</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>인정기구 설치 운영</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>기준숙련도시험 센터 운영</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>소계</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2. 연구 개발</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>형식승인 정도검사 선진화</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>공정시험방법 제 개정</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>인증표준물질/숙련도 기준시료 개발</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>신환경측정 기술 인증</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>소계</td>
<td>13</td>
<td>17</td>
<td>23</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>3. 교육 훈련 및 인력 양성</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경인정기구 평가사 과정</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>시험검사 품질관리 과정</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>환경측정 기술교육</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>표준물질 생산, 보급, 사용교육</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>소계</td>
<td>1.8</td>
<td>2.3</td>
<td>2.5</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>4. 국제 협력</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>환경분야 국제기구 활동 지원</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>국제환경기구(WEO) 설립 제안</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ILAC/APLAC 가입 및 활동 활성화</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>국제 숙련도시험 참여 활동</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>소계</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>합계</td>
<td>23.8</td>
<td>32.3</td>
<td>42.5</td>
<td>52.9</td>
<td>56.3</td>
</tr>
</tbody>
</table>
3. 중점추진과제 실천 계획

<table>
<thead>
<tr>
<th>중점추진 과제</th>
<th>세부 추진과제</th>
<th>추진기관 (협조기관)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 체계운영</td>
<td>(1-1)인정제도 구축운영</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td>국립환경과학원/표준연 MoU 체결</td>
</tr>
<tr>
<td></td>
<td>오피스 설치운영 (신규)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>기준숙련도시험지원센터 설립 운영 (신규)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>숙련도 시험 실시</td>
<td>국립환경과학원</td>
<td></td>
</tr>
<tr>
<td>(1-2)관련프로프레임 운영</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>형식승인 기준제도 개선</td>
<td>관련기관 위임</td>
<td></td>
</tr>
<tr>
<td></td>
<td>인증기준물질(표준사항 생산 및 보급)재단운영(신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>환경측정 네트워크 및 DB구축운영 (신규)</td>
<td>국립환경과학원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>동아시아 POPs 모니터링 및 국제규격의 분석체계 구축운영</td>
<td>관련기관</td>
<td></td>
</tr>
<tr>
<td></td>
<td>다이옥신 및 폐기물 분석전문기관운영</td>
<td>환경상품인증제도 운영</td>
<td></td>
</tr>
<tr>
<td>2. 연구개발</td>
<td>(2-1)형식승인 기준검사 선정화</td>
<td>환경부</td>
<td>방사능 분야는 과기부, 전자파 분야는, 정통부와 협조</td>
</tr>
<tr>
<td></td>
<td>형식승인 기준검사 기준 선정화 (신규)</td>
<td>환경부</td>
<td></td>
</tr>
<tr>
<td></td>
<td>신환경측정기기 평가제도 수립 (신규)</td>
<td>환경부</td>
<td></td>
</tr>
<tr>
<td></td>
<td>형식승인 범위 확대 (신규)</td>
<td>환경부</td>
<td></td>
</tr>
<tr>
<td>(2-2) 공정시험방법 개정</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>대기오염공정시험 방법</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>토양, 폐기물을 유해화물질검사방법</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>먹는물, 수질시험 방법</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>실내공기질시험 방법</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소음, 진동, 방사능, 전자파시험 방법 (신규)</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>공정시험방법 표준화 개발 사업 (신규)</td>
<td>국립환경과학원, 한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td>(2-3) 인증표준물질, 표준시험 개발</td>
<td>관련기관</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>숙련도시험용 표준시험 개발</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>인증표준물질 개발 (신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>국외 외주 수입 인증표준물질 개발 (신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td>(2-4) 신환경측정 기술인증</td>
<td>한국표준과학연구원</td>
<td>관련 업계</td>
<td></td>
</tr>
<tr>
<td></td>
<td>신환경 측정기술 인증제도 확립 (신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>신환경 측정기술 인증제도 운영 (신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td>콘텐츠</td>
<td></td>
<td>지원</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3. 교육훈련 및 인력양성</td>
<td>(3-1) 환경측정 체계 운영 교육</td>
<td>한국표준과학연구원 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 인정제도 운영 (신규)</td>
<td>국립환경인력개발원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 국제기준품질관리 교육</td>
<td>국립환경인력개발원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3-2) 환경측정 기술교육</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 수질, 대기, 토양, 식품검정 측정기술교육 (신규)</td>
<td>국립환경인력개발원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 환경측정 분과 평가 (신규)</td>
<td>국립환경인력개발원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 첨단 환경측정분석 기술교육 (신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3-3) 전문가과정</td>
<td>한국표준과학연구원 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 제품환경(REACH, RoHS, WEEE) 기후협약</td>
<td>국립환경인력개발원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 대응기술교육 (신규)</td>
<td>국립환경인력개발원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ GLP 교육 (신규)</td>
<td>국립환경인력개발원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3-4) 표준물질 생산, 보급, 사용교육</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 표준물질 인증제도 (신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 표준물질 취급 및 사용 (신규)</td>
<td>한국표준과학연구원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 국제협력</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4-1) 환경분야 국제기구 활동지원</td>
<td>표준연 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 기후협약 등 국제협약 이행 및 국제기구 활동 지원 (신규)</td>
<td>환경부</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 국제환경기구 (WEO) 설립제안 (신규)</td>
<td>표준연 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4-2) 환경측정 국제적 동등성 확보</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ ISO/IEC 17025, GLP 체계 확립 (신규)</td>
<td>국립환경과학원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ Peer Review (신규)</td>
<td>표준연 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ ILAC 가입추진 (신규)</td>
<td>표준연 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 국제시험소 인정기구 활동 강화 (신규)</td>
<td>표준연 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 해외숙련도 시험 준비/실시 (신규)</td>
<td>표준연 지원</td>
<td></td>
</tr>
<tr>
<td></td>
<td>◦ 환경측정 국제상호비교 (신규)</td>
<td>표준연 지원</td>
<td></td>
</tr>
</tbody>
</table>
제 5 장 결론

환경 관련 측정, 시험, 검사를 업무로 하는 기관은 그 영역이 넓고 해당 기관들도 다양하다. 환경 분야 시험·검사기관 운영 및 지정 등은 대기환경보전법, 수질환경보전법, 먹는 물 관리법 등 각 개별법에 명시되어 있으며, 각각의 공정시험방법에서 각 분야 별로 측정, 분석 항목, 방법 및 절차 등이 규정되어 있다. 환경 부담금의 부과 근거가 되는 측정, 시험 및 분석을 직접 수행하고 있는 이들 시험기관이 부담하고 있는 가장 큰 문제는 시험·검사 결과에 대한 품질 보증의 신뢰성이다. 환경 분야 시험·검사 결과의 신뢰도에 대한 논란이 일어날 때 이를 불식할 수 있을 정도로 국민들에게 확실한 믿음을 제공할 수 있고 국제적 동등성을 확보할 수 있는 국제 기준에 맞는 시험기관 운영 체계의 확립이 필요한 시점이다.

환경 분야 시험·검사기관의 시험·분석 결과에 대한 신뢰도를 국제적 기준에 의해 보증할 수 있는 운영체계를 확립함으로서, 국내적으로 삶의 질 향상에 따른 환경오염에 대한 국민적 관심과 환경에 대한 신뢰성을 확보할 수 있게 하고, 국제적으로는 국제무역 관련 환경규제에 대응할 수 있는 기업 경쟁력을 확보할 수 있게 할 것이다. 그러나 불행히도 현재 국민들의 환경 분야 시험·검사 결과에 대한 신뢰도 인식 수준은 대체적으로 그렇게 높지 못한 것이 현실이며, 국제적 경쟁력을 갖춘 민간시험기관이 전무한 상태이다. 현재 국내 환경분야 시험기관들이 측정 결과의 신뢰도를 높이기 위하여 많은 노력을 경주하고 있으나 아직 국제적 기준에는 미흡한 실정이다. 특히 국내의 여러 민간 기업들이 환경오염 배출물질에 대한 시험 분석을 측정대행업체에 의존하고 있으나 이들 업체들의 측정 신뢰도에 대한 평가 및 관리가 아직도 부족한 면이 있어 개선할 여지가 있는 상황이어서 이들 업체들의 신뢰도 증진이 무엇보다도 시급하다.

환경부는 국제적 환경규제 등 국제외 환경변화에 신속히 대응하고 환경 분야 시험·검사를 국제적 수준으로 발전시키기 위하여 대기, 수질, 소음·진동, 폐기물, 유해물질 등 분야별 특수성이 따른 독립된 개별법령에 의하여 운영되고 있는 시험검사 분야를 효율적으로 통합운영 할 수 있도록 “환경분야 시험·검사 등에 관한 법률”을 제정하였고, 환경시험·검사 분야 발전 선진화를 위하여 기존 및 운영체계의 기본 방향, 중장기 투자계획 및 국제협력에 관한 사항 등이 포함된 “환경시험·검사 발전 기본계획”을 5년마다 수립하도록 하였다.

본 연구에서는 이에 따라 환경시험·검사 발전 기본계획을 수립하기 위한 연구를 수행하였다. 국내외 환경변화에 따른 국내 환경시험·검사 분야 현황을 분석하
있고 선진국의 환경시험·검사 운영체계에 대하여 조사 분석 하였으며, 앞으로 환경시험·검사 분야의 발전을 위한 운영체계, 연구개발, 인력양성, 국제협력 분야에서 향후 5년간 추진해야할 업무영역과 기본방향을 제시하였다.

국내 환경분야 현황분석에서는 시험·검사 기관 현황과 시험·검사 기관 운영체계로서 환경시험·검사 기관 지정/인정 제도, 정도관리 제도, 환경측정기기 형식승인·정도검사 제도, 환경측정 표준화 제도 및 교육, 인력 현황 등에 대하여 현황 분석 및 문제점을 도출하였다. 국내 현황 분석으로 미국, 영국, 일본 및 독일의 환경시험·검사 운영체계를 조사 하였으며 특히 미국과 영국의 환경분야 인정체계에 대하여 본 기본계획 수립의 모델로서 자세히 분석하였다. 미국의 환경 분야 인정기구인 TNI의 최근 발전 모델과, 영국의 환경분야 인정프로그램인 MCERTS 체계에 대하여 조사 분석 하였다.

국내외 현황분석 내용을 바탕으로 환경분야 시험·검사 발전 기본계획(안)을 수립하였다. 환경시험·검사 기관 운영체계에 있어 국제 기준에 따른 시험·검사 기관 인정기구 운영 기준을 갖추기 위한 기본 방안을 제시하였다. 환경 분야 시험·검사 인정기구로서 갖추어야 할 인정프로그램으로서, 국제 기준인 ISO Guide 17011에 따른 인정기구 내부 조직 및 품질관리 프로그램과 ISO Guide 17025에 따른 시험·검사 기관 적합성 평가 기준 등을 확립하도록 하였으며, 인정기구 내 인정위원회 구성 방안을 제시하였다. 또한 국내 대표 인정기구인 KOLAS와의 협력관계와 국제기구인 ILAC, APLAC과의 단계적인 상호인정협약 체결 계획을 제시하였다.

시험·검사 기관 정도관리 제도에 있어서 시험분석 능력을 국제적 수준으로 향상시키고 국제적 동등성을 확보하기 위한 방법으로 숙련도 시험 운영 프로그램을 국제 기준인 ISO Guide 43에 따라 확립하기 위한 기본계획 수립방안을 제안하였다. 특히 기준 숙련도시험 지원센터 설립 계획을 준비하여 이를 통한 시험기관의 국제적 동등성을 확보 할 수 있도록 하였다. 기준 숙련도시험 지원센터의 국제 비교 숙련도시험 프로그램 참가와 국가 간 상호인정협약 체결을 통해 국제적 동등성을 확보하게 하고, 기준 숙련도시험 지원센터가 국내 시험·검사 기관의 숙련도 시험 프로그램을 주관하게 함으로써 국내 시험기관의 국제적 동등성을 확보할 수 있도록 하였다. 숙련도 기준시험 공급기관 인정 프로그램과 육성 계획을 국제 기준에 맞게 수립하도록 하였으며 연차별 숙련도 기준시험 개발 및 공급 계획을 수립하도록 하였다. 또한 기준 숙련도시험 지원센터의 시험기관 환련프로그램을 통해 단계적으로 국제적 수준의 대표적인 민간 시험기관 육성 계획을 수립하도록 하였다.

시험·검사 발전의 기본 infra 구축 요소로서 환경분야 표준물질 생산기관에 대
하여 국제 기준인 ISO Guide 34에 맞는 인증 프로그램을 수립하도록 하였으며, 국가측정표준 대표기관인 한국표준과학연구원으로부터 측정표준 소급성 체계를 확립하도록 하였다. 또한 환경분야 측정표준의 기준이 되는 인증표준물질 개발 및 공급 계획을 수립하도록 하였다. 환경오염공정시험법 제·개정 계획과 표준화 개발사업 추진 계획 방안을 제시하였으며, 환경측정기기 형식승인·정도검사 발전 계획과 환경 측정방 측정 데이터의 신뢰성 확보를 위한 정도관리 수립 방안을 제시하였다. 시험기관의 국제협력 방안으로 환경분야 인정기구의 APLAC peer review 계획과 국제 속련도시험 프로그램 참가 계획을 제시하였다.

환경 시험·검사 발전 기본 계획을 통해 시험·검사 기관 관리 운영체계를 단계적으로 국제적 수준에 맞도록 재정비하여 신뢰성을 추진함으로서 환경분야 시험·검사 기관의 국제적 동등성과 신뢰성을 확보 할 수 있게 할 것이다. 또한 국제적인 환경규제에 대응하여 국제적 기준의 시험·검사 능력을 확보한 대표적인 민간 시험 기관을 육성함으로서 국내 기업의 대외 무역환경에서의 경쟁력 강화에 기반을 제공 할 수 있을 것이다. 그리고 국내 환경에서 국민들의 환경 분야 시험 분석 결과에 대한 신뢰를 확보함으로서 국민의 삶의 질을 향상 시킬 수 있는 기반을 구축 할 수 있을 것이다.
참고 문헌

[URL]

[12] 혁신, 대학 및 기술부(DIUS) http://www.dius.gov.uk/
[16] 먹는 물 감사단(DWI) http://www.dwi.gov.uk
[17] 국립 물리연구소(NPL) http://www.npl.co.uk
[18] 국가 화학연구소(LGC) http://www.lgc.co.uk
[22] MCERTS 공식 웹사이트 http://www.mcerts.uk.com
UKAS Newsletter, ‘Unannounced Visits to Accredited Stack Emissions Monitoring (SEM) Organisations’, 2007

[국제규격]

bodies

[8] ISO 17020, “General criteria for the operation of various types of bodies performing inspection”.

[참고문헌]

[10] NELAC, Proficiency Testing, Revision 17, Approved July 12, 2002, Effective July 1, 2004 unless otherwise noted.
[13] The NELAC Institute, Partnering NELAC and INELA.
[22] LGC Proficiency Testing Group, 수질분석 계획안 (QWAS Scheme) 설명서 2007-2008
[23] DWI, 영국 웨일즈 먹는 물 보고서 2006

[기타자료]

약 어 설 명

ACIL: American Council of Independent Laboratories
AIHA: American Industrial Hygiene Association
ANSI: American National Standards Institute
APEC: 아시아태평양경제협력체, Asia Pacific Economic Cooperation
APLAC: 아시아 태평양 시험소 인정기구 연합체, Asia Pacific Laboratory Accreditation Corporation
ASNITE: Accreditation System of NITE
A2LA: American Association for Laboratory Accreditation
BIPM: 국제도량형국, Bureau de International Poids et Measure
BSI: British Standards Institution
CBA: Cost and Benefit Analysis
CEM: Continuous Emission Monitoring
COFRAC: Comite Francaise d’Accreditation/French Committee for Accreditation
CONTEST: Contaminated Land Proficiency Testing Scheme
CSL: Central Science Laboratory
DACH (German Accreditation Body for Chemistry)
DAP (German Accreditation System for Testing)
DAR: German Accreditation Council
DAU (German Accreditation Body of Environmental Verifiers)
DBERR: Department for Business, Enterprise & Regulatory Reform
DEFRA: Department of Environment, Food and Rural Affairs
DDA: 도하개발아젠다, Doha Development Agenda
DTI: Department of Trade and Industry
DIUS: Department for Innovation, Universities and Skills
DIN: German Institute for Standardization
DOD: Department of Defense
DTA: Direct Toxicity Assessment
DTAPS: Direct Toxicity Assessment Proficiency Scheme
DTI: Department of Trade and Industry
DWI: Drinking Water Inspectorate
DWTS: Drinking Water Testing Specification
EA: European Cooperation for Accreditation
EAC: European Accreditation of Certification
EAL: European Cooperation for Accreditation of Laboratories
EC: 유럽 공동체, European Community
ELAB: Environmental Laboratory Advisory Board
EN: European Safety Standards
EPA: Environmental Protection Agency
FAWA: Federal Highway Administration
FAPAS: Food Analysis Performance Assessment Scheme
FDA: Food and Drug Administration
FIFRA: Federal Insecticide, Fungicide, and Rodenticide Act
GLP: Good Laboratory Practices
IAF: International Accreditation Forum
IAJapan: International Accreditation Japan
ICSP: Inter-agency Committee of Standards Policy
ILAC: International Laboratory Accreditation Cooperation
IPPC: Integrated Pollution Prevention and Control
ISO: International Organization for Standardization
JAB: Japan Accreditation Board for Conformity Assessment
JCLA: Japan Chemical Laboratory Accreditation
JCSS: Japan Calibration Service System
JNLA: Japan National Laboratory Accreditation System
KOLAS: Korea Laboratory Accreditation Scheme
LAB: Laboratory Accreditation Bureau
LEAPS: Laboratory Environmental Analysis Proficiency Scheme
LGC: Laboratory of the Government Chemist
MAC: Measurement Advisory Committee
MCERTS: Monitoring Certification Schemes
MLAP: Specified Measurement Laboratory Accreditation Program
NACLA: National Cooperation for Laboratory Accreditation
NAMAS: National Measurement Accreditation Service
NATLAS: National Testing Laboratory Accreditation Service
NCSL: National Conference of Standards Laboratories International
NDPB: Non Department Public Body
NEL: National Engineering Laboratory
NELAC: National Environmental Laboratory Accreditation Conference
NELAP: National Environmental Laboratories Accreditation Program
NIST: National Institute of Standards and Technology
NITE: National Institute of Technology and Evaluation
NPL: National Physical Laboratory
NVLAP: National Voluntary Laboratory Accreditation Program
NGO: Non-Governmental Organization
NMI: National Metrology Institute
NPL: National Physical Laboratory
NWML: National Weights and Measures Laboratory
OECD: Organization for Economic Cooperation and Development
QWAS: Quality In Water Analysis Scheme
REMCO: Reference Materials Committee
SCS : Sira Certification Service
SEPA: Scottish Environment Protection Agency
TAG : Association for Accreditation
TBM: Technical Management Board
TBT : 기술적 장벽에 관한 협정, Technical Barrier on Trade
TE: Technical Endorsement
TSCA : Toxic Substances Control Act
UBA: Umweltbundesamt
UKAS : UK Accreditation Service
VIM: International Vocabulary of Basic and General Terms in Metrology
WECC : Western European Calibration Cooperation
WELAC : Western European Laboratory Accreditation Cooperation
WTO : 세계무역기구, World Trade Organization
부록1. BS EN 14181 규정에 따른 단계별 성능보증 과정

QAL2: 기기의 설치 및 교정

QAL3: 일상적인 운영 상태에서 CEM 평가결과를 지속적으로 확인

AST: 지속적인 성능 평가와 교정 값의 확인
<table>
<thead>
<tr>
<th>기관</th>
<th>업무</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 제조자 및 공급자</td>
<td>● MCERTS 인증 획득</td>
</tr>
<tr>
<td></td>
<td>● MCERTS 인증 기기의 적절한 설치 및 공급</td>
</tr>
<tr>
<td></td>
<td>● 필요시 시험기관 및 프로세스 운영자와 CEM기기에 대한 교정협조</td>
</tr>
<tr>
<td>시험 기관</td>
<td>● 표준참조물질(SRM)제조 및 공급을 위한 MCERTS 시험기관 인증 획득</td>
</tr>
<tr>
<td></td>
<td>● QAL2와 AST에 대한 표준참조물질(SRM) 공급</td>
</tr>
<tr>
<td></td>
<td>● QAL2와 AST에 대한 성능평가 및 평가자문</td>
</tr>
<tr>
<td>프로세스 운영자</td>
<td>● 연속배출가스 모니터링(CEM)에 MCERTS 인증된 기기 사용</td>
</tr>
<tr>
<td></td>
<td>● QAL3 이행</td>
</tr>
<tr>
<td></td>
<td>● 감시원이 요구하는 QAL2, QAL3 그리고 AST 보고서 제출</td>
</tr>
<tr>
<td></td>
<td>● QAL3 보고서 및 BS EN14181이 요구하는 관련 보고서 보관</td>
</tr>
<tr>
<td></td>
<td>● 감시원이 정하는 기간 내 QAL1과 AST보고서 보관</td>
</tr>
<tr>
<td>감시원</td>
<td>● BS EN14181 요구사항 점검</td>
</tr>
</tbody>
</table>
부록3. 영국의 환경측정 인증 프로그램

왜 MCERTS 인가?
- 인종순서도의 요구사항 및 규칙사항
- 신청서 및 안내서
- 검사계획 요구사항
- 기준데이터에 대한 제안 및 보고 안내문자
- 작성 및 실질적 검사에 사용되는 시험소 선택

해당영체의 MCERTS 문의

Sira가 신청서 교부

해당 업체에 검사계획 및 신청서 제출

Sira에서 MCERTS

계약체결

영국의 환경측정 인증프로그램 (MCERTS) - 준비단계

3단계

문서를 위한 검토

Who has the action

Sira
Manufacturer
Technical Support Officer (TSO)

검사보고서와 증명서 류가 제출되면 인증 위원회가 검토

이린쓰익성의 Sira 인증서 비스 회고책임자의, 기술지원 담당자 그리고 독립적인 기술검토기로 구성된다.

MCERTS 요구조건에 만족

MCERTS 승인 (인증)

영국의 환경측정 인증프로그램 (MCERTS) - 실행단계
영국의 환경측정 인증프로그램 (MCERTS) - 승인단계

부록4. 미국의 국가 환경시험소 회의 (NELAC)의 구조
부록5. 미국의 환경 표준 개발절차 (2002.7)

Committee (Consensus Standard Development Coordination Panel) Proposes Standard or Changes to Standards

Proposed Standard published by EPA (TMD)

Interim Meeting for Input and Preparation of Draft Standards

Annual Meeting
Committees present Draft Standards as Regulations

House of Representatives
And House of Delegates (TMD) REDAP Board Approve Standards?

State and/or Federal Agency Accepts Standards?

State and/or Federal Agency Participates in REDAP for the relevant first of testing

Laboratories in States seek Accreditation from the primary accrediting authority in the States

Laboratories in States seek Accreditation from Any primary accrediting authority
부록 6. A2LA, NELAP Program, etc