The 3rd Intensive Survey on National Inland Wetlands ('14)

김태규, 양희선, 김태성, 김정현, 이정현, 양병국, 정지웅, 이현주, 임란영, 정예성, 김창수, 김창우, 이창수, 이창우

2014

Journal of the National Wetlands Center

Changnyeong County, Changnyeonggun, Changnyeongdo Island

National Wetlands Center
National Institute of Environmental Research

경상남도 창녕군 이방면 이산길 38
대표전화 : 055-530-5555
http://www.wetland.go.kr
제3차 전국내륙습지 정밀조사('14)

국립습지센터

김태규, 양희선, 김태성, 김정현, 이정현, 양병국, 이경희, 박상정, 이창수, 임란영,
정지웅, 이현주, 임정철, 강나경, 이자연, 백충열, 이창우, 박진영

The 3rd Intensive Survey on National Inland Wetlands('14)

Taekyu Kim, Heesun Yang, Taesung Kim, Junghyun Kim, Jeonghyun Lee, Byeonggug Yang, Jeonghee Lee, Sangjeong Park, Changsu Lee, Ranyoung Im, Jiwoong Cheong, Hyunju Lee, Jeongcheol Lim, Nakyeong Kang, Jayeon Lee, Chungyeol Baek, Changwoo Lee, Jinyoung Park

National Wetlands Center
National Institute of Environmental Research

2014
목차

목차 i
표목차 ii
그림목차 ii
Abstract iii

Ⅰ. 서 론 1

Ⅱ. 조사내용 및 방법 2
 1. 조사기간 2
 2. 조사지역 2
 3. 조사방법 4

Ⅲ. 조사결과 및 고찰 7
 1. 울진 천축산습지 7
 2. 세종 합강습지 11
 3. 나주 우습제 15
 4. 창녕 대봉습지 20
 5. 함안 절남늪 24

Ⅳ. 결 론 29

참고문헌 31
表 目 次

<Table 1> Actual vegetation distribution of Cheonchuksan wetland. 8

그 립 목 놐

<Figure 1> Geographical location of the surveyed wetlands. 4
<Figure 2> Actual vegetation map of Cheonchuksan wetland. 9
<Figure 3> Actual vegetation map of Hapgang wetland. 13
<Figure 4> Actual vegetation map of Usupje. .. 17
<Figure 5> Actual vegetation map of Jilnal wetland. 25
The Intensive Survey on National Inland Wetlands has been performed to identify biodiversity and ecological value of wetlands which were decided as high conservation value wetland and ecologically outstanding wetland by the General Survey on National Inland Wetlands. The target wetland were Uljin Cheonchuksan wetland, Sejong Hapgang wetland, Naju Usupje, Changnyeong Daebong wetland, Haman Jilnal wetland. Total survey items were 11 including topography, water balance, vegetation, avian fauna, mammal fauna, etc. The survey results are as follow.

As a high conservation valued montane wetland, Cheonchuksan wetland showed a stable water balance. This survey identified 9 vegetation types and 143 species of plants. 361 species of wild animals inhabited in there including 1 of endangered species class I and 5 of class II. Hapgang wetland is a typical riverine wetland. This survey identified 10 vegetation types and 180 species of plants. 340 species of wild animals inhabited in there including 2 of endangered species class II. Usupje is a reservoir type wetland. This survey identified 14 vegetation types and 227 species of plants. 202 species of wild animals inhabited in there including 1 of endangered species class I and 5 of class II. Daebong wetland is a typical floodplain wetland. This survey identified 14 vegetation types and 96 species of plants. 276 species of wild animals inhabited in there including 1 of endangered species class I and 8 of class II. Jilnal wetland is a also typical floodplain wetland. This survey identified 10 vegetation types and 96 species of plants. 287 species of wild animals inhabited in there including 1 of endangered species class I and 4 of class II.

Hapgang wetland which is stably maintaining its state and shows an outstanding biodiversity will be recommended to designate as a wetland protected area.
습지란 말 그대로 습한 풍을 말하며, 영구적 혹은 일시적으로 습한 상태를 유지하는 장소로 ‘육지 환경과 물 환경의 잔여지대이며, 생물의 생장기를 포함하여 연중 또는 상당 기간 동안 물이 지표면을 덮고 있거나 지표 가까이 또는 근처에 지하수가 분포하는 토지’로 정의할 수 있다. 또한 ‘식생과 동물이 그 일생의 중요한 시기 또는 생활 근거를 이루기에 충분한 기간 동안 물이 못을 이루거나 흐르는 장소’로 생물학적 의미를 부여할 수 있다. 이러한 습지의 정의에 대한 국제적 기준인 람사르 협약 제1조 1항에서는 ‘자연 또는 인공이든, 영구적 또는 일시적이든, 정수 또는 유수이든, 닿수, 기수 혹은 염수이든, 간조 시 수심 6 m를 넘지 않는 곳을 포함하는 늪, 습원, 이탄지, 물이 있는 지역’으로 정의하고 있다. 또한 국내 습지보전법 제2조 1항에서는 ‘달수-기수 또는 염수가 영구적 또는 일시적으로 그 표면을 덮고 있는 지역으로 내륙습지와 연안습지를 말한다.’로 정의하여 각종 습지 정책의 기준으로 삼고 있다.

전국내륙습지 정밀조사는 습지보전법 제4조를 근거로 전국내륙습지 일반조사를 통해 보전가치가 높은 것으로 평가된 습지와 생태적 기능이 우수한 생태유수습지를 대상으로 습지 생물다양성 및 습지생태계의 가치 확인을 목적으로 수행하고 있으며, 제3차(‘11~‘15년) 전국내륙습지조사 기본계획을 통해 2013년까지 월령습지(전북 정읍), 현천리습지(강원 횡성), 숨은물뱅듸(제주), 물찻오름(제주), 고천암호(전남 해남), 백련제습지(전남 곡성), 심적습지(강원 인제) 등 총 7개소의 정밀조사를 수행하였으며, 이 가운데 월령습지는 습지보호지역으로 지정되었고, 숨은물뱅듸와 심적습지는 현재 습지보호지역 지정을 추진하고 있다. 2014년에는 천축산습지(경북 울진), 우습제(전남 나주), 대봉습지(경남 창녕), 절날늪(경남 함안) 등 총 5개소의 정밀조사를 수행하여 습지보호지역 지정에 활용하고자 하였다.
II. 조사내용 및 방법

1. 조사기간

전국내륙습지 정밀조사는 2014년 1월부터 12월까지 수행하였다. 2월부터 3월까지는 대상지 선정 및 조사단 구성, 3월부터 10월까지는 각 분야별 현지조사, 10월부터 11월까지는 보고서 취합 및 최종보고서 작성 등을 진행하였다.

2. 조사지역

가. 울진 천축산 습지

조사지역인 천축산습지는 행정구역상 경상북도 울진군 서면 왕피리 산 1번지 일대에 위치하고 있으며, 다수의 습지로 이루어져 있다. 천축산습지는 천축산습지1, 천축산습지2, 천축산습지3, 천축산습지4로 구성되어 있으며, 조사지역은 북위 36°5′20″~36°55′41″, 동경 129°16′48″~129°18′18″의 사이에 동서방향의 천축산의 능선과 임도 사이에 분산되어 위치하고 있다. 습지가 분포하고 있는 해발고도는 약 470~560 m이며, 주변배후지역은 약 500~650 m의 산지를 이루고 있다. 천축산습지는 산지습지 고유의 수문체계 특이성과 중간습원이라는 서식처 희소성으로부터 그 가치를 인정받고 있는 지역으로 2014년 전국내륙습지 정밀조사 조사지역으로 선정하였다.

나. 세종 합강습지

합강습지는 금강분류구간의 미호천 합류부에 위치한 전형적인 형태의 하천습지로 세종특별자치시 연기면 세종리에 위치한 금강본류구간에 해당된다. 하천의 유량과폭 그리고 유속과 관련하여 발달하는 하천퇴적의 대표적인 지형이다. 합강습지의 상류구간은 감입곡류하천에 의해 사막퇴적지 및 포인트 바가 잘 형성되어 있으며, 미호천 합류구간은 하폭이 넓고 하천의 유량변동이 큰 지역으로 퇴적작용이 활발하게 진행되어 습지를 발달시키기에 좋은 조건을 갖추고 있다. 합강습지는 2010년 전국내륙습지조사 일반조사에서 생물다양성이 높은 하도습지로 습지등급이 상으로 평가되어 금년에 정밀조사를 실시하였다.
다. 나주 우습지

조사지역인 우습지는 영산강 유역에 위치한 저수지형 배후습지이다. 행정구역상 나주시 공산면과 동강면에 위치하며, 해방 이후 습지 내부에 물이 많아 민간 지역의 주민들이 소를 몰고 나와 방목을 하였다고 해서 붙여진 이름이다. 여름철이 되면 저수지를 가득 메운 홍련이 유명하여 홍련지라는 이름으로도 불린다. 면적은 442,244 m², 총저수량 69만 2천 톤 규모로 1943년 축조된 인공저수지이다. 거울절 이동철새의 동시센서스 연구에서 환경부 지정 멸종위기 야생동식물 종의 서식이 확인되었으며, 다양한 철새와 텃새의 주요 서식지이면서 중간 기착지로서의 의미를 가지는 것으로 보고된 바 있다. 우습지는 2013년 전국내륙습지 모니터링조사에서 습지등급 I등급으로 평가되어 2014년 전국내륙습지 정밀조사 지역으로 선정하였다.

라. 창녕 대봉습지

대봉습지는 경상남도 창녕군 장마면 대봉리 일원에 위치한 배후습지로 계성천 하류부에 속한다. 대봉습지는 계성천 배후습지를 1.5 m 내외 독을 쌓아 만든 소규모 대봉저수지가 포함되어 다양한 습지생태계를 이루고 있다. 대봉저수지 면적은 약 74,350 m², 저수지를 제외한 배후습지 면적은 약 491,860 m² 로써 총 566,210 m²이다. 대봉습지의 북서쪽은 구현산, 비둘재로 연결하여 능선을 따라 창녕천과 분수계를 이루고, 북쪽은 화왕산,관용산이 운봉천과 분수계유역경계를 이루고 있으며, 동남쪽으로는 염취산,병봉,영조산 등이 청도천과 분수계를 이루고 있다. 대봉습지는 2012년 전국내륙습지 일반조사에서 습지등급 I등급으로 평가되어 2014년 전국내륙습지 정밀조사 지역으로 선정하였다.

마. 함안 질날늪

질날늪은 행정구역상 경남 함안군 법수면 우거리, 대송리에 속하며, 습지의 형태는 남북방향으로 길게 뻗은 장축형태이며, 면적은 약 189,000 m²이다. 동일수계에서 형성된 대평늪 유역과 서쪽 일부는 석교천습지 유역, 동부는 고도 100 m 내외의 구릉지와 경계를 이루며 습지의 남쪽 지역이 북쪽지역보다 산지가 많고 해발이 높기 때문에 질날늪의 물 호름은 북쪽방향으로 이동하며 남강과 합류한다. 함안 질날늪은 2013년 전국내륙습지 모니터링조사에서 습지등급 I등급으로 평가되어
2014년 전국내륙습지 정밀조사 지역으로 선정하였다.

3. 조사방법

가. 지형·지질·퇴적물

- 기존 문헌자료를 검토하고, 지형도, 지질도, 토양도, 항공사진 등 도면자료를 토대로 지질, 지질 및 토양환경을 분석하였다.
- 습지 퇴적물 입도조성, 화학적 특성, 유기물함량 등을 측정 및 조사하였다.

나. 수리·수문

- 조사지역 인근 기상청 및 현장에 설치된 자동기상관측장비 (AWS)의 기후자료를 바탕으로 수리적 요인을 분석하였다.
- 수문특성을 규명하기 위하여 수문지질 및 토양의 물리성과 공간적 분포를 분석 하였다.
- 물수지에는 기후학적 평균물수지와 토양물리성, 오름의 수문지질구조, 수위변동 등의
분석결과를 이용하여 물수지를 산정하였다.

다. 식생

- 식생조사는 *Braun-Blanquet*의 식물사회학적 조사 방법을 사용하여 식생 군락의 우점종과 종조성 분석을 실시하였다.
- 현존식생도는 현지조사표, 지형도, 습지보호지역경계, 항공영상 등의 자료를 바탕으로 습지식생의 경계추출, 식생면적, 상관유형, 식생보전등급 등의 결과를 도출하였다.

라. 식물상

- 조사지역에 분포하는 관속식물상을 조사하고, 여러 문헌을 토대로 소산식물의 종 목록 작성하고 대형 습생관속식물, 식물구계학적 특정식물종, 고유식물종, 희귀식물 등의 분포여부를 파악하였다.

마. 육상곤충

- 주요 조사방법은 써어잡기, 채어잡기 및 특정 서식처를 직접 검색하는 정성적인 방법을 사용하였다.
- 문헌조사 및 현장조사에서 확인된 육상곤충상에 대한 종목록 구축 및 법정보호종에 대한 정보를 기재하였다.

바. 저서성 대형무척추동물

- 채집은 각 조사지점에서 계류형 정량채집망을 이용한 정량채집을 실시하였고, 저서성 대형무척추동물의 생태적 특성을 고려하여 *Scoop net*을 이용하여 미소 서식처에 따라 정량채집을 수행하였다.
- 조사지역에서 확인된 저서무척추동물의 종 목록, 개체수, 법정보호종 등에 대한 정보를 기재하였다.

사. 조류

- 현장에 출현하는 각 종의 출현위치 및 환경, 군집여부 등을 조사하였다.
- 개체수조사 관찰도구는 방원경과 방산경을 이용하였으며, 육안관찰, 음울소리,
비산형, 배설물 및 동지 흔적, 사체 확인 등으로 파악하였다.
• 전체 조류상 및 법정보호종에 대한 정보를 기재하였다.

아. 포유류
• 조사지역 일대에 서식하는 포유류를 대상으로 육안조사, 혼적조사 그리고 트랩을 이용한 포획조사를 실시하였다12.
• 현장에서 확인된 포유류에 대한 종 중수 및 법정보호종에 대한 정보를 기재하였다.

자. 양서·파충류
• 조사지역에서 확인된 양서·파충류의 종 목록, 개체수, 법정보호종 등에 대한 정보를 기재하였다.
• 해당지역의 과거 문헌자료비교 및 확인된 종에 대한 군집분석을 실시하였다.

차. 동·식물성 플랑크톤
• 현장에서 얻는 시료를 가지고 출현종의 종목록 구축 및 종조성, 현존량의 계절변화를 수온과 pH와의 연관성 등을 분석하여 생태적 특성을 파악하였다.

카. 어류
• 어류조사는 투망(망목, 5 x 5 mm), 족대(5 x 5 mm), 들채(2 x 2 mm)를 사용하여 채집하였고, 채집된 어류는 현장에서 동정 분류하고 종과 개체수를 계수 후 방류하였다.
• 조사 지점에서 채집한 어류의 종수 및 개체수를 확인한 후 우점도, 다양도, 풍부도, 균등도 지수 등의 군집분석을 실시하였다.
• 조사된 어류의 전체 종목록과 법정보호종에 대한 정보를 기재하였다.
Ⅲ. 조사결과 및 고찰

1. 울진 천축산습지

가. 지형·지질·퇴적물

천축산습지는 높은 지형의 다양성과 생물의 다양성을 보인다. 천축산습지는 인간의 영향을 받은 묵논습지로 볼 수 있지만, 인간의 영향 이전에도 자연적인 산지습지 환경을 이루고 있었을 가능성이 높았을 것으로 추정된다. 주변 배후사면에 비하여 완만한 경사를 이루고 있는 특성을 보이고 있으며, 유기물의 축적이 진행되고 있다. 능선에 가깝게 위치하는습지2와습지3은 주변 사면 토양의 화학적 특성과 차이를 보이고 있어 상당히 자연적인 산지습지로 변모되어 있으나, 임도에 인접한습지1과 습지4는 과거 농경의 혼적이 남아 있어 서로 차이를 보인다. 중앙부에 임도가 만들어져 있는습지4의 경우 임도로부터 유수나 퇴적물이 급격히 유입되지 않도록 방비를 세워야 할 것으로 보이고, 각습지의 하단부에서 발생하는퇴적물침식현상에대한 모니터링도 필요하다.

나. 수리·수문

천축산 왕피천 유역의 1971년에서 2013년까지의 42년간의 기후요소를 수집하고 분석한 결과 연 평균기온은 12.6℃이고, 연평균 강수량은 1,131.9 mm/year, 연 평균 풍속은 3.5 m/s, 연평균 습도는 68.1%，연평균 일조량은 2,425.6시간으로 나타났다. 42년간의 월별 강수량을 분석한 결과 강수량이 가장 높은 달은 8월로 199.4 mm이며, 가장 낮은 강수량은 12월로 34.5 mm이다.

Penman법으로 추정된 잠재 증발산량은 증발산이 과도하게 추정된 경향이 있으며, Thornthwaite법으로 추정된 증발산량은 연 증발산 638.1 mm/year로 나타났고, 연중 증발산량이 강수량을 초과하는 기간이 10월에 일시적으로 나타나며, 전체적으로는 잉여수분량이 대상유역에 존재하는 것으로 나타났다.

대상 유역의 수치고도모형을 사용한 수문지형분석은 4개 습지 모두 지표수가 수렴하는 지형적인 특성을 보이는데 상부사면 기여면과 습윤지형지수가 높은 지대에 위치하고 있는 것으로 나타나 지형이 습지의 발달에 중요한 역할을 하고 있음을 보여준다.
다. 식생

현장 연구를 통해 총 74종으로 이루어진 26개의 식생자료가 획득되었다. 천축산 산지습지 일대의 식생은 서식처 특성 및 종조성에 의해 4개 상관형의 9개 단위식생이 분포하고 있는 것으로 나타났다. 습지구역 가운데 상관수준에서 가장 넓은 면적으로 분포하는 식생형은 중간습원식생(67.6 %)이며, 가장 좁은 면적은 저층습원식생(0.3 %)으로 확인되었다(Table 1, Figure 2).

<table>
<thead>
<tr>
<th>Physiognomy</th>
<th>Vegetation unit</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>소택림</td>
<td>오리나무군락</td>
<td>2,246.6</td>
</tr>
<tr>
<td>중간습원식생</td>
<td>도깨비사초-기장대풀군락</td>
<td>5,989.1</td>
</tr>
<tr>
<td></td>
<td>말부리품-풀고추나무군락</td>
<td></td>
</tr>
<tr>
<td></td>
<td>전풍리세균락</td>
<td></td>
</tr>
<tr>
<td></td>
<td>참상각사초군락</td>
<td></td>
</tr>
<tr>
<td></td>
<td>흰고비군락</td>
<td></td>
</tr>
<tr>
<td></td>
<td>산비늘사초-잎사리군락</td>
<td></td>
</tr>
<tr>
<td>반영양습지해생초분식물군락</td>
<td>총고양이수염군락</td>
<td>602.5</td>
</tr>
<tr>
<td>저층습원식생</td>
<td>육성고양이군락</td>
<td>23</td>
</tr>
<tr>
<td>합계</td>
<td></td>
<td>8,861.2</td>
</tr>
</tbody>
</table>

라. 식물상

천축산 습지의 관속식물상은 58과 108속 120종 2아종 19변종 2품종으로 총 143 분류군으로 조사되었다. 지점별로 1번 습지에서 41과 88분류군이, 2번 습지에서 26과 44분류군, 3번 습지에서 35과 58분류군, 4번 습지에서는 45과 97분류군 확인되었다. 조사된 식물 중 식물구해작의 특정식물 V 등급 망귀개는 3, 4번 습지에서 큰잎본풀은 1번 습지에서 조사 되었으며, IV등급 큰잎이주걱은 3, 4번 습지에서 확인되었다. 습지 식물은 감자개발나물, 벼풀 등 4종의 정수식물과 개수염, 흰고비, 도깨비사초, 솟방울고랭이, 잠자리난초 등 23종의 습생식물이 조사되어 전체 출현 식물의 18.9 %가 습지 식물로 확인되었다. 국외반출 승인종은 망귀개, 큰잎이주걱, 노랑갈퀴 3종이 조사되었고, 외래식물은 달맞이꽃, 미국가막사리, 서양민들레, 아카시나무 등 4종이 확인되었다.
Ⅲ. 조사결과 및 고찰

마. 육상곤충

천축산습지의 육상곤충류 조사결과, 총 13목 76과 269종이 관찰되었다. 각 목분류별 종수를 비교하면 나비목이 21과 172종으로 가장 높은 비율을 차지하였고, 딱정벌레목 19과 33종, 노린재목 10과 25종, 메뚜기목 3과 11종, 파리목 7과 8종, 절자목 3과 5종, 풀절자목 4과 4종, 달도래목 2과 2종, 사마귀목, 강도래목, 집게벌레목, 밑들어목 각각 1과 1종의 순으로 발견되었다.

바. 저서성 대형무척추동물

천축산습지에서 모두 3문 3강 11목 26과 34종의 저서성 대형무척추동물이 확인되었다. 이중 천축산 1습지에서는 3문 4강 11목 21과 23종, 천축산 2습지는 3문 4강 6목 8과 8 종, 천축산 3습지는 3문 3강 6목 6과 6종이 출현하였고, 천축산 4습지는
조사결과 및 고찰

10

3문 3강 8목 15과 16종이 출현하여, 천축산 1습지에서 가장 다양한 저서생물상을 보였다. 천축산 습지 전체에 출현한 문 단위별 분류군별로는 환형동물 1종, 연체동물 2종이 출현하였고 절지동물은 31종으로 전체 출현 종의 91%를 차지하였다. 출현한 31종의 수서곤충류는 하루살이목 3종, 잠자리목 4종, 막질벌레목 5종, 강도래목 6종, 백갈자라목 1종, 노린재목 3종, 파리목 6종, 그리고 남도래목 3종의 다양한 종이 출현하였다. 조사결과 법정보호종은 출현 하지 않았으나, 한국고유종으로 산골조개 (Pisidium coreanum), 네모집날도래 KUa (Goerodes Ku a)의 서식이 확인되었다.

사. 양서·파충류

천축산 습지에서 관찰된 양서·파충류는 총 3목 6과 8종으로 확인되었다. 양서류는 도롱뇽, 정개구리, 무당개구리, 복사개구리, 참개구리 포함 총 2목 3과 5종이 출현하였고 우점종은 참개구리로 확인되었다. 파충류는 아무르장지뱀, 유혈목, 쇠살모사 포함 총 1목 3과 3종이 관찰되었고 우점종은 아무르장지뱀으로 확인되었다. 천축산 습지 일대에서는 멸종위기야생생물, 생태계교란야생동물과 같은 법적관리 종은 관찰되지 않았다.

아. 조류

천축산습지에서 관찰된 조류는 총 8목 19과 35종의 조류가 관찰되었다. 1차 조사의 경우 28종 116개체가 관찰되었으며 환배지빠귀, 산솔새, 노랑머리멧새 순으로 우점하였다. 2차 조사에서는 14종 68개체의 조류가 관찰되었으며 환배지빠귀, 오목눈이, 적박구리 순으로 우점하였다. 3차 조사에서는 19종 142개체가 관찰되었으며 노랑머리멧새, 쇠박새, 물까치 순으로 우점하였다. 관찰된 조류 대부분 산림성 조류이며 습지를 직접 이용하는 종은 관찰되지 않았다. 법정보호종으로 멸종위기야생생물 ∈급으로 지정된 새호리기 (Falco subbuteo)와 까막딱다구리 (Dryocopus martius) 등 2종이 확인되었다.

자. 포유류

2014년 천축산 습지 조사결과, 총 5목 10과 15종이 확인되었다. 이 가운데 무인센서 카메라에 확인된 종은 6종으로 오소리, 삶, 낙타, 고라니, 노루, 산양이었으며 나머지 종은 직접 목격 또는 흔적(배설물, 족적)으로 확인되었다. 국가지정 멸종
위기종 I급인 산양이 확인되었고 국가지정 멸종위기종 II급인 담비, 삼, 허늘다람쥐가 확인되었다. 천축산 습지 주변 지역은 '왕피천 유역 생태·경관 보전 지역'으로 보호 관리되고 있으며 인위적인 간섭이 없는 야생동물의 서식지로 매우 우수한 지역으로 판단된다.

차. 동·식물성 플랑크톤

출현한 식물플랑크톤은 총 4강 7목 4아목 14과 22속 46종이며, 모든 지점에서는 규조류가 78.3 % 이상으로 가장 많은 분류군이 출현하였다. 현존량의 경우, 11,142 cells/L~ 38,902 cells/L의 범위를 나타내었고, 분류군별 출현 개체수 비는 1차 및 2차 조사시 모든 조사지점에서 규조류가 77.4 % 이상으로 가장 높은 비율로 출현하였으며, 우점종은 규조류인 Gomphonema gracile와 Achnanthes minutissima, Navicula cryptotenella, Melosira varians로 확인되었다. 출현한 동물플랑크톤은 총 19종이며, 근족충류가 10종으로 가장 다양한 분류군으로 확인되었으며, 현존량은 26~127 개체/L의 범위를 나타내었다.

2. 세종 합강습지

가. 지형·지질·퇴적물

합강습지는 금강본류구간의 미호천 합류부에 위치한 전형적인 형태의 하천습지로 하천의 유량과 폭 그리고 유속과 관련하여 발달하는 하천퇴적의 대표적인 지형이다. 합강습지의 상류구간은 감입곡류하천에 의해 사력퇴적지 및 포인트 바가 잘 형성되어 있으며, 미호천 합류구간은 하폭이 넓고 하천의 유량변동이 큰 지역으로 퇴적 작용이 활발하게 진행되어 습지를 발달시키기에 좋은 조건을 갖추고 있다.

퇴적물의 물리·화학적 분석결과 평균입경은 대부분 실트로 이루어져 있으며, 구제방 배후에 해당하는 지점에서 모래의 함량이 높은 것으로 나타났다. 토성은 큰 차이는 나타나지 않지만, 대체로 하류로 갈수록 세립화하는 경향을 보이며, 초본류보다는 목본류의 식생이 우점한 곳은 중심으로 세립화되어 있는 것으로 나타났다. 유기물 함량은 0.9~15.1 %로 평균 10.49 % 나타났으며, 지점별로 다소 큰 차이가 있으며, 담양하천습지의 0.03~6.44 %와 비교할 때, 높은 값을 보였다. pH의 값은 유수의 영향을 받아 6.74~6.91의 약간적으로 전체 지점에서 큰 차이를 보이지 않았으며,
전기전도도는 염류집적도가 모든 지역에서 낮게 나타났다. 지환성양이온의 분석결과 Ca\(^{2+}\)이 Mg\(^{2+}\)과 K\(^+\)보다 모든 지점에서 높게 나타나 우리나라의 일반적인 토양특과 비슷한 양상을 보였다.

나. 수리·수문

합강습지의 33년간(1981~2013)의 연평균 기온은 12.5 ℃, 연평균 강수량은 1,261 mm, 연평균 풍속은 1.7 m/sec, 연평균 상대습도는 67.4 %, 연평균 운량은 5.0 할, 연평균 일조량은 2,204.9시간으로 나타났다. 기후학적 물수지구를 계산한 결과 2~5월, 10월에 증발량이 강수량을 초과하고 있는 것으로 나타났다. 또한 6~9월의 경우에는 337 mm의 수분을 얻고 있는 것으로 조사되었다.

합강습지가 위치한 급강분류 수계에 4대강 공사가 진행됨에 따라 합강습지 하류 방향 약 6 km 지점에 세종보가 건설되었다. 이의 영향으로 합강습지 하류에 위치한 '금남' 유량관측소에서 관측된 월별 유량값이 변하고 있는 것으로 나타났다. 합강습지의 토성은 합강습지의 수문학적 특징에 큰 영향을 미치고 있으며, 수변 생태계에도 중요한 역할을 하고 있음을 것으로 판단된다.

다. 식생

합강습지 식생조사 결과 종조성 및 서식처에 대응하는 4개 상관식생형, 10개 단위식생이 구분되었다. 식물군락의 다양성과 식물상으로부터 합강습지는 사행구간의 하도 내 습지로 밝혀졌다. ‘절대감시 2급’의 버드나무-갈풀군집과 선비들-갈풀군집이 합강습지의 대표식생형으로 규정되었다. 현존식생법에 의한 식생군계 분포 분석으로부터 합강습지는 잠재적인 범람에 노출되어 있으면서도, 상당히 안정적인 환경으로 평가되었다. 부분적으로 육역화 현상이 일어나고 있었다.

라. 식물상

합강습지에 생육하는 관속식물은 53과 127속 163종 2아종 13변종 2품종 등 총 180분류군으로 나타났다. 멸종위기야생식물은 출현하지 않았으며, 식물구개학적 특성식물은 밀등급인 절경이행사 1분류군, 1등급인 개사철목, 두경당균, 물쑥, 왕비들, 큰왕초, 태래사초 6분류군 등이 확인되었다. 조사된 수생식물은 정수성인 갈대, 노랑꽃창포, 도루박이 등 14분류군, 부염성인 마나, 물빛이끼, 에기마루 3분류군,
부유성인 개구리밥, 좀개구리밥, 참통발 3분류군, 침수성인 말즘, 이삭물수세미 2분류군이 확인되었다. 습생식물은 개구리미나리, 개구리자리, 셀비들 등 26분류군이었다. 따라서 전체 출현식물의 26.7%가 수생 및 습생식물로 확인되었다. 귀화식물은 가중나무, 개망초, 귀화이대나물, 노랑꽃째리, 다다미 등 35분류군이 확인되었으며, 그 중 생태계교란야생식물은 가시박, 단풍매지품, 돼지풀, 미국식물구덩이, 애기수염 등 5분류군이었다.

마. 육상곤충

합강습지의 육상곤충은 총 11목 77과 234종이 확인되었다. 천연기념물과 멸종위기야생생물 I, II급 및 국가기후변화생물지표종은 확인되지 않았으나, 국외반출승인대상생물종 17종, 한국고유생물종 2종, 한국적색목록종 2종이 확인되었으며, 이들 종들은 육상생태계를 매질(media)로 삼는 곤충 분류군 중에 습지 생태계 관리에 있어 결정지표로서 유용성이 높은 곤충류라 할 수 있다. 본 조사지역에서 확인된 주요 곤충류의 특성 분석에서 법정보호종은 출현하지 않았으나, 국외반출승인대상생물종 등 주요종이 집중적으로 출현한 구간은 장기적인 보전계획 수립시 반영하는 것이 바람직하다.
바. 저서성 대형무척추동물

합강습지에서 확인된 저서성 대형무척추동물은 3문 5강 12목 27과 38종이 확인되었다. 출현종은 연체동물문 6종, 환형동물문 3종, 그리고 청지동물문 중 갑각류 4종과 수서곤충류인 하루살이목 1종, 잡자리목 9종, 노린재목 4종, 박경벌레목 6종, 파리목 4종, 나비목 1종이었다. 본 조사에서 천연기념물이나 멸종위기야생생물 등의 법정보호종은 출현하지 않았으나, 국외반출승인대상생물종 2종, 기후변화생물지표종 1종이 확인되었다.

사. 양서・파충류

합강습지에서 양서파충류는 총 4목 6과 13종의 서식이 확인되었다. 확인된 종에서 환경부 멸종위기종은 멸종위기야생생물 II급인 금개구리가 확인되었으며, 한국고유종, 국외반출승인대상종인 한국산개구리가 포함되었다. 한편 외래종은 거북류의 레드 벨리터틀, 황소개구리 2종이 포함되었다. 출현한 양서파충류는 보편적인 저지대, 습지 지표형의 전형을 나타내었다. 종합적으로 볼 때 각 조사지점의 종 조성에 있어서 전체적으로 균일한 생태상태를 나타내는 것으로 판단되었다. 위험요인으로 반생태적인 인공구조물, 비점오염원의 유입, 외래종의 높은 비율 등이 문제가 되었으며, 위험요인의 제거 또는 최소화하는 방안이 시급한 것으로 판단된다.

아. 어류

합강습지의 어류 조사결과, 총 3과 11종 417개체가 관찰되었다. 그 중 양어과 어류가 9종으로 가장 많았으며, 우정 및 아우점종은 양어과 어류인 붕어, 양어로 나타났다. 한국고유종은 몰개 한 종만 확인되었으며 외래종은 배스가 출현하였다. 법정보호종은 출현하지 않았다. 군집구조 분석결과, 우정도 지수 0.218, 다양도 1.833, 균등도 지수 0.764, 풍부도 지수 1.658의 수치를 나타내었다.

자. 조류

합강습지의 조류상 조사결과 총 7목 19과 36종의 조류가 관찰되었다. 5차 조사(가을철)에서 가장 많은 개체수를 나타내었으며 3차 조사(봄철)에서 가장 많은 종수가 관찰되었다. 법정보호종은 멸종위기종(2급)인 환목문매세와 천연기념물인 원앙이
관찰되었다. 조사지역 하상구조를 고려할 때 흰목물떼새의 경우 조사지를 번식지로 이용하지 않는 것으로 추정되며, 다만 주된 서식지의 위험요인 발생시 휴식처로 이용하는 것으로 판단된다. 원앙의 경우 조사지 내부에 홍고적경이 큰 교목이 위치하고 일부 인공둥지가 설치되어 있어 번식이 가능할 것으로 여겨진다.

차. 포유류

합강습지의 포유류는 멸종위기종 1급, 천연기념물 331호의 수달을 포함하여 총 3목 6과 8종의 포유류 서식이 확인되었다. 합강습지 주변에 산림지역에서는 추가적으로 삼(멸종위기종 2급), 너구리, 멧돼지 등 3종의 서식을 확인하였으나 합강습지 내에서는 서식이 확인되지 않았다. 합강습지와 주변산림은 지방도로에서는 다수의 로드킬이 발생되는 것을 확인하였으며 생태이동 통로가 단절된 상황이고 주변 개발로 인해 많은 소음이 유발되는 등 위험요인에 있어 적절한 관리대책이 시급한 상황이라고 판단된다.

카. 동·식물성 플랑크톤

합강습지에서 출현한 식물플랑크톤 종류는 5강 9목 6아목 21과 3아과 40속 87종이 출현하였으며, 분류군별로 보면 규조류가 53종(60.9%)로 가장 다양하였고, 현존량은 17,780~181,753 cells/L의 범위를 보였다. 또한, 우점종은 담수종으로 생태적 범위가 넓은 Spirogyra속, 사상성 남조류인 Oscillatoria chlorina와 규조류인 Navicula pupula와 Nitzschia palea, Melosira varians가 우점하였다. 동물플랑크톤 출현종수는 총 15종으로 육종류가 6종으로 가장 다양하게 나타났으며, 현존량은 22~273 개체/L의 범위를 나타내었다.

3. 나주 우습제

가. 지형·지질·퇴적물

우습제는 근래에 와서도 끊임없이 증설이 이루어져 왔다. 그렇지만 수문지형학적 특성상 진흙 중심의 퇴적물이 빠르게 유입되어 습지환경을 이루고 있다. 이러한 빠른 퇴적물은 습지생물의 서식처로서 기능을 할 수 있도록 하였다. 습지퇴적물의 입도특성과 유기물, pH, EC 등은 유입구와 유출구의 퇴적물과는 다른 특성을 보이고
조사결과 및 고찰

16

있다고 판단할 수 있다. 그렇지만, 치환성양이온 항목에서는 약간의 차이가 있기는 하지만 통계적으로 차이가 있다고 볼 수는 없는 상태이다. 종합해 보면, 현재 우습제는 정수환경의 특성으로 인하여 진흙 위주의 퇴적물이 집적되고 있고, 이에 따라 유기물의 축적도 이루어지고 있다. 그렇지만 치환성양이온의 경우 국지적인 환경조건에 따라 공간적인 편차가 크게 발생하는 특징을 보이고 있다.

나. 수리・수문

우습제의 기후는 해양성 기후의 영향으로 연평균 기온은 13.7 ℃이고, 연강수량은 1,131.6 mm로서 우리나라 소우지역에 속한다. 특히 기후변화의 영향으로 거울절 기온과 여름철 강수량이 빠르게 증가하고 있다. 이러한 현상은 강수량의 계절별 편차가 심화되고, 거울절 수분 손실이 커져 갈수기에 습지의 육화 및 건조화현상이 나타날 가능성이 있다.

우습제의 연평균 절수량은 2,371.6 × 10³ m³/yr., 연평균 총유출량은 각각 2,010.8 × 10³ m³/yr., 유입량은 4,310.8 × 10³ m³/yr. 으로 우습제는 집수역으로부터 유입되는 지표수에 크게 의존하고 있다. 한편 우습제 주변에는 축산농가와 경작지, 자연부락 등의 오염원이 분포하고 있으나 배후에 우심하천은 없으며, 습지 내에 발달한 수생식물들의 종부한 생태계가 양호한 수질환경을 유지하고 있는 것으로 판단된다.

다. 식생

우습제의 식생은 종조성과 서식처 특성에 의해 4개 상관형의 14개 단위식생으로 분류되었다. 개방수면 전역에 마름군락, 연꽃-마름군락 등이 분포하고 있다. 일부 지역에 무식생대 또는 부유식물군락인 개구리밥군락이 드물게 분포한다. 전연한대에서 단경식물군락인 틀물참새피군락, 고마리군락, 갈풀군집 등이 분포한다. 추수대의 고경식물군락은 줄군락, 예기부들군락이 대표적이다. 조간대에서는 큰고래군집, 갈대군집 등이 확인되었으며, 갈대군집이 가장 우점한다. 중수위권 농지추이대지역에서는 비드나무-이상식물군락이 좁은 면적으로 분포한다. 식물군락은 종조성 유사성으로부터 크게 4개 그룹으로 구분되었으며, 이들 분포를 결정짓는 환경요인으로는 수위와 인위적 간섭정도 등인 것으로 확인되었다. 현존식생도는 9개 범해의 현존식생도가 도식되었다. 가장 높은 면적을 나타내는 식생은 부업부유작물식생으로 확인되었다.
식생자연도 평가 결과 우습제 식물군락의 모든 단위식생은 식생보전등급이 낮은 것으로 평가되었다. 그러나 인접지역에 우습제와 같은 비교적 큰 규모의 내륙습지가 존재하지 않으며, 주변지역이 대부분 경작지로 활용되고 있다는 점을 고려할 때 지역 생태계에서 우습제가 차지하는 생태계 기여도는 상향 평가되어야 할 것으로 판단된다. 또한 습지 일부에 생태계교란식물종으로 고려되는 털물참새피군락이 분포하고 있어 생태계 교란을 저감하기 위한 관리방안이 필요하다.

라. 식물상

우습제의 식물상은 61과 149속 171종 2아종 31변종 2품종의 206분류군을 확인하였으며 2013년 같은 지역에서 이루어진 선행 조사와 2014년 본 조사를 종합하면 우습제 주변의 관속식물은 63과 149속 189종 2아종 34변종 2품종의 227분류군에 달한다. 식물구개학적 특성식물종으로는 자라풀, 흑삼릉의 V등급종 2분류군, 개연꽃의 IV등급종 1분류군, 멸구슬나무, 물옥잠의 III등급종 2분류군, 새박의 II등급종 1분류군, 그리고 예덕나무, 투영당근, 씨버들, 노랑어리연꽃, 보풀의 I등급종 5분류군이 확인
되었다. 국외반품승인종으로는 자라풀, 둥쿵, 해변싸리, 흉삼등의 4분류군이 확인되었다. 외래종으로는 생태계 교란종인 돼지풀과 애기수영을 비롯한 34분류군이 있다.

마. 육상곤충
우습제에서 관찰된 육상곤충은 현지 조사결과 10목 34과 101종이 확인되었다. 문헌조사와 현지조사 결과를 반영하면, 나주 우습제 지역에 서식하는 총 곤충 종은 11목 44과 114종이 분포하는 것으로 확인되었다. 육상곤충의 목별 다양성을 살펴보면 나비목 (Lepidoptera)이 9과 61종(53.5 %)로 우점군, 노린재목 (Hemiptera)이 9과 11종(9.6 %)으로 야주점군으로 나타났으며 박정벌레목 (Coleoptera) 7과 11종, 파리목 (Diptera) 6과 7종, 잠자리목 (Odonata) 3과 9종이 뒤를 이었다. 우습제에서는 멸종 위기야생생물, 국외반출승인대상생물자원은 문헌 및 현지조사에서 확인되지 않았다. 그러나 문헌조사와 현지조사를 통한 비교에서 특정종은 10종, 한국고유생물종이 5종 분포하는 것으로 조사되었다.

바. 저서성 대형무척추동물
우습제에서 출현한 저서성 대형무척추동물의 총 분류군은 총 3문 5강 13목 25과 29종의 저서성 대형무척추동물을 확인하였다. 출현종은 연체동물문 4종, 환행동물문 4종, 그리고 절지동물문 중 갑각류 2종과 수서곤충류인 하루살이목 1종, 잠자리목 3종, 노린재목 3종, 박정벌레목 4종, 파리목 7종, 나비목 1종이었다. 본 조사에서 친연기념물이나 멸종위기야생생물 등의 법정보호종은 출현하지 않았다. 조사결과는 나주 우습제의 저서성 대형무척추동물상에 관한 기초자료로 활용할 수 있으며, 이를 토대로 습지보호지역 지정 및 람사르습지 등록의 근거를 확보하는데 기여할 수 있다. 또한 습지의 효율적 관리 및 보전을 위한 기초자료로 활용할 수 있다.

사. 양서·파충류
우습제에 서식하고 있는 양서·파충류는 총 2목 4과 7종으로 확인되었다. 양서류는 청개구리, 참개구리, 황소개구리 포함 총 1목 2과 3종이 출현하였고 우점종은 참개구리로 확인되었다. 파충류는 줄장지뱀, 유혈목, 누룩뱀, 구렁이 포함 총 1목 2과 4종이 관찰되었고 우점종은 줄장지뱀으로 확인되었다. 나주 우습제에서는 환경부 지정
조사결과 및 고찰

멸종위기야생생물 II급 중인 구렁이가 관찰되었다.

아. 어류

우습제에 서식하는 어류는 잉어과의 붕어와 가시납지리, 참붕어, 치리, 피라미 5종, 송사리과의 송사리 1종, 검정우럭과의 배스와 블루길 2종 등 3목 3과 8종 420개체가 체급되었다. 이중 우점종은 붕어(67.4 %)였고, 아우점종은 블루길(14.5 %), 그 밖에 치리, 배스, 송사리 등의 순으로 우세하게 서식하고 있었다. 출현종 중 멸종위기종은 없었으며, 우리나라 고유종은 치리 1종이, 외래어종은 배스와 블루길 2종이 체급되었다. 군집분석 결과 우점도는 0.82, 다양도는 1.13, 균등도 0.55, 종풍부도는 1.16으로 조사되었다. 외래어종인 블루길과 배스가 급격히 증가하고 있는 것으로 추정되기 때문에 지속적인 모니터링과 대책이 필요하다.

자. 조류

우습제에서 관찰된 조류는 총 49종 2481개체로 종 다양도와 균등도는 9월 조사, 종풍부도는 2월 조사가 가장 높은 것으로 확인되었다. 우점종은 기러기, 쇠기러기, 큰고니, 밋비둘기, 쫀ibr 등을 순이었으며, 멸종위기조류 II급은 큰기러기, 고니, 큰고니, 노랑부리저어새), 보호종은 7종(가광오리, 말똥가리, 빠꾸기, 파랑새, 물총새, 청딱다구리, 꼬꼬리)이었다. 우습제와 그 주변지역은 농경지와 폭반이 많아 먹이원이 풍부할 것이나 생각되지만 가까운 논·밭에서 이루어지는 농약 살포와 위해조류 방제를 위한 공포탄 발사는 서식에 잠재적인 방해요소로 작용할 수 있을 것으로 생각된다.

차. 포유류

우습제에서 조사된 포유류는 두더지, 너구리, 쥐개비, 수달, 고양이, 고라니, 등줄쥐, 집쥐로 총 4목 6과 8종의 서식이 확인되었다. 환경부지정 법적보호종은 멸종위기야생생물 I급 1종(수달)이었으며 생태계 교란종의 서식은 본 조사에서 확인되지 않았다. 주변의 임지환경을 고려해 볼 때, 우습제 지역은 다양한 포유류의 서식지로서의 질은 높지 않으나 멸종위기종 I급 수달의 서식지로 이용되고 있어 보호할 가치가 높다고 판단된다.
카. 동·식물성 플랑크톤

심적습지 조사에서 식물플랑크톤은 24분류군이 출현하였고, 분류군별 현존량은 2,000~18,700 cells/㎖의 범위를 보였다. 동물플랑크톤의 경우, 지각류 1종, 요각류 7종, 선충류 1종과 수서곤충 유생 3종 등 총 12분류군이 출현하였고 전 조사기간 중, 리터당 30개체 이하를 기록하여 극히 빈약한 출현 양상을 보였다.

전반적으로 보았을 때 우습지는 전형적인 정수성향을 가지는 서식처로, 다양한 수생식물과 미소서식지로 인해 부유성 및 부착성 동·식물플랑크톤이 고르게 발달한 습지로 나타났다.

4. 창녕 대봉습지

가. 지형·지질·퇴적물

대봉습지는 형성과정의 측면에서 살펴보았을 때, 대봉습지는 배후습지성 호수로 속한다. 1910년대 지형도와 현재의 지형도를 비교하여, 현재의 농경지가 과거에는 습지였음을 알 수 있었다. 대봉습지 퇴적물의 평균입경은 4.75~9.34 φ, 분급은 1.04~4.02 φ, 왜도는 -5.24~0.55의 값을 나타냈다. 퇴적물에 대한 화학분석 결과 역시 공간적으로 다양한 분포를 보였다. 화학분석의 함량이 높은 지점에는 식물들이 생장할 수 있는 영양염류가 많은 것으로 판단된다. 추후에 대봉습지를 서식처로 하는 여러 생물과 고환경과의 관계에 대한 연구가 더 활발히 이루어진다면 본 조사의 결과는 더 많은 정보를 제공해 줄 수 있을 것으로 판단된다.

나. 수리·수문

연평균 기온은 13.2 ℃, 연강수량은 1,237.6 mm이며, 지난 42년 동안 연평균 기온이 약 1.2 ℃로써 우리나라 평균기온 증가율보다 높게 나타나고 있다. 그리고 기후학적 물수지에 의하면 연강수량 중 약 47.5 %가 증발산되고 나머지는 약 52.5 %가 저유되거나 유출되며, 12월부터 이듬해 1월까지 수분부족량은 -13.9 mm이다.

조사기간 최대 강우량은 2014년 8월 21일 04시 28 mm, 전후 20시간 동안 92.5 mm 누적강수량을 기록하였다. 이때 대봉늪 첨두수위는 4.81 m이었으며, 상류부보다 2시간의 첨두지체가 나타났다. 대체로 강우에 대한 수위변동은 계성천 상류부에 비해 범람원지수가 큰 대봉늪 수위상승이 지체되는 반면에 강우강도가 크거나 누적강수량이
많아질수록 인위적인 수문통제의 영향을 받고 있는 대봉늪이 더 빠르게 하강한다. 대봉늪 상하류간의 평상갈수량과 수문곡선에 나타난 수위변동을 고려할 때 홍수 조절지로서 대봉늪의 수문학적 기능이 크다고 판단된다. 기존 제방 혹은 하상조절 중심으로 1차원적 하천관리보다 홍수의 복구와 생태지리학적 환경 등의 생태계수의 개념 즉, 대봉늪 생태계를 보전할 수 있는 방안을 다각적으로 모색해야 할 것이다.

다. 식생
대봉늪지 일대의 식생조사결과 서식처 특성 및 종조성에 의해 4개 상관형과 11개 단위식생이 분포하고 있는 것으로 확인되었다. 법합원 일대 저층습원식생의 식생조성 등급에 의한 분포경향은 III>IV>V 등급 순이며, 주요감시 1급 국가식생자원으로 고려되는 식생조성등급 III등급의 식생은 습지내부에서 최우점하고 있는 갈대군락이며, IV등급은 애기부들-줄군락, 마름군집, V등급은 털물참새피군락으로 구분되었다.

라. 식물상
대봉늪지에 분포하는 관속식물은 43과 75속 93종 3변종 등 총 96분류군으로 나타났다. 식물구계학적 특성은 V등급인 자라풀 (Hydrocharis dubia (Blume) Backer)과 통발 (Utricularia japonica Makino), III등급인 발사상자 (Cnidiium monnieri (L.) Cusson), 북사초 (Carex augustinowiczii Meinh. ex Korsh.), 그리고 I등급인 왕버들 (Salix chaenomeloides var. chaenomeloides Kimura), 두경당굴 (Actinostemma lobatum Maxim.), 노랑이연꽃 (Nymphoides peltata (S. G. Gmel.) Kuntze), 물쑥 (Artemisia selengensis Turcz. ex Besser f. selengensis), 나사말 (Vallisneria natans (Lour.) H. Har.) 가는가래 (Potamogeton cristatus Regel & Maack) 등 10 분류군으로 조사되었다. 외래종은 미국자리공, 췌명아주, 돌소리쟁이, 갓, 콩다락쟁이, 밤쟁이, 자운영, 미국가막사리, 올산도께비바늘, 개방초, 도꼬마리 등 11분류군으로 전체의 11.7%를 차지하는 것으로 조사되었다.

마. 육상곤충
대봉늪지에서 관찰된 육상곤충류는 총 12목 51과 142종으로 확인되었다. 대봉늪지 일대에서는 멸종위기야생생물은 관찰되지 않았지만, 국외반출승인대상종 9종, 한국 고유종 2종, 기후변화생물지표종 1종, 분포특이종 2종, 특정종에 유용곤충자원의
조사결과 및 고찰

천적곤충 23종, 화분매개곤충 10종, 환경정화곤충 5종이 분포하고 있다. 그 밖에도 위해우려가능충으로써 위해 외래종 2급으로 지정된 동검은말벌 한 개체가 발견된 바 있다. 하지만 관찰된 개체가 극소수이므로 지속적인 감시가 필요하리라 생각된다.

바. 저서성 대형무척추동물

대봉저수지 일대 수계의 저서성대형무척추동물은 총 3문 5강 13목 29과 43종이었다. 분류군별로 살펴보면, 연체동물문이 1강 3목 6과 7종(16 %), 환형동물문 2강 3목 3과 4종(9 %), 그리고 절지동물문이 2강 8목 21과 32종(75 %)이었다. 절지동물은 갑각강이 2종, 곤충강의 수서곤충류가 30종이었다. 수서곤충류에서의 구성형태는 잠자리목이 12종(28 %)으로 가장 다양하였으며 파리목이 6종(14 %), 박정벌레목 5종(12 %), 그리고 하루살아목이 4종(9 %)의 순으로 서식양상을 나타내었다. 밀종 위기야생생물은 출현하지 않았다.

사. 양서·파충류

대봉습지에서 관찰된 양서·파충류는 총 3목 8과 11종으로 확인되었다. 양서류는 도롱뇽, 두꺼비, 정개구리, 무당개구리, 한국산개구리, 참개구리, 황소개구리 등 총 2목 5과 7종이 출현하였고 우점종은 황소개구리로 확인되었다. 파충류는 줄장지뱀, 유혈목, 누룩뱀, 살모사 등 총 1목 3과 4종이 출현하였고 우점종은 유혈목이로 확인되었다. 대봉습지에서는 밀종위기야생생물은 관찰되지 않았으며, 생태계교란 생물을 황소개구리가 매우 높은 밀도로 서식하고 있어 대책이 시급한 것으로 판단된다.

아. 어류

대봉습지에서 확인된 담수어류는 총 3목 4과 7종이 확인되었다. 우점종은 배스, 아우점종은 붕어로 확인되었고, 생태계위험야생동식물은 배스와 붕어로 확인되었다. 밀종위기야생동식물과 한국고유종은 모두 확인되지 않았다. 배스는 대봉습지의 유입과 유출수로보다 습지 내에서 매우 큰 집단의 치어가 출현하고 있었으며, 이는 대봉습지가 배스의 주요 산란장임을 보여주었다.

자. 조류

창녕 대봉습지에서 관찰된 조류는 총 62종 1,519개체가 관찰되었으며, 밀종위기
야생생물 II급 7종(큰기러기, 재두루미, 독수리, 갯빛개구리, 뿔은배새매, 참매, 수리부엉이)이 관찰되었다. 우점종은 뿔은머리오목눈이로 319개체(21.0 %)가 관찰되었으며, 아우점종은 흰뺨검동오리로 186개체(12.2 %)가 관찰되었다. 그 밖에 청둥오리 154개체, 독수리 139개체, 멧비둘기 114개체, 쇠오리 74개체, 노랑턱멧새 45개체 순으로 관찰되었다.

차. 포유류
조사결과 두더지, 너구리, 쥐체비, 고양이, 고라니, 멧돼지, 청설모, 등줄쥐 및 멧밭쥐가 확인되었고 멸종위기야생생물인 수달과 삵을 포함하여 총 4목 8과 11종의 흔적이 확인되었다. 멸종위기야생생물 I급인 수달이 대봉습지 내 수로에서 배설물이 지속적으로 확인되었고, 계성천 상류인 동영교에서도 배설물 및 족적이 지속적으로 확인되었다. 멸종위기야생생물 II급인 삵은 대봉습지 내부 및 계성천 계방에서 배설물이 지속적으로 확인되었다. 대봉습지의 경우 사람의 접근이 많고 낚시꾼의 교란 요인이 있지만 서식지가 넓어 동물이 서식하기에 양호한 지역으로 판단되었다.

카. 동식물성 플랑크톤
부유 플랑크톤, 수생식물 부착조류, 수중 물체 부착조류 등으로 구분하여 조사한 결과, 규조류는 138종을 관찰하였다. 3월 수생식물에서 관찰되는 규조류는 *Navicula trivilais, Planothidium lanceolatum* 등이 중요했으나 죽은 물체에 부착규조류는 *Achnanthes minutissimum*가 가장 많이 관찰되어 차이가 컸다. 10월에서 수생식물군에서는 *Diadesmis confervacea*의 우점도가 가장 높았다. 생이가래와 붕어마름 수생식물에서 관찰되는 중요 규조류에 있어서는 대봉습지와 함안 절날늪을 비교하였을 때 그 종조성에서 유사성을 보다는 서로 상이한 점이 더 많았다.
5. 함안 질날늪

가. 지형·지질·퇴적물

질날늪은 남강으로 유입하는 지류의 중·하류에 위치한다. 하천 본류로 유입되는 소규모 지류하천의 중·하류 지점에서 하도 내에 발달하는 이러한 습지를 지류습지라고 한다. 질날늪에 물을 공급하는 질날천은 유역면적 5.1 km² 인 3차수의 소하천이다. 기반암의 절리구조를 따라 북쪽으로 흘러 남강으로 유입하며, 종단면을 분석한 결과 합류부보다 질날늪 부근의 고도가 2 m 이상 낮다. 퇴적물의 입경은 평균 8.9 φ로 점토에 해당되며, 분급도는 평균 1.27로 불량한 편이다. 퇴적물의 유기물함량은 평균 15.2 %로 비교적 높은 편이고, pH는 6.72로 중성에 가까우며 전기전도도는 평균 0.04 μS/cm로 낮은 편이다. 치환성 양이온의 농도는 칼슘의 함량이 평균 131.6 ppm으로 가장 높았다.

나. 수리·수문

지난 30년 동안의 기상자료에 의하면, 연평균 기온은 14.8 ℃이며, 연강수량은 1,544.8 mm로서 다우지역 중 하나이다. 연평균기온과 풍속, 상대습도는 낮아지는 경향을 보이고 있으나 강수량과 일조시간, 운량은 약간 증가하고 있다. 그리고 1월과 10월, 12월에 소량의 수분부족 현상이 있으나 안정적인 습원을 형성할 수 있는 기후환경을 보이고 있다.

조사기간 동안 최고수위는 21.85 m, 최저수위는 0.26 m, 평균수위는 0.6 m였다. 수위 0.6~0.7 m, 일 강수량 25 mm이하인 갈수기에만 강수량과 수위상승간의 상관이 인정되고, 나머지는 95 % 신뢰구간을 크게 벗어나고 있다. 일반적인 배후습지와 달리 질날늪은 남강대동 빗물배수장과 배수문관리에 따라 수문통제를 강하게 받고 있다. pH 6.9~8.1, DO 4.5~8.9 mg/L, EC 18.3~33.2 mS/m, TDS 28.6~49.8 mg/L, 탄도 2.5~41.9 NTU, 염도 0~0.1 %, 수온은 21.1~25.8 ℃였다.

이처럼 질날늪은 홍수조절 그리고 수질정화 등 남강하류와 낙동강의 수질형성에도 영향을 미칠 것으로 판단되므로 생물다양성 보호와 복원방안에 대한 검토가 반드시 필요하다.
다. 식생

절남늪 일대의 식생은 서식처 특성 및 종조성에 의해 5개 상관형과 10개 단위식생으로 구분되었다. 습지식생의 식생보전등급에 의한 분포경향은 III등급 > II등급 > V등급 > IV등급 순이며, 절대감시 2급 국가식생자원으로 고려되는 식생보전등급 II등급의 식생은 왕버들군락과 선버들군락이 포함되었다. 주요감시 1급 국가식생자원으로 고려되는 식생보전등급 III등급의 식생은 습지내부에서 최우점하고 있는 줄군락을 비롯하여 물억새군락, 갈대군락, 삼각사초군락, 독사초군락, 큰고랭이군락, 마름군락 등으로 구분되었다. 습지 내외부에서 직접간접적인 인간간섭이 이루어지고 있으며, 식생의 이질적인변화 및 건생식생으로 급격한 천이가 예상되었다. 절남늪 생태계의 온전성 보전 및 복원을 위한 실질적이고 적극적인 보전대책의 필요성이 제기되었다.

<Figure 5> Actual vegetation map of Jilnal wetland.
라. 식물상

질날늪에 분포하는 관속식물은 45과 87속 99종 7변종 등 총 106분류군으로 나타났다. 대표적인 습지식물로는 줄, 갈대, 부들, 물억새, 큰고랑이, 세모고랑이, 송이고랑이, 물고랑이, 큰매자기, 골풀 등 35종이 조사되었다. 멸종위기 II급인 가시연꽃 (Euryale ferox Salisb.)의 어린잎을 2014년 7월 12일 확인하였으나, 10월 조사에서는 성체를 확인할 수 없었다.

식물구개학적 특정종은 V등급인 가시연꽃 (Euryale ferox Salisb.), 자라풀 (Hydrocharis dubia (Blume) Backer)과 통бал (Utricularia japonica Makino), III등급인 북사초 (Carex augustinowiczii Meinsh. ex Korsh.), 그리고 I등급인 왕버들 (Salix chaenomeloides var. chaenomeloides Kimura), 두영당굴 (Actinostemma lobatum Maxim.), 노랑여리연꽃 (Nymphoides peltata (S. G. Gmel.) Kuntze), 나사말 (Vallisneria natans (Lour.) H. Hara) 등 8분류군으로 조사되었다.

외래종은 돌소리쟁이, 갓, 말냉이, 졸제비싸리, 자운영, 선개불알풀, 큰개불알풀, 울산도깨비바늘, 개망초, 도꼬마리 등 10분류군으로 전체의 8.6％을 차지하는 것으로 조사되었다.

마. 육상곤충

질날늪에서 관찰된 육상곤충상은 11목 71과 177종이 확인되어 이전의 조사에 비해 많은 종들이 추가 되었다. 분류군별로는 박정벌레목에서 47종이 확인되어 26.6％를 차지하며 가장 많은 종수를 나타내었다. 그 다음이 31종(17.5％)을 기록한 노린재목이며 관목 21종과 박목 19종이 뒤를 이었다. 마귀목에서는 1종만이 체집되어 가장 적은 종수를 보였고, 사마귀목과 풀잠자리목에서는 각각 2종만이 조사되었다. 나비목에서는 16종이 출현하였고, 잠자리목과 매미목에서는 각각 12종의 종들이 관찰되었다. 또한 노린재목 잠초노린재과에 속하는 붉은잠초노린재 (Rhopalus maculatus)가 우점종으로 같은 과에 속하는 흑다리잠초노린재 (Stictopleurus crassicornis)가 아우점종으로 조사 되었다.

바. 저서성 대형물척추동물

함안 질날늪 일대 수계의 저서성대형물척추동물은 종 2문 3강 9목 21과 30종이었다.

26
조사결과 및 고찰

분류군별로 살펴보면, 연체동물문이 1강 2목 5과 7종(23%), 그리고 절지동물문이 2강 7목 16과 23종(77%)이었다. 절지동물은 갑각강이 2종, 곤충강의 수서곤충류가 21종이었다.

수서곤충류에서의 구성형태는 잠자리목이 8종(27%)으로 가장 다양하였으며, 파리목이 6종(20%), 노린재 및 백절벌레목 각각 3종(10%), 그리고 하루살이목이 1종(3%)의 순으로 서식양상을 나타내었다. 멸종위기야생생물은 출현하지 않았다.

사. 양서·파충류

질날늪에서 관찰된 양서·파충류는 총 2목 7과 11종으로 확인되었다. 양서류는 두꺼비, 청개구리, 무당개구리, 참개구리, 참개구리 등 총 1목 4과 5종이 출현하였고 우점종은 참개구리로 확인되었다. 파충류는 줄장지뱀, 두꺼비, 유혈목이, 구렁이, 누룩뱀, 살모사 등 총 1목 3과 6종이 출현하였고 우점종은 줄장지뱀으로 확인되었다. 질날늪에서는 멸종위기야생생물 II급 종인 구렁이 성체 1마리와 허물 1개가 관찰되어 이에 대한 개체군 현황 확인을 위한 정밀조사가 필요한 것으로 생각된다. 또한 생태계교란 생물인 황소개구리가 서식하고 있어 이에 대한 대책이 시급한 것으로 조사되었다.

아. 어류

질날늪에서 확인된 담수어류는 총 5목 9과 12종으로 확인되었다. 우점종은 붕어, 아우점종은 참붕어로 확인되었고, 생태계위해야생동식물은 배스가 확인되었으며, 멸종위기야생동식물은 확인되지 않았다. 주목되는 종은 좀구굴치, 동자개로 좀구굴치는 낙동강 수계 내에서 유일한 서식지로서의 생물지리적 의의가 있으며, 동자개는 국내이입종으로서 본디 낙동강 수계에 출현하지 않았으나 최근의 인위적 도입에 의해 출현하게 된 것으로 질날늪에 인위적 도입과 방류가 이루어지고 있음을 보여주고 있었다.

자. 조류

합산 질날늪에서 관찰된 조류는 총 47종 1,734개체가 관찰되었으며, 법정보호종으로는 큰기러기(멸종위기야생생물 II급), 붓은배새매(멸종위기야생생물 II급, 천연
기념물 323-2호, 왕조롱이(천연기념물 323-8호) 3종이 관찰되었다. 우점종은 큰기러기로 870개체(50.17%)가 관찰되었으며, 아우점종은 붉은머리오목눈이로 172개체(9.92%)가 관찰되었다. 그 밖에 최기러기 110개체, 청둥오리 93개체, 황백점등오리 71개체, 쪽새 57개체, 노량턱멧새 50개체 순으로 관찰되었다.

차. 포유류

질날늪에서 조사된 포유류는 두더지, 너구리, 쥐치비, 수달, 삼, 고양이, 멧돼지, 고라니, 동굴쥐, 집쥐로 총 4목 7과 10종의 서식이 확인되었다. 환경부 지정 법적 보호종은 멸종위기야생생물 2종(Ⅰ급: 수달, Ⅱ급: 삼)이었으며 생태계 교란종의 서식은 본 조사에서 확인되지 않았다.

한편 질날늪 지역은 일부 가정자리 지역에서 인위적인 간섭이 간헐적으로 발생하고 있으나 그 외 습지지역은 온폐식생이 조성되어 있어서 인위적인 간섭에 의한 영향은 미미한 상태였다. 따라서 질날늪은 다양한 포유류 서식지로서의 매우 높은 질을 유지하고 있는 습지로 판단되며 멸종위기야생생물인 수달, 삼의 안정적인 서식지로 이용하고 있는 만큼 보호할 가치가 높다고 판단된다. 향후 지자체와 협의를 거쳐 질날늪의 안정적인 생태계가 유지되도록 관리하여야 할 것으로 판단된다.

카. 동·식물성 플랑크톤

질날늪에서 부유 플랑크톤, 바닥 저서조류, 수생식물, 수중 부착조류 등 다양한 미세조류 기절로부터 시료를 채취하여 그 종다양성을 조사하였다. 규조류는 총 175종을 관찰하였다. 바닥 저서조류 군집은 대부분 규조류였으며 높의 가정자리와 수로변의 저서조류는 그 종주성에 차이가 있었고, 부유 플랑크톤은 주로 Nitzschia 속이었으며 다양한 종이 출현하였다. 한편, 수생식물에서는 Eunotia, Fragilaria 등 바늘형태의 규조류가 많이 나타났으며 살아있는 식물과 죽은 식물은 규조류 조성에 있어서 상당한 차이가 발견되었다. 3월과 8월에는 주로 규조류가 관찰되었으며 10월 수생식물 조사에서 많은 종류의 남조류와 녹조류가 관찰되었고 대부분 사상체였다.
Ⅳ. 결 론

2014년 전국내륙습지 정밀조사는 울진 천축산습지, 세종 합강습지, 나주 우습계, 창녕 대봉습지, 함안 절말늪을 대상으로 수리·수문, 지형·지질·퇴적물, 식생, 조류, 포유류 등 10개 분야에 걸쳐 수행하였다.

1. 울진 천축산습지

천축산습지는 산지습지 고유의 수문체계 특이성과 중간습원이라는 서식처 희소성으로부터 그 가치를 인정받고 있는 지역이나 식생분포의 파편화로 육상화가 진행되고 있어 보전대책이 필요하다. 멸종위기야생생물 6종(산양, 삽, 담비, 하늘다람쥐, 새하리나, 개막딱다구리)이 서식하고 있으며 한국고유종인 삼골조개, 바늘佶쟁도래 KUa의 서식이 확인되었다.

2. 세종 합강습지

합강습지는 세종보의 건설로 월별 유량이 보의 개폐에 따라 크게 변화하고 있었으며, 감체적인 변화에 는 노출되어 있으나 식생학적으로 안정적인 하도습지로 평가되었다. 멸종위기야생생물 2종(흰목물떼새, 금개구리)의 서식이 확인되었고, 습지 내는 아니라 합강습지 주변 산림지역에서 멸종위기야생생물 삼의 서식이 확인되었다. 또한 한국고유종 2종(한국산개구리, 물개) 및 천연기념물 1종(판암)도 확인되었다.

3. 나주 우습계

나주 우습계는 짬수역으로부터 유입되는 지표수에 따라 수위가 크게 변동하고 있었으며, 주변에 오염원이 다수 존재하나, 습지 내에 발달한 수생식물들의 풍부한 생태가 양호한 수질환경을 유지시키고 있었다. 멸종위기야생생물 6종(수달, 큰기러기, 고나, 큰고나, 노랑부리저어새, 구령이)의 서식이 확인되었으며 한국고유종은 6종(치리, 설래떡이, 섬서구매뚜기, 백아개비, 어리참사리, 팽풍이)이 확인되었다.

29
Ⅳ. 결 론

4. 창녕 대봉습지
창녕 대봉습지는 주변의 홍수조절지로서 수문학적 기능이 뛰어났으며, 멸종위기 야생생물 9종(수달, 삶, 큰기러기, 제두루미, 독수리, 채빛개구리매, 봉은배새매, 참매, 수리부영이), 천연기념물 2종(원앙, 황조롱이)의 서식이 확인되었다. 생명체 위해야생생물 배스의 치어가 매우 큰 집단으로 출현하고, 위해외래종 등검은말벌도 확인되었다.

5. 함안 질날늪
함안 질날늪의 퇴적물은 점토질로 구성되며, 배수문 관리에 따라 강한 수문통제를 받고 있음을 확인할 수 있었고, 멸종위기야생생물 5종(수달, 삶, 큰기러기, 봉은배새매, 구렁이) 및 천연기념물 1종(황조롱이) 서식하고 있었다.

6. 습지보호지역 지정 및 람사르습지 등재
2014년도 전국내륙습지 정밀조사 결과 합강습지는 전형적인 하도습지의 특징이 잘 보존되어 있으며 생물다양성이 높고 멸종위기야생생물이 서식하고 있다. 습지 보전법 제8조 습지보호지역 지정(원시성을 유지하고 있거나 생물다양성이 풍부한 지역, 희귀하거나 멸종위기에 처한 야생동식물이 서식 및 도래하는 지역)의 기준을 충족하여 습지보호지역 지정을 위한 정책 건의 및 지정을 추진할 계획이다. 또한 람사르협약 메뉴얼에서 제시한 국제적으로 중요한 습지를 지정하기 위한 기준(대표적이고 희귀하거나 독특한 습지 유형을 포함하는 지역, 생물다양성 보전을 위하여 국제적으로 중요한 지역)과 국내·외적으로 멸종위기종으로 분류되어 보호가 필요한 동물이 서식하고 있어 람사르습지 등재도 검토할 계획이다.
참 고 문 헌

1. 구본학, 유영한, 김해동, 김재근, 양화선, 노백호, 조동길, 제종길, 주기재, 도윤호, 습지 이해, 2013, 국립환경과학원.
8. 이영노, 새로운 한국식물도감 (Ⅰ, Ⅱ), (주)교학사, 2007, 서울.
10. 이창복, 원색 대한식물도감(상, 하), 향문사, 2003, 서울.