Estimating Temporal and Spatial Variation of Chlorophyll-a Concentration from Multi-Spectral Imagery in Nak-dong River Basin

Hyuk Lee, Taegu Kang, Kyunghyun Kim, Gibeom Nam, Moonjin Kwon, Hyunoh Song, Seuk Cheon, Jaewoon Lee, Jongsu Yoon, Injung Lee, Hyejin Lee

Water Quality Control Center
Water Environment Research Department
National Institute of Environmental Research

2013
목 차

목 차 ... i
표 목 차 ... iv
그림 목 차 ... v
Abstract .. vi

I. 서 론 ... 1
II. 연구내용 및 방법 .. 2
 1. 연구 동향 ... 2
 2. 연구 목표 ... 3
 3. 연구내용 및 방법 .. 4
 가. 분석자료 수집 ... 5
 (1) 연구 대상지역 ... 5
 (2) 공간 자료 ... 5
 (3) 수질자료 ... 5
 나. 영상촬영 및 현장조사 .. 7
 다. 영상 전처리 및 동화작업 7
 (1) 정사보정(Ortho-rectification) 8
 (2) 대기보정(Atmospheric correction) 9
 (3) 동화작업(Masking and scaling) 13
 라. 단일분광요소(End-members) 선택 13
 (1) Minimum Noise Fraction Transform 14
 (2) 화소순도지수(Pixel Purity Index) 산정 14
 (3) 점계 단일분광화소 선택 15
 마. 선형분광혼합화소분석 15
III. 연구결과 및 고찰 ... 16
 1. 영상활영 및 수질분석 ... 16
 2. 단일분광요소(end-member) 선택 ... 18
 가. Minimum Noise Fraction 변환 18
 나. 화소순도지수(Pixel Purity Index, PPI) 산정 19
 다. 분광혼합화소분석을 통한 단일분광요소 영상 작성 20
 3. 단일분광요소 영상을 이용한 클로로필a 다중회귀분석 20
 가. 영상 활영 및 체수시간 차이에 따른 분석정확도 변화 20
 나. 클로로필a 농도 다중회귀분석 23
 4. 밴드조합을 통한 클로로필a 회귀분석 24
 가. 클로로필 농도에 따른 분광특성 변화 24
 나. 밴드조합을 통한 클로로필 농도 추정 26
 (1) Red-RE two-band model ... 26
 (2) Red-RE-NIR three-band model 26
 5. 선형분광혼합화소분석 기법의 다중시기 영상 적용성 검토 28

IV. 결 론 ... 29
 1. 선형분광혼합화소 분석 ... 29
 2. 다중시기 영상에 대한 적용성 검토 30

참 고 문 헌 ... 31

부 록 .. 34
표 목 차

<Table 1> Product specification of RapidEye satellite images 6
<Table 2> Input parameters of the atmospheric correction for ATCOR module ... 12
<Table 3> Statistics of water quality concentrations sampled on Oct. and Nov. .. 17
<Table 4> Change determination coefficient of multi-variate regression for image acquisition time difference .. 23
그림 목차

<Figure 1> Flow chart of spectral mixture analysis ... 4
<Figure 2> Study area ... 5
<Figure 3> RapidEye imagery on 14, October(left) and 12, November 2013(right) ... 7
<Figure 4> Digital ortho-rectification ... 8
<Figure 5> Ortho-rectified RapidEye imagery, Oct.(up) and Nov.(down) 9
<Figure 6> Level-2A atmospheric correction processing(ATCOR) 10
<Figure 7> Examples of images using ATCOR atmospheric correction (before(left) and after correction(right)); ALOS AVNIR-2, Fukuoka, Japan(up), IKONOS, Scotland, UK(middle), Landsat TM, river Rhine, EU(down) ... 11
<Figure 8> Atmosphere corrected RapidEye imagery .. 12
<Figure 9> Masking river(left) and 1×1, 3×3, 5×5, 7×7 mean filter(right) ... 13
<Figure 10> Acquired new images on 14, October(left) and 12, November(right) and each sampling sites ... 16
<Figure 11> Chlorophyll-a concentrations sampled on 14, October(left) and 12, November(right) ... 17
<Figure 12> Scatter plots of each MNF bands and end-member selection images .. 18
<Figure 13> Pixel purity index clustering plots and the potential end-members ... 19
<Figure 14> Unmixed abundance images of each end-members, 14 October(up) and 12 November(down), 2013 ... 20
<Figure 15> Relationship between observed and calculated chlorophyll-a concentration for 12 November, 2013 ... 21
<Figure 16> Time difference between image acquisition time and sampling time for 14 October(up) and 12 November(down), 2013 22
<Figure 17> Relationship between observed and calculated Chlorophyll-a concentrations, 14 Oct.(left), 12 Nov.(right), 2013 ... 24
<Figure 18> Comparison of spectrum between water containing algae and clean water (left) and Chlorophyll-\(a\) reflectance for different concentration in water in the visible and NIR spectrum (right) · 25

<Figure 19> Reflectance (×100) variation of RapidEye image pixel for the sampling points; imagery acquired on 14, October (left) and 12, November (right) · 25

<Figure 20> Relationship between observed Chlorophyll-\(a\) concentrations and R values calculated by imageries acquired on 14, October (left) and 12, November (right) with Red-RE two-band Chlorophyll-\(a\) estimation equations ... 26

<Figure 21> Relationship between observed Chlorophyll-\(a\) concentrations and R values calculated by imageries acquired on 14, October (left) and 12, November (right) with Red-RE-NIR three-band Chlorophyll-\(a\) estimation equations ... 27

<Figure 22> Comparison between observed and calculated Chlorophyll-\(a\) concentration with multi-regression model and spectral mixture analysis using RapidEye images; 14, October (left) and 12, November (right), 2013 · 28
Abstract

This study aims to estimate chlorophyll-a concentration in rivers using multi-spectral RapidEye imagery and Spectral Mixture Analysis (SMA) and assess the applicability of SMA for multi-temporal imagery analysis. Linear spectral unmixing attempts to calculate the proportion of various surface components present in each image pixel based on the spectral characteristics at the surfaces. Minimum Noise Fraction (MNF) transformation and Pixel Purity Index (PPI) were also performed to select the end-members in the image effectively.

Comparison between images (acquired on Oct. and Nov., 2013) predicted and ground reference chlorophyll-a concentration showed significant performance statistically with determination coefficients of 0.49 and 0.51, respectively. Two band (Red-RE) model for the October and November 2013 RapidEye images showed low performance with coefficient of determinations (R^2) of 0.26 and 0.16, respectively. Also Three band (Red-RE-NIR) model showed different performance with R^2 of 0.016 and 0.304, respectively. SMA derived Chlorophyll-a concentrations showed relatively higher accuracy than band ratio models based values. SMA was the most appropriate method to calculate chlorophyll-a concentration using images which were acquired on period of low chlorophyll-a concentrations. The results of SMA for multi-temporal imagery showed low performance because of the spatio-temporal variation of each end members.

This approach provides the potential of providing a cost effective method of monitoring river water quality and management using multi-spectral imagery. In addition, the calculated chlorophyll-a concentrations using multi-spectral RapidEye imagery can be applied to water quality modeling, enhancing the predicting accuracy.
Ⅰ. 서 론

최근 환경, 국방, 재난재해, 교통 등 각종 분야에서 원격탐사의 수요가 증가함에 따라, 전 세계에서 다양한 목적을 가진 위성들이 발사되고 있다. 우리나라에서도 2013년 KOMPSAT-3, KOMPSAT-5 두 대의 인공위성을 성공적으로 발사하여 cm급 컬러 영상과 기상조건에 관계없이 대상체의 관측이 가능한 SAR 영상 자료를 사용할 수 있게 되었다. 이렇게 획득된 원격탐사 자료는 각 분야의 탐사목적에 따라 다소 차이가 있지만, 일반적으로는 원격탐사 기법의 적용이 경제적이고 실용적이다.

원격탐사기법은 다양한 분야에서 적용되고 있지만, 특히 산불 탐지 및 피해량 산정(T. V. Loboda et al., 2013; S. Veraverbeke et al., 2011; 강준묵 등, 2010), 식생수종 분석(Moses Azong Cho et al., 2012; Sassan Saatchi et al., 2008), 식생생육 분석(김이현 등, 2013; Jinsong Shen et al., 2007), 해양생물분석(Guan L. et al., 2004) 등 환경분야에서 활발하게 활용되고 있다. 그러나 원격탐사기법은 대상에 따라 다르게 적용되며, 특히 하천에 대한 수질 모니터링 분야에서는 활용연구가 미미한 실정이다.

현재 국가는 수질측정망을 지정 위주의 측정으로 인해 한 지점의 수질이 주변 수체 전체를 대표하고 있음에 따라, 정밀한 수질 오염 심화 지역 분석 및 모델링 초기상 자료 등의 활용에 한계가 있다. 이러한 문제점을 보완하기 위해서는 광역의 정보를 동시에 대용량으로 획득할 수 있는 원격탐사기법의 적용이 효과적이다.

본 연구에서는 RapidEye 위성영상자료를 이용하여 하천의 클로로필 혼도 추정식을 작성하였다. 클로로필 혼도 추정식을 작성하기 위해 RapidEye 위성영상자료의 개선대상에서 클로로필 혼도 추정식을 작성을하되, 선형분명화와의 모델링 기법과 다중회귀분석을 통해 수질인자를 도출하였다. 또한, 도출된 클로로필 혼도 추정식을 다중사례 분석에 적용하여 그 활용 가능성을 검토하였다.
II. 연구내용 및 방법

1. 연구 동향

2000년대 이후, 환경원격탐사 분야에서는 선형분광혼합화소분석 기법을 적용한 연구가 활발히 진행되고 있다. 선형분광혼합화소분석 기법은 영상에서 각 화소의 반사율은 단일분광요소의 선형 조합으로 이루어져 있다고 가정하고, 각 요소들이 차지하는 비율을 분리해 내는 과정이다. 관심 요소에 의한 반사율만을 얻을 수 있음에 따라 더욱 정밀한 분석이 가능하다. 선형분광혼합화소분석 기법을 적용한 사례는 특히 산림, 토지피복, 해양 분야에서 많은 연구가 진행되고 있고, 외국의 경우에는 남서 영역의 수질정보를 얻으려는 연구가 선행되고 있다.

Youichi Oyama et al. (2009)은 선형분광혼합화소분석 기반으로 SDA(Spectral Decomposition Algorithm) 기법을 개발하였다. 이를 Landsat-TM 5 영상에 적용하여 SS 농도가 높은 가스미카와라 호수에 대해 클로로필a, NPSS(Non-Phytoplankton Suspended Solids) 농도를 작성하였다. 아울러 생물학적 광전달 모델로부터 도출된 단일분광요소를 이용하여 클로로필 농도 추정식을 적용한 결과, 현장조사를 병행하지 않고도 영상자료로부터 직접 수질인자의 도출이 가능하였다. 서로 다른 두 시기 영상에 수질 추정식을 적용한 결과, 클로로필a의 추정오차는 9.9%, NPSS는 15.9%로 나타났다.

E. Svab et al. (2005)은 Landsat TM과 ETM+ 영상과 Balaton 호수 실측자료를 이용하여 부유물질과 클로로필a 농도를 추정하였다. 그 결과, 부유물질 농도가 높은 수체에서는 클로로필a 농도 추정 정확도가 매우 낮았다. 그러나 주성분 분석을 통해 고유의 단일분광요소를 찾아내고 선형분광혼합화소분석을 적용하여 다중회귀분석한 결과, 부유물질의 농도와 상관없이 클로로필a의 농도 추정이 가능하다고 하였다.

정승규 등 (2006)은 MODIS 다중시기영상과 선형분광혼합화소분석을 이용하여 한반도의 토지피복도를 작성하였다. MODIS 다중시기영상에 선형분광혼합화소분석을 적용하여 남북한의 농경지 및 산림지역이 서로 다른 생물계절적인 특성을 가지는 것을 파악하였고, 이를 ISODATA 무감독분류기법을 통해 대분류와...
중분류의 토지피복도를 작성하였다. 선형분광혼합화소분석을 적용한 결과는 과거의 정규화식생지수(Normal Distribution Vegetation Index, NDVI)와 수정식생지수(Enhanced Vegetation Index, EVI)를 이용한 두각두분류보다 향상된 결과를 나타내었고, 특히 활엽수림은 86.96 %, 논은 85.38 %로 분류군 중에서 높은 정확도를 얻을 수 있었다.

신정일 등 (2006)은 초대분광영상을 이용하여 도시지역의 수문학적 토지피복분류를 수행하고 분류정확도를 향상시킬 수 있는 기능성에 대해 제시하였다. 서울지역에 대해 Hyperion 영상을 이용하여 투수성 및 불투수성 표면특성을 대표하는 8개의 단일분광요소들을 선행하여 분광혼합분석을 수행하였다. 그 결과로 얻어진 분율맵을 조합하여 17개 동급의 수문학적 토지피복도를 제작하고 항공사진을 이용하여 검증한 결과, 미국 농무부에서 제시한 수문학적 토지피복 동급과 비교한 수준으로 비교적 정확하게 분류되었다.

앞선 사례에서 사용된 선형분광혼합화소분석 기법은 대상체의 분광학적 특성을 보다 정밀하게 추정할 수 있음에 따라 여러 분야에서 활발하게 사용되고 있다. 하지만 국내에서는 담수에 대해 선형분광혼합화소분석 기법을 적용하는 사례가 미미하였고, 해외의 경우에도 기법 적용을 통해 도출된 클로로필 a 농도 추정식은 다른 시기 영상에 적용 시 정확도가 떨어진다는 한계점이 존재하였다. 또한, 담수역 중에서도 하천을 대상으로 하는 연구는 사례를 찾아보기가 힘들었다. 하천은 호수에 비해 상대적으로 빠른 호흡을 가지고 있으므로 시간 변화에 따라 호소와는 다른 광학적 특성을 나타낼 것이라 판단된다.

따라서 본 연구에서는 하천 영역을 대상으로 선형분광혼합화소분석 기법을 적용하여 클로로필 a 농도 추정식을 개발하고, 개발된 추정식은 다른 시기에 활영된 영상에 적용하여 안정적인 클로로필 a 농도 추정 가능성을 평가하고자 하였다.

2. 연구 목표

본 연구의 목표는 선형분광혼합화소분석을 이용하여 영상 내에서 하천의 클로로필 a 농도를 추정하는 기술을 연구하고, 다중 시기에 활영된 영상에 대해 선형분광혼합화소분석 기법의 적용성을 검토하는 것이다.

선형분광혼합화소분석은 영상 내에서 수질 추정을 위해 기존의 연구에서 사
용되었던 방법과 달리, 영상의 특정 화소 내에 존재하는 물질들에 대한 반사율 정보를 화소 내 단일물질들의 분율로 환산하여 분석하는 기법이다. 선행 연구들을 통해 대형 호수에 적용된 선형분광혼합화소분석은 다중 시기에 촬영된 영상에서 안정적으로 수질을 추정할 수 있다고 보고된 바 있다. 따라서 본 연구에서는 현장조사를 병행하지 않고 신규 촬영된 하천 지역의 영상 내에서 안정적으로 수질을 추정하기 위한 방법으로 선형분광혼합화소분석을 적용하고, 그 결과를 평가하고자 하였다.

3. 연구내용 및 방법

혼합분광화소분석 기법을 적용하여 영상 내에서 클로로필a 농도를 추정하는 과정은 크게 단일분광화소 선택, 혼합분광화소 분석, 다중회귀 분석으로 구분된다. 정사정 보정 및 대기보정을 거친 영상을 영상 내에서 단일분광화소 선택을 위해 Minimum Noise Fraction(MNF) 변환 후 Pixel Purity Index(PPI)라고 하는 화소순도지수를 산정하였다.

계산된 화소순도지수를 기반으로 클로로필a, NPSS, 순수한 물에 대한 단일분광요소를 선정하고, 3개의 요소를 기준으로 분광혼합화소분석을 수행하여 각 요소에 대한 분율 영상을 작성하였다. 분율 영상과 현장 실측된 클로로필a 농도를 다중회귀분석하여 영상 내에서 클로로필a 농도 추정을 위한 회귀식을 도출하였다.

![Figure 1> Flow chart of spectral mixture analysis.](attachment:image)
가. 분석자료 수집

(1) 연구 대상지역

낙동강 본류 강정고령보 상류 15 km구간을 연구 대상지역으로 선정하였다 (그림 2). 대상지역은 경상북도 달성군, 고령군, 성주군에 걸쳐 있는 낙동강 본류로써 그 길이는 약 15 km ~ 20 km 정도이다. 대상 수체는 낙동왜관 중권역에 속해 있고, 수체의 면적은 약 9.1 km²이다. 또한, 백천, 신천, 하빈천 등의 지방하천이 유입되고, 주요 수질측정망은 성주, 용암, 태성, 다사 지점이 있다.

![Study area.](image)

(2) 공간 자료

(가) 위성 영상

연구에 사용한 위성영상은 독일의 우주항공센터(DLR)에서 2008년 발사되어 RapidEye 사에서 운영하는 위성으로 5개의 동일한 위성이 지구를 관측함에 따라, 매일 동일한 지역을 촬영할 수 있다는 것이 특징이다. 또한, 일반적인 광학위성에
서는 Multi-Spectral 영역의 밴드가 Blue, Green, Red, Near-InfraRed의 4개 밴드로 구성되어 있으나, RapidEye 위성의 경우 Red와 NIR 밴드 사이에 RE(Red-Edge) 밴드를 보유함으로써 채로료필 분석에 효과적인 것으로 알려져 있다. 본 연구에서는 원하는 날짜에 대상지역의 영상을 얻을 수 있다는 장점과 함께 채로료필 농도를 측정할 수 있는 촬영 파장대, 분광해상도, 공간해상도 등을 고려하여 위성영상을 선정하였다. RapidEye 위성영상의 상세제원 및 특징은 표 1과 같다.

<Table 1> Product specification of RapidEye satellite images

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial Resolution</td>
<td>Multi-Spectral 6.5 m</td>
</tr>
<tr>
<td>Time Resolution</td>
<td>1 day</td>
</tr>
<tr>
<td>Spectral Bands</td>
<td>Blue 440-510 nm</td>
</tr>
<tr>
<td></td>
<td>Green 520-590 nm</td>
</tr>
<tr>
<td></td>
<td>Red 630-685 nm</td>
</tr>
<tr>
<td></td>
<td>Red-Edge 690-730 nm</td>
</tr>
<tr>
<td></td>
<td>Near-InfraRed 760-850 nm</td>
</tr>
<tr>
<td>Swath Width</td>
<td>35 km</td>
</tr>
<tr>
<td>Equator Crossing Time</td>
<td>12:00 am ~ 13:00 am</td>
</tr>
</tbody>
</table>

(너) 수치표고모델(DEM) 자료

방사보정 및 기기오차가 보정된 1B 레벨로 제공되는 RapidEye 영상의 정사 보정을 위해 미국 USGS의 GDEM(Global Digital Elevation Model)을 사용하였다. GDEM은 ASTER(The Advanced Spaceborne Thermal Emission and Reflection Radiometer) 영상을 이용하여 제작된 수치표고모델 자료로, 약 30 m 해상도로 전 세계에 대한 표고 정보를 표현하고 있다.

(다) 수치 주제도

하천도, 중간역도, 법정동 경계도, 하천 수질측정망도, 16개 신설 보 지점 도 형파일을 사용하여 위성영상 촬영에 따른 현장 조사계획을 수립하였다.
(3) 수질자료

연구 대상지역의 과거 수질분석을 위해 국가수질측정망 자료와 수질 TMS 자료를 활용하였다. 보통 부유성 무기물질이나 용해성 유기물질 함유량이 높은 내륙수의 경우, 부유물질의 농도가 높고 상대적으로 클로로필α 농도가 높아지면 두 물질의 파장 특성을 구분하기 어렵다고 알려져 있다. 또한 분석하고자 하는 두 물질의 농도가 매우 높은 상관성을 갖는 경우도 영상 내에서 파장 특성을 구분하기 어렵다. 따라서 대상지역 내 수질측정망 지점인 성주, 용암, 달성, 다사 지점의 최근 3년간 월 평균 수질 측정 자료를 이용하여 클로로필α와 부유성 무기물질 농도에 대한 변화 추세와 상관성을 분석하였다.

나. 영상촬영 및 현장조사

위성영상의 신규 촬영일은 기상청의 기상예보 결과를 참고하여 강우 및 운량이 최소로 되는 날을 선정하였다. 현장 수질조사는 위성영상 촬영일과 대상지역을 지나는 시간대를 고려하여 11시에서 13시 사이에 완료되도록 계획하였다. 현장조사에서는 수륙양용선박을 이용하여 신속하게 이동할 수 있게 하였고, 채수 시에는 GPS 장비를 이용하여 채수 지점의 좌표 정보를 획득하였다(그림 3).

<Figure 3> RapidEye imagery on 14, October(left) and 12, November 2013(right).

다. 영상 전처리 및 동화작업

촬영된 영상으로부터 지표면의 반사율 정보를 획득하기 위해 정사보정 및 대
기보정과 같은 전처리를 수행하였다. 정사보정은 영상과 함께 제공된 RPC(Rational Polynomial Coefficient) 정보와 30 m GDEM을 이용하였다. 대기 보정은 ATCOR(Atmospheric/Topographic Correction for Satellite Imagery) 모듈을 이용하여 보정하였다.

(1) 정사보정(Ortho-rectification)

위성영상 촬영 시 발생되는 기복변위와 센서의 위치와 자세의 의해 발생되는 변위를 제거하는 전처리 과정이 필요하다. 정사보정은 기하보정과 달리 영상이 가지고 있는 왜곡의 모든 원인을 고려하여 기하학적으로 영상 촬영 당시와 동일한 환경을 재구성함으로써 영상의 위치를 보정하는 기법으로 영상 내 모든 점이 수직방향에서 본 것과 같은 형태를 갖도록 보정하는 것이다. 보통 기복 변위를 제거하여 정사영상을 재작성하는 과정을 미분편위수정(differential rectification) 이라하고, 미분편위수정 기법은 광학적 수정방법(optical rectification)과 수치적 수정방법(digital rectification)으로 구분된다.

![Figure 4] Digital ortho-rectification.

광학적 미분편위수정 기법은 도화기를 이용하여 입체모델을 형성한 후, 필름을 광학적으로 재투영하여 정사영상을 재작성하는 방법이고, 수치적 미분편위수정 기법은 인공위성에서 취득된 영상이나 항공사진을 자동 독취한 수치데이터
와 DEM을 이용하여 정사투영 영상을 제작하는 방법이다(그림 4). 본 연구에서
는 영상과 함께 제공되는 RPC 정보와 ASTER 영상을 이용해 제작된 30 m
GDEM 자료를 이용해 정사보정을 수행하였다(그림 5).

![Figure 5] Ortho-rectified RapidEye imagery, Oct.(up) and Nov.(down).

(2) 대기보정(Atmospheric correction)

인공위성 센서에 기록되는 총 복사류는 식(1)에서와 같이 네 가지로 구성
된 전자기에너지의 함수이다(Bukata et al., 1995).

\[L_t = L_p + L_s + L_v + L_b \]

여기서 \(L_p \)는 수표면에 실제로는 도달하지 않는 태양복사량과 천공복사량이
센서에 기록되는 복사류로써 잡음에 해당되며, 수질분석을 위해서는 분석 전
에 제거되어야 할 복사량이다. \(L_s \)는 대기와 물의 접촉면에 도달하는 태양복사
량과 천공복사량의 복사류이며, 이 반사에너지은 수체의 수표면 특성과 관련
된 스펙트럼 정보를 포함한다. \(L_v \)는 실질적으로 수표면을 투과하여 물과 수중
의 유기 또는 무기성분과 작용하여 대기 중으로 탈출하는 대양복사량과 천공복사량의 복사화도로 수중 체적 복사화도라고 한다. 수중 체적 복사화도는 수체의 내부 부피특성에 대한 가치 있는 정보를 제공하며, 대부분의 물 관련 원격탐사의 목적은 센서에 기록된 모든 복사화도 요소들로부터 수중 체적 복사화도를 추출하는 것이다. 순수한 수중 체적 복사화도를 추출하기 위해서는 식(1)에서 보듯이 대기감쇠(L_p), 수표면의 거울반사(L_s), 바닥반사(L_b)를 제거해야 하지만, 본 연구에서는 Geomatica PCI ATCOR 모듈을 이용해 대기감쇠에 의한 복사휘도만을 제거하였다(그림 6).

ATCOR 모듈은 Modtran5의 Radiative transfer code를 기반으로 계산된 데이터베이스를 이용하여 대기의 효과를 제거하고, 분광 반사율 및 방사율, 온도 등의 지구표면의 물리적인 파라메터를 계산하는 모델로 대기감쇠의 의한 노이즈 제거와 연무 제거에 유용한 것으로 알려져 있다(그림 7).
<Figure 7> Examples of images using ATCOR atmospheric correction (before (left) and after correction (right)); ALOS AVNIR-2, Fukuoka, Japan (up), IKONOS, Scotland, UK (middle), Landsat TM, river Rhine, EU (down).
ATCOR 대기보정을 위해 입력된 변수들을 표 2에 정리하였다. 초기 가시도는 10월 영상에서 18 km, 11월 영상에서 23 km로 설정하였고, 에어로졸 조건은 10월 영상은 mid-latitude summer, 11월 영상은 fall and spring으로 적용하였다. 입력된 조건을 기준으로 10월과 11월 영상의 대기보정을 수행하였다 (그림 8).

<Table 2> Input parameters of the atmospheric correction for ATCOR module

<table>
<thead>
<tr>
<th>구분</th>
<th>1차</th>
<th>2차</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Date</td>
<td>14 October</td>
<td>12 November</td>
</tr>
<tr>
<td>Aerosol Type</td>
<td>Rural</td>
<td>Rural</td>
</tr>
<tr>
<td>Aerosol Condition</td>
<td>Mid-latitude summer</td>
<td>Fall/spring</td>
</tr>
<tr>
<td>Center Latitude</td>
<td>35.892776</td>
<td>35.870766</td>
</tr>
<tr>
<td>Center Longitude</td>
<td>128.197632</td>
<td>128.359299</td>
</tr>
<tr>
<td>Solar Zenith</td>
<td>43.882870</td>
<td>53.461029</td>
</tr>
<tr>
<td>Solar Azimuth</td>
<td>180.160507</td>
<td>183.134796</td>
</tr>
<tr>
<td>Sensor Tilt Angle</td>
<td>7.38</td>
<td>11.17</td>
</tr>
<tr>
<td>Satellite Azimuth Angle</td>
<td>279.27</td>
<td>100.52</td>
</tr>
<tr>
<td>Visibility</td>
<td>18 km</td>
<td>23 km</td>
</tr>
</tbody>
</table>

<Figure 8> Atmosphere corrected RapidEye imagery.
(3) 동화작업(Masking and scaling)

전처리가 완료된 영상은 연구 대상지역인 하천 영역만을 추출하는 마스크 과정을 거쳤다. 하천 영역의 효과적인 마스킹을 위해 근적외선 밴드에서 물의 반사율이 낮은 점을 이용하여 물과 비슷한 반사율을 보이는 영역을 선택하고, 선택된 화소와 주변 화소들 간의 밝기값에 대한 표준편차 등의 통계적인 정보를 이용하여 분류하였다.

또한, 호흡이 있는 하천의 특성 및 GPS 좌표 오차의 영향을 최소화하기 위해 선택된 화소를 중심으로 3×3, 5×5, 7×7 영역에 대해 평활화 필터링을 수행함으로써 회귀분석의 오차가 최소화되도록 하였다(그림 9).

![Figure 9] Masking river(left) and 1×1, 3×3, 5×5, 7×7 mean filter(right).

라. 단일분광요소(End-members) 선택

본 연구에서 적용한 선형분광혼합화소분석 기법의 핵심은 촬영된 영상 내에서 단일 분광요소에 해당되는 화소를 정확하게 선택하는 것이다. 하지만 하천을 촬영한 영상 내에서 순수하게 하나의 물질로만 이루어진 화소를 선택하는 것은 현실적으로 불가능하며, 상대적으로 하나의 물질 비율이 높은 화소를 선택하는 것도 쉽지 않다. 따라서 본 연구에서는 영상의 신호대잡음비를 높여 분석 정확도를 높이는 MNF(Minimum Noise Fraction) 변환과 화소순도지수 분
석과정을 통해 단일분광요소를 선택을 용이하도록 하였다.

(1) Minimum Noise Fraction Transform

MNF 변환은 영상 고유의 차원으로 투영함으로써 자료에서 노이즈를 분리 해내고 영상 내에서 상대적으로 변사율이 낮은 하천 구간의 신호대잡음비를 높여 분석 정확도를 높이는 과정이다(Green et. al., 1988). MNF 변환은 두 단계의 자료 축소 과정 알고리즘으로 구성되어 있다. 첫 번째 과정은 noise covariance matrix의 주성분들을 이용하여 신호간의 상관관계를 줄이고 영상에서 노이즈를 스케일링하는 과정이다. 두 번째 과정에서는 첫 번째 과정에서 잡음 백색화와 노이즈의 표준편차에 의한 스케일링 후에 원영상 자료로부터 파생된 주요 성분들을 사용한다.

일반적으로 MNF 변환은 다분광 또는 초분광 영상에서 노이즈를 제거하고 유의한 영상들을 도출하기 위해 사용된다. 사용자의 지정에 따라 수 ~ 수십 장의 결과 영상 생성이 가능하나, 실제 중요한 정보는 초기 2-3장의 영상에 모두 나타나고, 나머지 영상은 활용 및 해석에 미미한 부분이거나 노이즈가 대다수이다.

본 연구에서는 하천 지역을 촬영한 영상 내에서 단일분광요소에 해당되는 화소를 선택하기 위해 MNF 변환을 수행하고, 각 밴드별 산포도 상에서 단일분광요소가 위치하는 영역들을 확인하는 과정을 거쳤다.

(2) 화소순도지수(Pixel Purity Index) 산정

앞서 언급한 것처럼 영상에서 선형분광혼합화소분석을 통해 단일분광요소별 이미지를 작성하기 위해서는 영상 내에서 순수한 요소에 해당되는 화소를 찾아내는 것이 중요하다. 하지만 고해상도 영상이라 하더라도 대부분의 화소는 순수한 하나의 지형지물을 이루지 않기 때문에 관심 요소에 대한 순수한 화소 지점을 찾기란 쉽지 않다.

화소순도지수는 MNF 변환된 밴드별 화소값들을 무작위로 추출된 단위벡터 공간에 투영시켜 백터공간의 중심에서 가장 가까운지리에 위치한 화소들을 확인하는 과정을 반복하여 산정된다. 10월과 11월 영상에 대해 5차원 공간에 15000 번의 반복 투영을 시행하여 화소순도지수를 각각 산정하였다.
(3) 잠재 단일분광화소 선택

MNF 산포도를 이용한 단일분광화소 영역 확인 과정과 화소순도지수 산정 결과, 실측된 현장의 클로로필 \(\text{a} \) 농도 등을 교차 분석하여 잠정적으로 각 요소들에 대한 단일분광화소를 선택하였다. 선형분광혼합화소분석을 위해서는 일반적으로 분석하고자 하는 영상의 밴드 수보다 적게 단일분광화소를 선택하며, 본 연구에서는 각각 클로로필 \(\text{a} \), 클로로필을 제외한 부유 물질, 깨끗한 물에 대해 단일분광화소를 선택하였다.

마. 선형분광혼합화소분석

분광혼합화소분석이란 지형자물의 반사율을 나타내는 위성영상에서 각 화소에 대해 여러 단일분광요소들의 많고 적음을 분율로 결정하는 것을 말한다. 선형분광혼합화소분석은 영상에서 각 화소의 반사율은 단일분광요소의 선형 조합으로 이루어져 있다고 가정하고, 각 요소들이 차지하는 비율을 분리해 나온 과정으로 식(2)와 같이 표현 가능하다.

\[
R_i = \sum_{c=1}^{n} (r_j f_{ij}) + e_n
\] \hspace{1cm} (2)

\(R_n \) = the reflectance for the \(i \)th pixel
\(r_j \) = the spectral reflectance of the \(j \)th surface component
\(f_{ij} \) = the fraction of the \(j \)th surface component in the \(i \)th pixel

선형분광혼합화소분석 기법을 적용하기 위해서는 앞서 설명한 화소순도지수 산정을 통해 결정한 단일분광요소들이 입력 값으로 요구되고, 요소의 수는 분광 밴드의 수보다 반드시 적어야 한다. 선형분광혼합화소분석에서는 단일분광 요소가 변하게 되면 선형분광혼합화소 결과가 새로운 값이 도출되므로 정확한 단일분광요소의 사용이 매우 중요하다.
III. 연구결과 및 고찰

1. 영상촬영 및 수질분석

위성영상의 반사율 정보와 현장에서 조사분석된 수질의 상관분석을 위해 2013년 10월 14일과 11월 12일 두 차례에 걸쳐 대상지역을 촬영하고 현장 수질조사를 수행하였다(그림 10). 영상 촬영일은 기상청 기상예보 결과를 참고하여 영상 내 운량이 25 % 미만인 날을 선택하였고, 현장 조사 시간은 영상이 촬영될 시각을 기준으로 전후 한 시간 이내에 완료되도록 계획하였다. 수질분석은 각각 10월 촬영 시에 30개 지점, 11월 촬영 시에는 34개 지점에 대해 수온, pH, DO, 전기전도도, TSS, VSS, Chlorophyll-a 항목을 분석하였다.

![Figure 10] Acquired new images on 14.October(left) and 12.November(right) and each sampling sites.

10월 조사된 30개 지점 수질자료 중에 측정지점의 GPS 좌표가 잘못 기입되어 샘플링 지점을 확인할 수 없는 1개 지점의 자료와 분석 오차로 확인된 1개 지점의 자료를 제외한 28개 지점의 자료가 분석에 사용되었다(그림 11).

10월에 측정된 클로로필 a 농도는 10 μg/L ~ 50 μg/L의 분포를 보였고, 상류에서 하류로 이동할수록 증가하는 경향을 보였다. 반면 11월에 측정된 클로로필 a 농도는 상류 2개 지점을 제외하고는 10 μg/L ~ 15 μg/L로 대상 지역 전체에 걸쳐 고른 분포를 보였다.
연구결과 및 고찰

10월과 11월에 연구 대상지역에서 측정된 수온은 상류와 하류 전반에 걸쳐 1~2 °C 차이로 고른 분포를 보였고, SS 농도는 상류에서 하류로 갈수록 증가하는 경향을 보였다. 10월에 측정된 클로로필a의 평균 농도는 27.9 μg/L, 최대 농도는 47.0 μg/L, 최소 농도는 12.7 μg/L이었고, 11월에 측정된 클로로필a의 평균 농도는 12.4 μg/L, 최대 농도는 22.0 μg/L, 최소 농도는 8.8 μg/L이었다. 11월 클로로필a 농도에 비해 10월 클로로필a 농도가 12.7 μg/L ~ 47.0 μg/L로 상대적으로 표준편차가 크게 나타났다(표 3).

<Table 3> Statistics of water quality concentrations sampled on Oct. and Nov.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>측정일자</th>
<th>Temp. (℃)</th>
<th>pH</th>
<th>DO (mg/L)</th>
<th>전기전도도 (μS/㎝)</th>
<th>TSS (mg/L)</th>
<th>Chl-a (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>10.14</td>
<td>22.2</td>
<td>8.6</td>
<td>10.1</td>
<td>237.7</td>
<td>7.6</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>11.12</td>
<td>14.3</td>
<td>8.4</td>
<td>10.7</td>
<td>285.2</td>
<td>8.5</td>
<td>12.4</td>
</tr>
<tr>
<td>Max.</td>
<td>10.14</td>
<td>23.1</td>
<td>8.9</td>
<td>11.2</td>
<td>241.0</td>
<td>14.8</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td>11.12</td>
<td>14.7</td>
<td>8.7</td>
<td>11.1</td>
<td>316.0</td>
<td>10.4</td>
<td>22.0</td>
</tr>
<tr>
<td>Min.</td>
<td>10.14</td>
<td>21.2</td>
<td>8.0</td>
<td>8.9</td>
<td>227.0</td>
<td>5.0</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>11.12</td>
<td>13.7</td>
<td>7.7</td>
<td>10.1</td>
<td>252.0</td>
<td>6.4</td>
<td>8.8</td>
</tr>
<tr>
<td>St.Dev.</td>
<td>10.14</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>2.8</td>
<td>1.9</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>11.12</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>19.6</td>
<td>1.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Ⅲ. 연구결과 및 고찰

2. 단일분광요소(end-member) 선택

가. Minimum Noise Fraction 변환

촬영된 영상에서 각각 클로로필와 NPSS, 깨끗한 물의 순수한 반사율 파장과 가장 유사한 반사율 파장을 갖는 픽셀을 선택하기 위해 MNF 변환 후 각 MNF 밴드별 산포도를 작성하였다.

10월 영상에서는 MNF 밴드1과 밴드2의 산포도에서 클로로필과 NPSS 농도가 모두 높은 지역을 확인하였고, 밴드1과 밴드3의 산포도에서는 깨끗한 물, 밴드2와 밴드3의 산포도에서는 클로로필의 농도가 높은 지역을 확인할 수 있었다. 11월 영상에서는 MNF 밴드1과 밴드2 및 밴드1과 밴드3의 산포도에서 클로로필과 NPSS 농도가 모두 높은 지역을 확인하였고, 밴드1과 밴드4의 산포도에서 깨끗한 물에 해당되는 지역을 영상 내에서 확인할 수 있었다(그림 12).

영상 내에서 정확하게 각각의 단일분광요소를 선택하기 위해서는 영상이 촬영된 시점에 어느 지역에서 클로로필 농도가 높은지 또는 어느 지역에서 SS농도가 높은지 예측할 수 있는 현장에 대한 사전지식이 매우 중요하다(A. N. Tyler et al. 2006).

![Figure 12] Scatter plots of each MNF bands and end-member selection images acquired on 14,October(up) and 12,November(down).
나. 화소순도지수(Pixel Purity Index, PPI) 산정

단일분광요소들의 반사율 파장의 차이가 매우 커서 서로 구분이 용이한 경우, MNF 밴드별 산포도 상의 가장자리에 해당되는 픽셀에서 단일분광요소를 확인할 수 있는 확률이 높은 것으로 알려져 있다(Jonhson et al., 1985). 하지만 촬영된 영상 내에서 하천은 산림이나 토양 등 다른 피복에 비해 상대적으로 어두운 객체에 해당된다. 또한 SS 농도는 높고 클로로필a 농도는 낮은 하천의 경우, 가시광선에서 근적외선 영역까지의 파장대에서 반사율 파장이 서로 비슷해지는 경향으로 인해 클로로필a와 SS 농도에 따른 반사율 차이를 분간하기가 쉽지 않다.

따라서 본 연구에서는 영상 내에서 클로로필a와 SS 농도에 대응하는 단일분광요소를 선택하기 위해 화소순도지수를 산정하였다. 화소순도지수를 산정하는 것은 단분광 혹은 초분광 영상 이미지에서 파장특성이 순수한 픽셀 또는 n-차원 중심에서 가장 멀리 위치한 픽셀을 찾는 과정이다(Boardman et al., 1995).

10월과 11월에 촬영된 영상의 MNF 변환된 결과를 이용하여 각 영상의 화소 순도지수를 산정하였다. 화소순도지수 산정 결과, 10월과 11월 영상에서 각각 6개씩의 잠재적인 단일분광요소에 해당하는 화소를 확인하였다(그림 13). 화소 순도지수 산정으로 도출된 잠재 단일분광요소는 현장에서 조사된 클로로필a 및 SS 농도와 비교·분석을 통해 최종적으로 분광혼합화소 분석에 사용될 화소를 선택하였다.

![Figure 13](image-url) Pixel purity index clustering plots and the potential end-members.
다. 분광혼합화소분석을 통한 단일분광요소 영상 작성

MNF 변환 및 화소순도지수 산정 결과와 설측한 수질의 비교를 통해 단일분광요소를 선택하고 분광혼합화소분석을 수행하였다. 분광혼합화소분석을 통해 10월과 11월의 원시영상에서 각각 클로로필a, NPSS, 깨끗한 물에 대응하는 단일분광요소 영상을 작성하였다(그림 14).

\[\text{Chl} - a = 49.7 - 36.9\left[EM_{chl-a}\right] - 37.3\left[EM_{NPSS}\right] - 36.9\left[EM_{pw}\right] \quad (3) \]

\(<Figure\ 14>\ Unmixed\ abundance\ images\ of\ each\ end-members,\ 14\ October(\text{up})\ and\ 12\ November(\text{down}),\ 2013.\)

3. 단일분광요소 영상을 이용한 클로로필a 다중회귀분석

가. 영상 촬영 및 채수시간 차이에 따른 분석정확도 변화

11월 영상에서 얻은 단일분광요소 영상과 34개 지점의 클로로필a 농도 설측치를 이용하여 다중회귀분석을 수행한 결과 (3)과 같은 관계식을 도출하였다.
관계식 (3)를 이용해 영상에서 계산된 클로로필a 농도와 실제 측정 농도를 비교한 결과 상관계수는 0.42, 결정계수는 0.17로 통계적으로 낮은 상관관계를 보였다(그림 15). 또한 실제 측정된 클로로필a 농도와 영상에서 추정한 농도의 차이는 하류에 비해 상류에서 상대적으로 크게 나타났다. 위성영상이 촬영된 동일한 날짜에 현장에서 조사된 수질자료를 이용한 회귀분석 결과인 점을 고려하면 매우 낮은 상관성을 나타낸다.

![그림 15](relationship.png)

Figure 15 Relationship between observed and calculated Chlorophyll-a concentration for 12 November, 2013.

<Figure 16> Time difference between image acquisition time and sampling time for 14 October (up) and 12 November (down), 2013.
호소에 비해 상대적으로 유속이 큰 하천에서는 정확한 분석을 위해 영상 촬영시각과 현장조사 시간의 차이를 최소화할 필요가 있다. 현장 조사된 자료들 중에 영상이 촬영된 시각으로부터 각각 30분, 40분, 50분 이내에 채수된 시료의 수질 자료만을 이용해 다중회귀분석을 수행한 결과, 영상의 촬영시각과 채수시간의 차이가 커질수록 결정계수가 작아지는 결과를 확인하였다(표 4). 시간차이에 따른 상관분석 결과를 분석하여 11월 영상을 이용한 다중회귀분석에는 영상 촬영시각으로부터 50분 이내에 채수된 24개 수질자료를 이용하였다.

<Table 4> Change determination coefficient of multi-variate regression for image acquisition time difference

<table>
<thead>
<tr>
<th>시간 차이</th>
<th>30분</th>
<th>40분</th>
<th>50분</th>
<th>전체</th>
</tr>
</thead>
<tbody>
<tr>
<td>자료 개수</td>
<td>14</td>
<td>19</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>상관 계수</td>
<td>0.92</td>
<td>0.75</td>
<td>0.71</td>
<td>0.42</td>
</tr>
<tr>
<td>결정 계수</td>
<td>0.84</td>
<td>0.56</td>
<td>0.51</td>
<td>0.17</td>
</tr>
</tbody>
</table>

나. 클로로필a 농도 다중회귀분석

10월과 11월 영상에서 계산된 단일분광요소 영상의 반사율과 실측된 수질자료를 다중회귀분석하여 각각 식(4)와 (5)의 관계식을 도출하였다.

\[
Chl-a = 68.6 - 36.1[EM_{chl-a}] - 49.3[EM_{NPSS}] - 52.2[EM_{pu}]
\]
(4)

\[
Chl-a = 13.2 - 0.6[EM_{chl-a}] - 2.5[EM_{NPSS}] - 3.6[EM_{pu}]
\]
(5)

식(4)과 (5)를 이용해 10월과 11월 영상에서 추정된 클로로필a 농도와 실측된 지점의 클로로필a 농도를 비교한 결과, 결정계수는 각각 0.49, 0.51로 비교적 낮게 나타났다(그림 17).

이는 10월과 11월에 측정된 클로로필a 농도가 상류에서 하류에 이르기까지 전반적으로 낮고, 비슷하게 분포하고 있기 때문으로 판단된다. 연구대상 수체에서 클로로필a 농도가 비슷하게 분포하는 경우에는 선형분광혼합화소 분석을 위한 영상 내 단일분광 요소 선택의 정확도가 떨어진다. 또한, 낮은 클로로필a 농도는 특정 파장대에서 나타나는 복사에너지의 반사와 흡수 피크를 상대적으로
구분하기 어렵게 한다. 따라서 영상의 반사를와 실측 클로로필\(a\) 농도를 이용해 회귀분석을 수행한 선행 연구들을 분석해보면, 대부분 클로로필\(a\) 농도가 10\(\mu g/\ell\)에서 120\(\mu g/\ell\) 사이의 변화를 보이는 넓은 수체를 대상으로 하고 있음을 확인할 수 있다. 본 연구에서도 대상 지역의 클로로필\(a\) 농도가 높은 시기에 영상 촬영과 현장조사를 병행하고자 하였지만, 현장의 날씨와 운량 등의 조건으로 인해 클로로필\(a\) 농도가 높았던 10월 초 영상을 얻을 수 없었다.

\[
\text{Figure 17} \quad \text{Relationship between observed and calculated Chlorophyll-}a \ \text{concentrations, 14 Oct.(left), 12 Nov.(right), 2013.}
\]

4. 밴드조합을 통한 클로로필\(a\) 회귀분석

가. 클로로필 농도에 따른 분광특성 변화

하천은 보편적으로 토양, 건물 등 다른 갯세에 비해 영상 내에서 매우 낮은 반사를와 특성을 갖는다. 조류가 포함한 물은 녹색광(550nm)과 Red-edge(710nm) 파장대에서 큰 반사를보이고, 적색광(675nm)과 청색광(475nm)에서 강한 흡
수를 보인다(그림 18). 또한 부유성 또는 용해성 유기물질의 농도가 높은 경우, 청색광과 녹색광 영역에서 고형물질에 의해 반사특성에 간섭을 일으키는 것으로 알려져 있다. 이러한 이유로 영상의 밴드조합을 이용한 클로로필 추정 모델에서는 주로 적색광과 근적외선 파장대의 반사를 값을 사용해왔다. 클로로필 a 농도에 따른 분광특성의 변화는 적색광과 근적외선 파장대에서 반사와 흡수 최대치를 구분하기 쉽지 않아 회귀분석 시 정확도를 저감시키는 요인으로 작용한다.

![Figure 18](image1)
<Figure 18> Comparison of spectrum between water containing algae and clean water(left) and Chlorophyll-a reflectance for different concentration in water in the visible and NIR spectrum(right).

10월 영상의 밴드별 반사율 특징은 475nm인 청색광에서 가장 높은 반사를 보이고, 녹색광, 적색광, 근적외선으로 갈수록 점차 감소하며, 710nm와 805nm 에서 비슷한 반사율을 보였다. 또한, 10월 11월 영상 모두 밴드별 반사율 변화 패턴이 깨끗한 물의 반사율 패턴과 매우 유사하였다(그림 19).
연구결과 및 고찰

나. 밴드조합을 통한 클로로필 농도 추정

(1) Red-RE two-band model

Two-band 모델

Two-band 모델은 식(6)와 같이 클로로필 a 농도가 증가함에 따라 red-edge 밴드인 710 nm 파장대에서 높은 반사율을 보이고 적색광 밴드인 675 nm 파장대에서 발생되는 높은 흡수로 인해 반사율 차이가 커지는 분광특성을 이용한 클로로필 a 농도 추정모델이다.

\[
R = \left(\frac{1}{R_{\text{R}675}} \right) R_{\text{R}710}
\]

(6)

10월과 11월 영상에서 각각 식 (7) 와 (8) 을 이용해 영상 내에서 클로로필 a 농도를 산정하였다. 하지만 두 영상 모두 675 nm과 710 nm에서 비슷한 반사율 값 을 보이고 상류와 하류 전체에 걸쳐 클로로필 a 농도가 매우 낮아서 추정된 클로로필 a 농도와 실제 농도를 비교했을 때, 결정계수가 각각 0.26과 0.16으로 낮은 통계적 유의성을 보였 다(그림 20).

\[
Chl - a = -372.92 + 2368R - 3468.1R^2
\]

(7)

\[
Chl - a = -0.1 + 70.3R - 102.9R^2
\]

(8)
3. RESULTS AND DISCUSSION

Figure 20: Relationship between observed Chlorophyll-a concentrations and R values calculated by imageries acquired on 14 October (left) and 12 November (right) with Red-RE two-band Chlorophyll-a estimation equations.

(2) Red-RE-NIR three-band model

Three-band model is (9) and similarly, the chlorophyll-a concentration increases with the reflectance peak in the red-edge band, strong absorption in the red-edge band, and weaker but visible reflectance peak in the near-infrared band, using the estimated chlorophyll-a concentration.

\[
R = \left(\frac{1}{R_{\text{RRE}707}} - \frac{1}{R_{\text{RRE}710}} \right) R_{\text{NIR}865} \quad (9)
\]

In October and November images, each equation (10) and (11) was used to estimate chlorophyll-a concentration from the image. In October images, the red-edge band and near-infrared band showed similar reflectance values. In November images, the red-edge band and near-infrared band were similar. When comparing the estimated chlorophyll-a concentration with the real measurement, the correlation coefficient of October was 0.02, and that of November was 0.30, which is not statistically significant (Figure 21).

\[
Chl - a = -61.144 - 228.98R - 145.78R^2 \quad (10)
\]

\[
Chl - a = 19.4 + 15.6R + 1.2R^2 \quad (11)
\]
3. 연구결과 및 고찰

5. 선형분광혼합화소분석 기법의 다중시기 영상 적용성 검토

선형분광혼합화소 분석기법을 적용하여 10월 영상에서 산정된 클로로필 a 농도 추정식 (4)를 11월 영상에 적용하였다. 화귀식 (4)를 11월 영상에 적용하기 위해 10월 영상에 적용했던 동일한 방법으로 클로로필 a, NPSS, 깨끗한 물에 대한 단일분광화소 영상을 도출하였다.

10월 영상에서 산정된 화귀식 (4)를 11월 영상에 적용하여 클로로필 a 농도를 추정한 결과 전체적으로 실측치보다 크게 예측되었고, 11월 영상에서 산정된 화귀식 (5)를 10월 영상에 적용한 결과 전체적으로 실측치보다 작게 예측되었다(그림 22). Tyler et al. (2006)은 2000년 영상에서 추출한 다중화귀식을 1997년 영상에 적용하여 클로로필 a 농도를 계산하고, 실측된 클로로필 a 농도와 비교하여 통계적으로 높은 유의성을 보이는 결과를 도출하였다. 하지만 Tyler et al. (2006)이 분석한 대상 수체는 면적이 약 600 km²이고, 평균 수심이 3 m로 유동이 거의 없는 대규모 호수였다. 반면 본 연구의 대상지역인 낙동강 본류 강정고령보 구간은 평균 수속이 0.5 m/s로 단일분광요소의 시간에 따른 공간 변이가 큰 수체이다. 10월과 11월 영상에서 도출된 클로로필 a 농도 추정식이 다른 시기에 촬영된 영상에서 전반적으로 과소 또는 과대 산정된 이유는 두 영상 내에서 단일분광요소에 해당되는 화소의 위치와 분포가 크게 변했기 때문으로 판단된다.

<Figure 21> Relationship between observed Chlorophyll-a concentrations and R values calculated by imageries acquired on 14, October(left) and 12, November(right) with Red-RE-NIR three-band Chlorophyll-a estimation equations.
<Figure 22> Comparison between observed and calculated Chlorophyll-α concentration with multi-regression model and spectral mixture analysis using RapidEye images; 14, October(left) and 12, November(right), 2013.
본 연구는 크게 두 가지 목적으로 가지고 진행되었다. 하나는 영상의 특정 화소 내에 공존하는 물질들의 혼재된 반사를 정보를 각각의 단일분광요소에 대한 반사를 정보로 분리해내는 선형분광혼합화소분석 기법을 이용하여 하천 지역을 활용한 영상 내에서 안정적으로 클로로필\textsubscript{a} 농도를 추정하고자 하였다. 다른 하나는 과거 영상에 선형분광혼합화소분석 기법을 적용하여 추출한 클로로필\textsubscript{a} 농도와 동물주변화소를 새로운 활용한 영상에 적용함으로써 영상 촬영시에 매번 현장 조사를 병행하지 않고도 수질의 예측이 가능한지 검토하고자 하였으며, 연구의 결과는 다음과 같다.

1. 선형분광혼합화소 분석

10월과 11월 영상에 선형분광혼합화소 분석기를 적용해 산정된 단일 분광요소 영상들과 실측된 수질을 다중회귀분석하여 클로로필\textsubscript{a} 농도를 추정하였다. 그 결과, 결정계수는 각각 0.49, 0.51로 비교적 낮게 나타났다. 이는 클로로필\textsubscript{a} 농도가 낮고 비슷한 분포를 보이고 있어 영상 내에서 클로로필에 대한 단일분광요소를 정확하게 선택하지 못했기 때문으로 판단된다. 또한, 하천의 원격탐사 시에는 영상의 촬영시간과 현장조사의 시간 차이를 최소화함으로써 분석정확도를 향상시킬 수 있음을 확인하였다.

정확도 검증을 위해 선형분광혼합화소분석 기법을 이용한 클로로필\textsubscript{a} 농도 추정 결과와 기존의 밴드 조합을 이용한 수질인자 추정모델의 결과를 서로 비교하였다. 적색광과 red-edge 밴드를 이용한 Two-band 모델로 클로로필\textsubscript{a} 농도를 추정한 결과, 각각의 결정계수는 10월 영상에서 0.26, 11월 영상에서 0.16으로 낮은 유의성을 나타냈다. 또한, 적색광, red-edge, 근적외선 밴드를 이용한 Three-band 모델을 이용해 클로로필 농도를 추정한 경우에는 결정계수가 10월 영상에서 0.016, 11월 영상에서 0.30으로 큰 차이를 보였다. 밴드 조합을 이용한 수질인자 분석 결과보다 선형분광혼합화소분석 기법을 이용한 수질 추정 결과가 상대적으로 높은 정확도를 보였다. 10월, 11월에 실측된 클로로필\textsubscript{a} 농도가
전체적으로 매우 낮았고, 영상 분석에 활용할 수 있는 파장의 신호가 약했기 때문에 밴드 조합을 이용한 결과는 정확도가 매우 낮았고, 반면에 MNF 변환을 통해 노이즈를 제거하고 수질인자를 추출한 선형분광혼합화소분석 기법의 결과는 상대적으로 높은 정확도를 보인 것으로 판단된다.

또한, 클로로필 농도가 매우 낮은 시기에 촬영된 영상은 적색광(675 nm) 파장에서 강한 흡수를 보이고, 근적외선(710 nm와 805 nm) 파장에서 강한 반사를 보이는 일반적인 분광특성 패턴을 따르지 않는다는 사실을 확인하였다. 이런 경우 반사율의 흡수와 반사 특성 차이를 이용해 수질인자를 추출하는 밴드 조합 방법은 매우 부정확한 결과를 초래한다. 반면, 분광혼합화소 분석기법은 단일분광요소에 대해 반사율 정보를 이용해 수질인자를 추출하기 때문에 수질농도가 낮은 시기에 촬영된 영상을 이용한 수질분석에 적합한 방법으로 판단된다.

2. 다중시기 영상에 대한 적용성 검토

분광혼합화소 분석을 통해 영상의 화소 내에서 클로로필 농도에 대응되는 반사율 정보만을 분리하여 도출된 수질인자 회귀식을 다른 시기 영상에 적용하였으나 전체적으로 낮은 상관성을 보였다. 물의 이동이 매우 느리게 일어나는 대형 호수와 달리 하천에서는 시간에 따른 수질의 공간변이가 컸기 때문으로 판단된다. 다중 시기에 적용 가능한 수질인자 회귀식 도출을 위해서는 영상 내에서 설측된 수질과 연계하지 않고 단일분광요소에 해당되는 화소를 찾아낼 수 있는 방법이 필요하다. 앞으로 단일분광요소에 해당하는 대상물질들에 대한 분광특성 정보가 꾸준히 수집되다면 가능할 것으로 기대된다.

연구결과를 종합하자면 다분광 영상을 활용하여 넓은 영역의 수계에 대한 만단위 원격 관측과 수질 미측정 지점의 안정적인 수질자료 추출 등이 가능할 것으로 기대된다. 또한, 영상으로부터 산정된 수질자료를 수질모델의 초기자료로 이용할 경우, 모델의 정확도 제고에 크게 기여할 것으로 판단된다. 날씨, 운량 등 기상조건으로 인한 인공위성 탐지 센서의 촬영 제약조건을 극복하고, 신속한 원격 모니터링을 위해서는 무인항공시스템과 초분광센서를 이용한 하천 모니터링 기법의 도입도 필요할 것으로 판단된다.
참 고 문 현

1. 류재현, 한경수, 피경진, 식생 자료를 이용한 동아시아 사막 주변의 토지피복 변화 분석, 대한원격탐사학회지, 2013, Vol.29, No.1, pp.105-114
2. 한유경, 김용일, 한동엽, 최재완, SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성, 한국측량학회지, 2013, Vol.31, No.2, pp.165-172
15. 정승규, 박종화, 김상옥, MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축, 대한원격탐사학회지, 2006, Vol.22, No.6, pp.553-563
16. 신정일, 김선화, 윤정숙, 도시지역의 수문학적 토지피복 분류를 위한 초분광 영상의 분광혼합분석, 대한원격탐사학회지, 2006, Vol.22, No.6, pp.565-574
18. The ASTER GDEM validation Team, ASTER Global Digital Elevation Model Version 2 - Summary of Validation Results, August 31, 2011

<부록>

1. 10월 14일 현장조사 자료 및 단일분광요소 분율

<table>
<thead>
<tr>
<th>구분 (10월)</th>
<th>좌표(X)</th>
<th>좌표(Y)</th>
<th>시각</th>
<th>Chl-a</th>
<th>TSS</th>
<th>NPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-01</td>
<td>35.914050</td>
<td>128.407067</td>
<td>11:32</td>
<td>23.9</td>
<td>6.0</td>
<td>3.6</td>
</tr>
<tr>
<td>T-02</td>
<td>35.910833</td>
<td>128.405100</td>
<td>11:35</td>
<td>29.3</td>
<td>7.4</td>
<td>4.5</td>
</tr>
<tr>
<td>T-03</td>
<td>35.906600</td>
<td>128.401967</td>
<td>11:38</td>
<td>30.1</td>
<td>7.4</td>
<td>4.4</td>
</tr>
<tr>
<td>T-04</td>
<td>35.894117</td>
<td>128.396767</td>
<td>11:45</td>
<td>22.8</td>
<td>6.6</td>
<td>4.3</td>
</tr>
<tr>
<td>T-05</td>
<td>35.889333</td>
<td>128.389700</td>
<td>11:50</td>
<td>22.7</td>
<td>6.8</td>
<td>4.6</td>
</tr>
<tr>
<td>T-06</td>
<td>35.883838</td>
<td>128.388523</td>
<td>11:55</td>
<td>21.3</td>
<td>5.4</td>
<td>3.7</td>
</tr>
<tr>
<td>T-07</td>
<td>35.875717</td>
<td>128.384283</td>
<td>11:58</td>
<td>23.4</td>
<td>7.2</td>
<td>4.9</td>
</tr>
<tr>
<td>T-08</td>
<td>35.870617</td>
<td>128.381467</td>
<td>11:57</td>
<td>17.3</td>
<td>5.4</td>
<td>3.7</td>
</tr>
<tr>
<td>T-09</td>
<td>35.869950</td>
<td>128.386133</td>
<td>11:56</td>
<td>21.4</td>
<td>7.8</td>
<td>5.7</td>
</tr>
<tr>
<td>T-10</td>
<td>35.866467</td>
<td>128.381833</td>
<td>12:20</td>
<td>13.2</td>
<td>5.0</td>
<td>3.7</td>
</tr>
<tr>
<td>T-11</td>
<td>35.863083</td>
<td>128.386917</td>
<td>12:22</td>
<td>18.2</td>
<td>5.6</td>
<td>3.8</td>
</tr>
<tr>
<td>T-12</td>
<td>35.857933</td>
<td>128.385333</td>
<td>12:24</td>
<td>31.4</td>
<td>9.6</td>
<td>6.5</td>
</tr>
<tr>
<td>T-13</td>
<td>35.853250</td>
<td>128.380283</td>
<td>12:28</td>
<td>22.6</td>
<td>6.6</td>
<td>4.4</td>
</tr>
<tr>
<td>T-14</td>
<td>35.853050</td>
<td>128.389833</td>
<td>12:32</td>
<td>20.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>T-15</td>
<td>35.850567</td>
<td>128.39950</td>
<td>12:34</td>
<td>12.7</td>
<td>5.4</td>
<td>4.1</td>
</tr>
<tr>
<td>T-16</td>
<td>35.849950</td>
<td>128.401783</td>
<td>12:36</td>
<td>23.0</td>
<td>8.0</td>
<td>5.7</td>
</tr>
<tr>
<td>T-17</td>
<td>35.851033</td>
<td>128.406983</td>
<td>12:38</td>
<td>35.2</td>
<td>8.4</td>
<td>4.9</td>
</tr>
<tr>
<td>T-18</td>
<td>35.851967</td>
<td>128.412117</td>
<td>12:40</td>
<td>36.8</td>
<td>9.2</td>
<td>5.6</td>
</tr>
<tr>
<td>T-19</td>
<td>35.850950</td>
<td>128.416917</td>
<td>12:42</td>
<td>30.7</td>
<td>8.2</td>
<td>5.2</td>
</tr>
<tr>
<td>T-20</td>
<td>35.848433</td>
<td>128.423000</td>
<td>12:45</td>
<td>31.3</td>
<td>7.6</td>
<td>4.5</td>
</tr>
<tr>
<td>T-21</td>
<td>35.848917</td>
<td>128.428000</td>
<td>12:47</td>
<td>29.0</td>
<td>7.2</td>
<td>4.3</td>
</tr>
<tr>
<td>T-22</td>
<td>35.849717</td>
<td>128.434567</td>
<td>12:49</td>
<td>37.6</td>
<td>9.4</td>
<td>5.7</td>
</tr>
<tr>
<td>T-23</td>
<td>35.847617</td>
<td>128.439100</td>
<td>12:51</td>
<td>41.7</td>
<td>8.6</td>
<td>4.5</td>
</tr>
<tr>
<td>T-24</td>
<td>35.844917</td>
<td>128.444200</td>
<td>12:53</td>
<td>39.0</td>
<td>8.0</td>
<td>4.1</td>
</tr>
<tr>
<td>T-25</td>
<td>35.845433</td>
<td>128.450500</td>
<td>12:55</td>
<td>33.4</td>
<td>7.6</td>
<td>4.3</td>
</tr>
<tr>
<td>T-26</td>
<td>35.845283</td>
<td>128.456050</td>
<td>12:58</td>
<td>38.5</td>
<td>8.8</td>
<td>5.0</td>
</tr>
<tr>
<td>T-27</td>
<td>35.842300</td>
<td>128.456967</td>
<td>13:00</td>
<td>47.0</td>
<td>9.8</td>
<td>5.1</td>
</tr>
<tr>
<td>구분(10월)</td>
<td>1 by 1</td>
<td>3 by 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EM_Chla</td>
<td>EM_NPSS</td>
<td>EM_FW</td>
<td>EM_Chla</td>
<td>EM_NPSS</td>
<td>EM_FW</td>
</tr>
<tr>
<td>T-01</td>
<td>1.68</td>
<td>0.20</td>
<td>-0.99</td>
<td>-0.75</td>
<td>-1.08</td>
<td>2.57</td>
</tr>
<tr>
<td>T-02</td>
<td>0.37</td>
<td>0.27</td>
<td>0.33</td>
<td>0.56</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>T-03</td>
<td>-0.12</td>
<td>0.20</td>
<td>0.79</td>
<td>0.19</td>
<td>1.23</td>
<td>-0.54</td>
</tr>
<tr>
<td>T-05</td>
<td>0.50</td>
<td>0.51</td>
<td>-0.07</td>
<td>-0.29</td>
<td>-0.04</td>
<td>1.24</td>
</tr>
<tr>
<td>T-06</td>
<td>-0.22</td>
<td>0.14</td>
<td>1.03</td>
<td>0.79</td>
<td>0.50</td>
<td>-0.24</td>
</tr>
<tr>
<td>T-07</td>
<td>-0.24</td>
<td>0.66</td>
<td>0.53</td>
<td>-1.18</td>
<td>0.33</td>
<td>1.71</td>
</tr>
<tr>
<td>T-08</td>
<td>-0.12</td>
<td>0.40</td>
<td>0.77</td>
<td>1.49</td>
<td>1.88</td>
<td>-2.14</td>
</tr>
<tr>
<td>T-09</td>
<td>1.09</td>
<td>0.33</td>
<td>-0.36</td>
<td>-0.65</td>
<td>-0.51</td>
<td>2.21</td>
</tr>
<tr>
<td>T-10</td>
<td>1.16</td>
<td>0.91</td>
<td>-1.06</td>
<td>-0.88</td>
<td>-0.35</td>
<td>2.25</td>
</tr>
<tr>
<td>T-11</td>
<td>1.31</td>
<td>-0.29</td>
<td>0.16</td>
<td>0.84</td>
<td>0.40</td>
<td>-0.10</td>
</tr>
<tr>
<td>T-12</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>T-13</td>
<td>1.30</td>
<td>-0.20</td>
<td>-0.10</td>
<td>-1.04</td>
<td>-0.57</td>
<td>2.27</td>
</tr>
<tr>
<td>T-14</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T-15</td>
<td>0.87</td>
<td>-0.21</td>
<td>0.35</td>
<td>-0.07</td>
<td>-0.21</td>
<td>1.28</td>
</tr>
<tr>
<td>T-16</td>
<td>-0.11</td>
<td>0.14</td>
<td>0.95</td>
<td>2.57</td>
<td>2.27</td>
<td>-3.60</td>
</tr>
<tr>
<td>T-17</td>
<td>1.58</td>
<td>0.23</td>
<td>-0.78</td>
<td>-0.37</td>
<td>0.00</td>
<td>1.25</td>
</tr>
<tr>
<td>T-18</td>
<td>-0.68</td>
<td>0.32</td>
<td>1.26</td>
<td>-0.74</td>
<td>0.93</td>
<td>0.55</td>
</tr>
<tr>
<td>T-19</td>
<td>0.59</td>
<td>0.16</td>
<td>0.26</td>
<td>-1.00</td>
<td>-1.47</td>
<td>3.28</td>
</tr>
<tr>
<td>T-20</td>
<td>0.84</td>
<td>0.48</td>
<td>-0.38</td>
<td>2.90</td>
<td>2.74</td>
<td>-4.39</td>
</tr>
<tr>
<td>T-21</td>
<td>0.49</td>
<td>-0.25</td>
<td>0.73</td>
<td>0.15</td>
<td>-0.64</td>
<td>1.57</td>
</tr>
<tr>
<td>T-22</td>
<td>1.13</td>
<td>-0.42</td>
<td>0.31</td>
<td>0.68</td>
<td>-0.65</td>
<td>0.84</td>
</tr>
<tr>
<td>T-23</td>
<td>0.17</td>
<td>-0.54</td>
<td>1.30</td>
<td>2.04</td>
<td>0.90</td>
<td>-1.90</td>
</tr>
<tr>
<td>T-24</td>
<td>0.16</td>
<td>0.02</td>
<td>0.79</td>
<td>0.29</td>
<td>0.03</td>
<td>0.63</td>
</tr>
<tr>
<td>T-25</td>
<td>-0.04</td>
<td>0.12</td>
<td>0.84</td>
<td>2.73</td>
<td>2.04</td>
<td>-3.57</td>
</tr>
<tr>
<td>T-26</td>
<td>1.59</td>
<td>-0.46</td>
<td>-0.13</td>
<td>0.73</td>
<td>-1.02</td>
<td>1.21</td>
</tr>
<tr>
<td>T-27</td>
<td>0.17</td>
<td>0.52</td>
<td>0.18</td>
<td>-0.11</td>
<td>0.65</td>
<td>0.37</td>
</tr>
<tr>
<td>T-28</td>
<td>-1.17</td>
<td>-0.36</td>
<td>2.43</td>
<td>-0.51</td>
<td>-0.99</td>
<td>2.32</td>
</tr>
<tr>
<td>T-29</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>구분</td>
<td>5 by 5</td>
<td></td>
<td></td>
<td>7 by 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>EM_Cha</td>
<td>EM_NPSS</td>
<td>EM_PW</td>
<td>EM_Cha</td>
<td>EM_NPSS</td>
<td>EM_PW</td>
</tr>
<tr>
<td>T-01</td>
<td>0.24</td>
<td>-0.53</td>
<td>1.10</td>
<td>0.56</td>
<td>-1.12</td>
<td>1.43</td>
</tr>
<tr>
<td>T-02</td>
<td>0.21</td>
<td>-0.08</td>
<td>0.82</td>
<td>0.41</td>
<td>-0.64</td>
<td>1.13</td>
</tr>
<tr>
<td>T-03</td>
<td>0.10</td>
<td>0.86</td>
<td>-0.02</td>
<td>0.15</td>
<td>0.31</td>
<td>0.40</td>
</tr>
<tr>
<td>T-05</td>
<td>0.71</td>
<td>-0.36</td>
<td>0.55</td>
<td>1.03</td>
<td>-0.54</td>
<td>0.51</td>
</tr>
<tr>
<td>T-06</td>
<td>0.47</td>
<td>0.92</td>
<td>-0.39</td>
<td>0.29</td>
<td>0.72</td>
<td>-0.05</td>
</tr>
<tr>
<td>T-07</td>
<td>-0.22</td>
<td>1.47</td>
<td>-0.29</td>
<td>-0.05</td>
<td>1.14</td>
<td>-0.14</td>
</tr>
<tr>
<td>T-08</td>
<td>0.57</td>
<td>0.78</td>
<td>-0.28</td>
<td>0.58</td>
<td>0.48</td>
<td>-0.04</td>
</tr>
<tr>
<td>T-09</td>
<td>0.04</td>
<td>0.24</td>
<td>0.76</td>
<td>0.22</td>
<td>-0.13</td>
<td>0.90</td>
</tr>
<tr>
<td>T-10</td>
<td>-0.10</td>
<td>-0.29</td>
<td>1.30</td>
<td>0.30</td>
<td>-0.40</td>
<td>1.07</td>
</tr>
<tr>
<td>T-11</td>
<td>0.50</td>
<td>0.94</td>
<td>-0.34</td>
<td>0.50</td>
<td>1.16</td>
<td>-0.54</td>
</tr>
<tr>
<td>T-12</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>T-13</td>
<td>-0.25</td>
<td>0.32</td>
<td>0.85</td>
<td>0.44</td>
<td>-0.17</td>
<td>0.77</td>
</tr>
<tr>
<td>T-14</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T-15</td>
<td>0.27</td>
<td>0.12</td>
<td>0.66</td>
<td>0.41</td>
<td>-0.37</td>
<td>0.95</td>
</tr>
<tr>
<td>T-16</td>
<td>1.00</td>
<td>0.77</td>
<td>-0.57</td>
<td>0.62</td>
<td>-0.69</td>
<td>0.97</td>
</tr>
<tr>
<td>T-17</td>
<td>0.36</td>
<td>0.79</td>
<td>-0.01</td>
<td>0.30</td>
<td>0.40</td>
<td>0.27</td>
</tr>
<tr>
<td>T-18</td>
<td>0.16</td>
<td>1.54</td>
<td>-0.86</td>
<td>0.37</td>
<td>1.86</td>
<td>-1.25</td>
</tr>
<tr>
<td>T-19</td>
<td>1.04</td>
<td>0.15</td>
<td>-0.18</td>
<td>0.96</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>T-20</td>
<td>0.82</td>
<td>0.37</td>
<td>-0.11</td>
<td>0.49</td>
<td>-0.18</td>
<td>0.60</td>
</tr>
<tr>
<td>T-21</td>
<td>0.60</td>
<td>0.51</td>
<td>-0.16</td>
<td>0.80</td>
<td>0.44</td>
<td>-0.28</td>
</tr>
<tr>
<td>T-22</td>
<td>1.44</td>
<td>0.42</td>
<td>-0.74</td>
<td>1.00</td>
<td>-0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>T-23</td>
<td>1.21</td>
<td>0.33</td>
<td>-0.44</td>
<td>1.28</td>
<td>-0.54</td>
<td>0.22</td>
</tr>
<tr>
<td>T-24</td>
<td>0.75</td>
<td>0.01</td>
<td>0.26</td>
<td>0.85</td>
<td>-0.51</td>
<td>0.60</td>
</tr>
<tr>
<td>T-25</td>
<td>1.17</td>
<td>0.79</td>
<td>-0.77</td>
<td>1.04</td>
<td>-0.84</td>
<td>0.70</td>
</tr>
<tr>
<td>T-26</td>
<td>1.13</td>
<td>-1.21</td>
<td>1.02</td>
<td>1.27</td>
<td>-1.07</td>
<td>0.75</td>
</tr>
<tr>
<td>T-27</td>
<td>0.55</td>
<td>0.42</td>
<td>0.04</td>
<td>0.56</td>
<td>-0.09</td>
<td>0.45</td>
</tr>
<tr>
<td>T-28</td>
<td>0.95</td>
<td>-1.08</td>
<td>0.97</td>
<td>1.33</td>
<td>-0.52</td>
<td>0.18</td>
</tr>
<tr>
<td>T-29</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
2. 11월 12일 현장조사 자료 및 단일분광요소 분율

<table>
<thead>
<tr>
<th>구분 (11월)</th>
<th>좌표(라디안)</th>
<th>좌표(킬로미터)</th>
<th>시각</th>
<th>Chla</th>
<th>TSS</th>
<th>NPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td>35.91272</td>
<td>128.40703</td>
<td>11:10</td>
<td>22.0</td>
<td>9.6</td>
<td>8.2</td>
</tr>
<tr>
<td>T-2</td>
<td>35.91013</td>
<td>128.40558</td>
<td>11:12</td>
<td>20.5</td>
<td>9.4</td>
<td>8.1</td>
</tr>
<tr>
<td>T-3</td>
<td>35.90668</td>
<td>128.40222</td>
<td>11:15</td>
<td>11.5</td>
<td>8.0</td>
<td>7.3</td>
</tr>
<tr>
<td>T-4</td>
<td>35.90143</td>
<td>128.40252</td>
<td>11:17</td>
<td>14.7</td>
<td>8.4</td>
<td>7.4</td>
</tr>
<tr>
<td>T-5</td>
<td>35.89573</td>
<td>128.40292</td>
<td>11:19</td>
<td>14.5</td>
<td>8.0</td>
<td>7.1</td>
</tr>
<tr>
<td>T-6</td>
<td>35.89247</td>
<td>128.39882</td>
<td>11:21</td>
<td>12.4</td>
<td>6.8</td>
<td>6.0</td>
</tr>
<tr>
<td>T-7</td>
<td>35.88970</td>
<td>128.39568</td>
<td>11:23</td>
<td>13.0</td>
<td>6.6</td>
<td>5.8</td>
</tr>
<tr>
<td>T-8</td>
<td>35.88602</td>
<td>128.39447</td>
<td>11:26</td>
<td>13.8</td>
<td>6.6</td>
<td>5.7</td>
</tr>
<tr>
<td>T-9</td>
<td>35.88242</td>
<td>128.39295</td>
<td>11:27</td>
<td>13.0</td>
<td>7.2</td>
<td>6.4</td>
</tr>
<tr>
<td>T-10</td>
<td>35.88035</td>
<td>128.38903</td>
<td>11:29</td>
<td>14.3</td>
<td>7.6</td>
<td>6.7</td>
</tr>
<tr>
<td>T-11</td>
<td>35.87760</td>
<td>128.38552</td>
<td>11:31</td>
<td>10.4</td>
<td>6.4</td>
<td>5.7</td>
</tr>
<tr>
<td>T-12</td>
<td>35.87312</td>
<td>128.38643</td>
<td>11:32</td>
<td>11.2</td>
<td>7.2</td>
<td>6.5</td>
</tr>
<tr>
<td>T-13</td>
<td>35.86963</td>
<td>128.38707</td>
<td>11:34</td>
<td>10.8</td>
<td>8.4</td>
<td>7.7</td>
</tr>
<tr>
<td>T-14</td>
<td>35.86650</td>
<td>128.38382</td>
<td>11:36</td>
<td>11.4</td>
<td>8.4</td>
<td>7.7</td>
</tr>
<tr>
<td>T-15</td>
<td>35.86368</td>
<td>128.38150</td>
<td>11:38</td>
<td>10.3</td>
<td>8.0</td>
<td>7.3</td>
</tr>
<tr>
<td>T-16</td>
<td>35.86085</td>
<td>128.38383</td>
<td>11:41</td>
<td>10.7</td>
<td>7.4</td>
<td>6.7</td>
</tr>
<tr>
<td>T-17</td>
<td>35.85835</td>
<td>128.38900</td>
<td>11:43</td>
<td>11.2</td>
<td>7.8</td>
<td>7.1</td>
</tr>
<tr>
<td>T-18</td>
<td>35.85347</td>
<td>128.39047</td>
<td>11:45</td>
<td>10.3</td>
<td>8.0</td>
<td>7.3</td>
</tr>
<tr>
<td>T-19</td>
<td>35.84998</td>
<td>128.39515</td>
<td>11:47</td>
<td>10.3</td>
<td>9.6</td>
<td>8.9</td>
</tr>
<tr>
<td>T-20</td>
<td>35.85053</td>
<td>128.39755</td>
<td>11:49</td>
<td>9.6</td>
<td>7.8</td>
<td>7.2</td>
</tr>
<tr>
<td>T-21</td>
<td>35.85172</td>
<td>128.40257</td>
<td>11:51</td>
<td>8.8</td>
<td>7.0</td>
<td>6.4</td>
</tr>
<tr>
<td>T-22</td>
<td>35.85053</td>
<td>128.40690</td>
<td>11:53</td>
<td>10.0</td>
<td>9.6</td>
<td>9.0</td>
</tr>
<tr>
<td>T-23</td>
<td>35.84945</td>
<td>128.41045</td>
<td>11:55</td>
<td>11.1</td>
<td>9.4</td>
<td>8.7</td>
</tr>
<tr>
<td>T-24</td>
<td>35.85062</td>
<td>128.41552</td>
<td>11:57</td>
<td>10.5</td>
<td>9.4</td>
<td>8.7</td>
</tr>
<tr>
<td>T-25</td>
<td>35.85170</td>
<td>128.42012</td>
<td>11:59</td>
<td>11.5</td>
<td>9.2</td>
<td>8.5</td>
</tr>
<tr>
<td>T-26</td>
<td>35.84937</td>
<td>128.42478</td>
<td>12:01</td>
<td>10.6</td>
<td>9.2</td>
<td>8.5</td>
</tr>
<tr>
<td>T-27</td>
<td>35.84767</td>
<td>128.42892</td>
<td>12:03</td>
<td>12.0</td>
<td>9.6</td>
<td>8.8</td>
</tr>
<tr>
<td>T-28</td>
<td>35.84518</td>
<td>128.43480</td>
<td>12:05</td>
<td>11.7</td>
<td>10.0</td>
<td>9.2</td>
</tr>
<tr>
<td>T-29</td>
<td>35.84958</td>
<td>128.44057</td>
<td>12:07</td>
<td>11.4</td>
<td>10.4</td>
<td>9.7</td>
</tr>
<tr>
<td>T-30</td>
<td>35.84680</td>
<td>128.44473</td>
<td>12:09</td>
<td>13.7</td>
<td>9.6</td>
<td>8.7</td>
</tr>
<tr>
<td>T-31</td>
<td>35.84408</td>
<td>128.44850</td>
<td>12:11</td>
<td>13.0</td>
<td>9.4</td>
<td>8.6</td>
</tr>
<tr>
<td>T-32</td>
<td>35.84423</td>
<td>128.45367</td>
<td>12:13</td>
<td>14.8</td>
<td>9.0</td>
<td>8.0</td>
</tr>
<tr>
<td>T-33</td>
<td>35.84413</td>
<td>128.45735</td>
<td>12:15</td>
<td>13.5</td>
<td>9.8</td>
<td>8.9</td>
</tr>
<tr>
<td>T-34</td>
<td>35.84137</td>
<td>128.45852</td>
<td>12:17</td>
<td>13.6</td>
<td>9.2</td>
<td>8.3</td>
</tr>
<tr>
<td>구분</td>
<td>1 by 1</td>
<td>3 by 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EM_Chla</td>
<td>EM_NPSS</td>
<td>EM_PW</td>
<td>EM_Chla</td>
<td>EM_NPSS</td>
<td>EM_PW</td>
</tr>
<tr>
<td>T-1</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T-2</td>
<td>0.45</td>
<td>0.16</td>
<td>0.33</td>
<td>0.23</td>
<td>-0.15</td>
<td>0.95</td>
</tr>
<tr>
<td>T-3</td>
<td>1.09</td>
<td>-0.34</td>
<td>0.22</td>
<td>1.06</td>
<td>-0.36</td>
<td>0.39</td>
</tr>
<tr>
<td>T-4</td>
<td>0.64</td>
<td>0.00</td>
<td>0.35</td>
<td>0.52</td>
<td>-0.42</td>
<td>0.81</td>
</tr>
<tr>
<td>T-5</td>
<td>0.03</td>
<td>0.00</td>
<td>0.91</td>
<td>0.12</td>
<td>-0.10</td>
<td>0.88</td>
</tr>
<tr>
<td>T-6</td>
<td>0.96</td>
<td>-0.40</td>
<td>0.34</td>
<td>0.30</td>
<td>-0.24</td>
<td>0.99</td>
</tr>
<tr>
<td>T-7</td>
<td>0.62</td>
<td>0.07</td>
<td>0.31</td>
<td>0.71</td>
<td>-0.01</td>
<td>0.33</td>
</tr>
<tr>
<td>T-8</td>
<td>0.44</td>
<td>0.41</td>
<td>0.13</td>
<td>0.45</td>
<td>0.22</td>
<td>0.41</td>
</tr>
<tr>
<td>T-9</td>
<td>0.50</td>
<td>0.55</td>
<td>0.14</td>
<td>0.86</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>T-10</td>
<td>0.49</td>
<td>0.14</td>
<td>0.39</td>
<td>0.95</td>
<td>-0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>T-11</td>
<td>0.55</td>
<td>-0.09</td>
<td>0.53</td>
<td>0.64</td>
<td>-0.25</td>
<td>0.62</td>
</tr>
<tr>
<td>T-12</td>
<td>0.37</td>
<td>0.01</td>
<td>0.68</td>
<td>0.30</td>
<td>-0.15</td>
<td>0.85</td>
</tr>
<tr>
<td>T-13</td>
<td>0.17</td>
<td>0.53</td>
<td>0.42</td>
<td>0.70</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>T-14</td>
<td>0.17</td>
<td>0.25</td>
<td>0.58</td>
<td>0.64</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>T-15</td>
<td>0.58</td>
<td>0.54</td>
<td>0.15</td>
<td>1.09</td>
<td>0.15</td>
<td>-0.17</td>
</tr>
<tr>
<td>T-16</td>
<td>0.80</td>
<td>-0.06</td>
<td>0.31</td>
<td>1.06</td>
<td>-0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>T-17</td>
<td>0.44</td>
<td>0.29</td>
<td>0.38</td>
<td>0.83</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>T-18</td>
<td>0.24</td>
<td>0.14</td>
<td>0.67</td>
<td>0.58</td>
<td>-0.11</td>
<td>0.50</td>
</tr>
<tr>
<td>T-19</td>
<td>0.50</td>
<td>0.16</td>
<td>0.46</td>
<td>0.73</td>
<td>-0.09</td>
<td>0.29</td>
</tr>
<tr>
<td>T-20</td>
<td>0.07</td>
<td>0.12</td>
<td>0.91</td>
<td>0.53</td>
<td>0.08</td>
<td>0.31</td>
</tr>
<tr>
<td>T-21</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>T-22</td>
<td>0.44</td>
<td>0.59</td>
<td>0.17</td>
<td>0.43</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td>T-23</td>
<td>-0.04</td>
<td>0.86</td>
<td>0.23</td>
<td>0.04</td>
<td>0.69</td>
<td>0.25</td>
</tr>
<tr>
<td>T-24</td>
<td>0.11</td>
<td>0.74</td>
<td>0.22</td>
<td>-0.32</td>
<td>0.75</td>
<td>0.65</td>
</tr>
<tr>
<td>T-25</td>
<td>-0.30</td>
<td>0.65</td>
<td>0.69</td>
<td>-0.72</td>
<td>0.92</td>
<td>0.78</td>
</tr>
<tr>
<td>T-26</td>
<td>0.10</td>
<td>0.29</td>
<td>0.73</td>
<td>-0.07</td>
<td>0.94</td>
<td>0.21</td>
</tr>
<tr>
<td>T-27</td>
<td>-0.33</td>
<td>0.37</td>
<td>1.00</td>
<td>-1.12</td>
<td>0.59</td>
<td>1.45</td>
</tr>
<tr>
<td>T-28</td>
<td>-0.23</td>
<td>1.06</td>
<td>0.21</td>
<td>-0.39</td>
<td>0.78</td>
<td>0.51</td>
</tr>
<tr>
<td>T-29</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T-30</td>
<td>0.52</td>
<td>0.70</td>
<td>-0.19</td>
<td>0.50</td>
<td>0.34</td>
<td>0.13</td>
</tr>
<tr>
<td>T-31</td>
<td>-0.14</td>
<td>0.69</td>
<td>0.52</td>
<td>0.15</td>
<td>0.37</td>
<td>0.40</td>
</tr>
<tr>
<td>T-32</td>
<td>0.36</td>
<td>0.29</td>
<td>0.40</td>
<td>0.32</td>
<td>0.22</td>
<td>0.43</td>
</tr>
<tr>
<td>T-33</td>
<td>0.09</td>
<td>1.11</td>
<td>-0.13</td>
<td>-0.25</td>
<td>0.43</td>
<td>0.71</td>
</tr>
<tr>
<td>T-34</td>
<td>0.36</td>
<td>0.59</td>
<td>0.16</td>
<td>0.35</td>
<td>0.18</td>
<td>0.37</td>
</tr>
<tr>
<td>구분 (T1월)</td>
<td>5 by 5</td>
<td></td>
<td></td>
<td>7 by 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>EM_Chla</td>
<td>EM_NPSS</td>
<td>EM_PW</td>
<td>EM_Chla</td>
<td>EM_NPSS</td>
<td>EM_PW</td>
</tr>
<tr>
<td>T-1</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T-2</td>
<td>0.47</td>
<td>-0.26</td>
<td>0.80</td>
<td>1.03</td>
<td>-0.29</td>
<td>0.28</td>
</tr>
<tr>
<td>T-3</td>
<td>1.25</td>
<td>-0.29</td>
<td>0.15</td>
<td>1.39</td>
<td>-0.09</td>
<td>-0.20</td>
</tr>
<tr>
<td>T-4</td>
<td>0.74</td>
<td>-0.53</td>
<td>0.75</td>
<td>1.62</td>
<td>0.05</td>
<td>-0.63</td>
</tr>
<tr>
<td>T-5</td>
<td>-0.07</td>
<td>-0.45</td>
<td>1.33</td>
<td>1.68</td>
<td>0.58</td>
<td>-1.28</td>
</tr>
<tr>
<td>T-6</td>
<td>0.14</td>
<td>-0.32</td>
<td>1.25</td>
<td>0.16</td>
<td>-0.60</td>
<td>1.45</td>
</tr>
<tr>
<td>T-7</td>
<td>0.82</td>
<td>0.05</td>
<td>0.19</td>
<td>0.70</td>
<td>-0.15</td>
<td>0.48</td>
</tr>
<tr>
<td>T-8</td>
<td>0.32</td>
<td>-0.34</td>
<td>1.03</td>
<td>1.21</td>
<td>-0.05</td>
<td>-0.10</td>
</tr>
<tr>
<td>T-9</td>
<td>0.76</td>
<td>-0.14</td>
<td>0.35</td>
<td>1.74</td>
<td>0.22</td>
<td>-0.87</td>
</tr>
<tr>
<td>T-10</td>
<td>1.20</td>
<td>-0.10</td>
<td>0.01</td>
<td>0.85</td>
<td>-0.38</td>
<td>0.60</td>
</tr>
<tr>
<td>T-11</td>
<td>1.05</td>
<td>-0.41</td>
<td>0.28</td>
<td>1.90</td>
<td>0.16</td>
<td>-0.98</td>
</tr>
<tr>
<td>T-12</td>
<td>0.55</td>
<td>-0.75</td>
<td>1.14</td>
<td>2.25</td>
<td>0.38</td>
<td>-1.54</td>
</tr>
<tr>
<td>T-13</td>
<td>0.55</td>
<td>-0.48</td>
<td>0.66</td>
<td>3.56</td>
<td>1.60</td>
<td>-4.01</td>
</tr>
<tr>
<td>T-14</td>
<td>1.52</td>
<td>0.36</td>
<td>-0.90</td>
<td>1.89</td>
<td>0.60</td>
<td>-1.37</td>
</tr>
<tr>
<td>T-15</td>
<td>1.43</td>
<td>0.21</td>
<td>-0.61</td>
<td>1.98</td>
<td>0.65</td>
<td>-1.52</td>
</tr>
<tr>
<td>T-16</td>
<td>1.64</td>
<td>0.07</td>
<td>-0.70</td>
<td>1.88</td>
<td>0.42</td>
<td>-1.19</td>
</tr>
<tr>
<td>T-17</td>
<td>1.32</td>
<td>0.24</td>
<td>-0.53</td>
<td>1.35</td>
<td>0.48</td>
<td>-0.73</td>
</tr>
<tr>
<td>T-18</td>
<td>0.82</td>
<td>-0.24</td>
<td>0.33</td>
<td>2.89</td>
<td>1.16</td>
<td>-2.92</td>
</tr>
<tr>
<td>T-19</td>
<td>0.94</td>
<td>-0.08</td>
<td>-0.03</td>
<td>3.11</td>
<td>1.45</td>
<td>-3.41</td>
</tr>
<tr>
<td>T-20</td>
<td>0.67</td>
<td>0.46</td>
<td>-0.34</td>
<td>2.17</td>
<td>1.59</td>
<td>-2.50</td>
</tr>
<tr>
<td>T-21</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>T-22</td>
<td>0.61</td>
<td>0.54</td>
<td>-0.08</td>
<td>0.38</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>T-23</td>
<td>-0.31</td>
<td>0.52</td>
<td>0.68</td>
<td>1.38</td>
<td>1.61</td>
<td>-1.92</td>
</tr>
<tr>
<td>T-24</td>
<td>-0.41</td>
<td>0.78</td>
<td>0.56</td>
<td>1.34</td>
<td>1.69</td>
<td>-1.93</td>
</tr>
<tr>
<td>T-25</td>
<td>-0.84</td>
<td>1.04</td>
<td>0.77</td>
<td>-0.40</td>
<td>1.26</td>
<td>0.12</td>
</tr>
<tr>
<td>T-26</td>
<td>-0.66</td>
<td>1.08</td>
<td>0.59</td>
<td>0.56</td>
<td>1.52</td>
<td>-1.01</td>
</tr>
<tr>
<td>T-27</td>
<td>-0.76</td>
<td>1.11</td>
<td>0.55</td>
<td>1.09</td>
<td>2.16</td>
<td>-2.19</td>
</tr>
<tr>
<td>T-28</td>
<td>-0.57</td>
<td>0.68</td>
<td>0.68</td>
<td>2.17</td>
<td>2.09</td>
<td>-3.16</td>
</tr>
<tr>
<td>T-29</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>T-30</td>
<td>-0.05</td>
<td>-0.13</td>
<td>0.96</td>
<td>3.47</td>
<td>2.09</td>
<td>-4.41</td>
</tr>
<tr>
<td>T-31</td>
<td>0.20</td>
<td>0.23</td>
<td>0.33</td>
<td>3.42</td>
<td>2.24</td>
<td>-4.52</td>
</tr>
<tr>
<td>T-32</td>
<td>-0.04</td>
<td>-0.13</td>
<td>0.99</td>
<td>2.97</td>
<td>1.99</td>
<td>-3.86</td>
</tr>
<tr>
<td>T-33</td>
<td>-0.65</td>
<td>0.20</td>
<td>1.24</td>
<td>2.63</td>
<td>2.20</td>
<td>-3.70</td>
</tr>
<tr>
<td>T-34</td>
<td>0.60</td>
<td>0.13</td>
<td>-0.01</td>
<td>4.05</td>
<td>2.54</td>
<td>-5.42</td>
</tr>
</tbody>
</table>
3. 10월 14일 클로로필\textsubscript{a} 농도 분포도

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{범례} & \\
\hline
\textbullet & 2013-10-14_자수지점 \\
\hline
2013-10-14 Chl-a 예측치 & \\
\hline
\textless VALUE & \\
\hline
0 & \\
\hline
0 - 5 & \\
\hline
5.0000000001 - 10 & \\
\hline
10.0000000001 - 15 & \\
\hline
15.0000000001 - 20 & \\
\hline
20.0000000001 - 25 & \\
\hline
25.0000000001 - 30 & \\
\hline
30.0000000001 - 35 & \\
\hline
35.0000000001 - 50 & \\
\hline
50.0000000001 - 147 & \\
\hline
\end{tabular}
\caption{2013-10-14 Chl-a 예측치 분포}
\end{table}
4. 11월 12일 클로로필 a 농도 분포도

범례
- 2013-11-12_채수지점
2013-11-12 Chi-a 예측치 (㎍/ℓ)

- 0
- 0 - 5
- 5,000,000001 - 10
- 10,000,000001 - 15
- 15,000,000001 - 20
- 20,000,000001 - 25
- 25,000,000001 - 30
- 30,000,000001 - 35
- 35,000,000001 - 40
- 40,000,000001 - 45