수도권매립지 식생토사확보를 위한
건설발생토 활용방안에 관한 연구

- 건설폐기물 중간처리업체 선별토분 중심으로 -

건국대학교 자연과학연구소

책임연구원 윤용한

연구원 김원태
임병욱
피영희
박봉주
김승태
손진관

2005. 4.

수도권매립지관리공사
제 출 문

수도권매립지관리공사 사장 귀하

본 보고서를
“수도권매립지 식생토사확보를 위한 건설발생토 활용방안에 관한 연구
- 건설폐기물 중간처리업체 선별토분 중심으로 -”
(연구기간 2004. 9. ~ 2005. 5.)
용역의 최종보고서로 제출합니다.

2005년 5월

연구기관명 : 건국대학교 자연과학연구소
책임연구원 윤용한
연구원 김원태
임병옥
피영희
박봉주
김승태
손진관
목 차

1. 서론... 1
 1.1 연구배경... 1
 1.2 연구목적 및 범위... 2
 1.2.1 연구목적.. 2
 1.2.2 연구범위.. 2
 1.3 연구내용.. 2
 1.4 추진체계... 4

2. 수도권매립지 주변 식생성장 여건별 토양특성 파악... 5
 2.1 연구내용.. 5
 2.2 문헌조사.. 5
 2.2.1 식생대층의 토양특성.. 5
 2.2.2 매립지 토양특성... 11
 2.3 수도권매립지 주변 토양특성 파악.. 16
 2.3.1 대상지 현황... 16
 2.3.2 식생성장 여건별 대상지 선정.. 19
 2.3.3 대상지역의 토양특성 파악... 21
 2.3.4 식생성장의 제한인자.. 33
 2.4 식생대층별 개량목표치 설정.. 36
 2.4.1 토양특성 항목별 개량목표치 설정.. 39
 2.4.2 설정 개량목표치 종합... 44

3. 건설발생토의 발생현황 및 특성.. 46
 3.1 연구내용.. 46
 3.2 건설발생토의 발생현황.. 46
 3.2.1 건설발생토의 개념 정의.. 46
 3.2.2 건설발생토의 발생원... 47
 3.2.3 건설폐토석 및 혼합건설폐기물의 중간처리... 50
 3.3 건설발생토의 특성 파악.. 57
 3.3.1 건설발생토의 유해물질 함량 및 토양오염도 평가... 57
 3.3.2 건설발생토의 물리·화학적 특성... 66
 3.4 건설발생토의 재활용 관련 법제도 검토.. 64
 3.4.1 건설폐기물의 재활용촉진에 관한 법률.. 72
 3.4.2 폐기물관리법.. 72
 3.4.3 토양환경보전법.. 74
 3.5 소결.. 74
표 2.1 매립지 토양의 용적밀도... 11
표 2.2 매립지 토양의 토양수분함량... 12
표 2.3 매립지 토양의 토양산도... 12
표 2.4 매립지 토양의 전기전도도.. 12
표 2.5 매립지 토양의 유기물 함량... 13
표 2.6 매립지 토양의 전탄소 함량... 13
표 2.7 매립지 토양의 치환성양이온 및 중금속 함량.......................... 14
표 2.8 대상지의 수목활릴도... 20
표 2.9 조사대상지 토양의 물리적 특성... 25
표 2.10 조사대상지 토양의 화학적 특성.. 29
표 2.11 식재 식물 규격별 유효토층 두께... 37
표 2.12 식재기반 성립조건... 37
표 2.13 투수계수의 평가기준... 40
표 2.14 공극률의 평가기준... 40
표 2.15 토양산도의 평가기준... 41
표 2.16 전기전도도의 평가기준... 41
표 2.17 양이온치환용량의 평가기준... 42
표 2.18 유기물 함량의 평가기준... 42
표 2.19 치환성칼륨 함량... 43
표 2.20 치환성칼슘 함량... 43
표 2.21 치환성알칼리 함량... 44
표 2.22 유기토층의 식생토양으로 활용시 건설발생토의 개량목표치...... 44
표 2.23 배수층으로 활용시 건설발생토의 개량목표치........................ 45
표 3.1 연도별 폐기물 발생현황... 47
표 3.2 건설폐기물의 성상현황... 48
표 3.3 건설폐기물의 성상현황... 49
표 3.4 건설공사 중류별 폐기물 종류 및 발생량.................................... 49
표 3.5 건설폐기물의 처리방법별 처리현황... 51
표 3.6 건설폐기물의 처리지목별 처리현황.. 51
표 3.7 2001년도 건설폐기물 중류별 중간처리업체현황........................ 52
표 3.8 2001년도 지역별 건설폐기물 중간처리업체현황........................ 53
표 3.9 2004년도 건설폐기물 수집운반 실적(C업체).............................. 54
표 3.10 2004년도 반입 건설폐기물의 지역별 분포(C업체)...................... 55
표 3.11 폐기물공정시험법에 의한 건설발생토의 유해물질 용출시험결과... 62
표 3.12 토양오염공정시험법에 의한 건설발생토의 오염도.................. 65
표 3.13 건설발생토의 물리적 특성.. 67
표 3.14 건설발생토의 화학적 특성.. 68
표 3.15 유해물질 판정 항목 및 기준치.. 73
표 3.16 토양오염우려기준.. 74
표 4.1 유기성 폐자원의 이화학성... 77
표 4.2 유기성 폐자원의 중금속 함량... 77
표 4.3 건설발생토의 제한인자, 식재상 문제점 및 개량방법... 83
표 4.4 과인산석회의 성분함량.. 86
표 4.5 피트모스의 화학적 특성.. 89
표 4.6 피트모스 혼합 전·후 건설발생토의 화학적 특성... 89
표 4.7 수피퇴비의 화학적 특성... 90
표 4.8 수피퇴비 혼합 전·후 건설발생토의 화학적 특성... 90
표 4.9 개량 전·후 건설발생토 및 산흙의 물리적 특성... 93
표 4.10 개량 전·후 건설발생토 및 산흙의 화학적 특성... 95
표 4.11 공시토양별 발아율 비교... 101
표 4.12 공시토양별 초장 비교.. 101
표 4.13 개량 전·후 건설발생토의 토양오염도... 102
표 5.1 건설발생토의 개량목표치 및 개량 전·후 건설발생토의 특성 비교.............................. 105
표 5.2 유휴토층 사용 토사의 반입비용과 건설발생토 개량비용과의 비교........................ 107
표 5.3 배수층 사용 토사의 반입비용과 건설발생토 개량비용과의 비교.......................... 107
표 5.4 건설발생토 활용시 예상되는 추가비용요소 및 비용절감요소............................... 109
表 5.5 제1매립장 제방 및 이격구간 토사 소요예상량... 110
1. 서론

1.1 연구배경

2003년도 환경부 통계자료에 따르면 우리나라 건설폐기물의 양은 일일 145,420톤으로 연간 약 53,080,000톤에 이르고 있다. 이는 전년대비 21.0% 증가한 것으로 ’96년부터 ’03년까지 지속적인 증가추세를 보이고 있는데 이러한 경향은 급격한 경제 발전의 과정에서 건설된 건축물의 수명과 ’60~’70년대의 도시집중화 현상에 따른 최근의 건설수요 등을 고려해 볼 때 건축물 해체와 신축 등으로 인해 앞으로도 구준히 증가할 것으로 예상된다. 더욱이 우리나라의 경우 도시의 유휴이용 부지가 협소하기 때문에 대부분 해체 없이는 신축이 불가능하고, 국민의식이 선진국처럼 건축물의 외장은 그대로 둔 채 내장재·배관·설비만을 교체 또는 수선하여 건축물의 수명을 연장시켜 사용하는 태도·합리적인 의식이 부족한 반면 조금 노후화된 건축물도 일단 해체한 후 재건축하려는 경향이 다른 나라에 비해 매우 높기 때문이라고 볼 수 있다. 따라서 이러한 상황 역시 해체 및 신축으로 인한 건설폐기물량을 더욱 가중시키고 있는 형편이다.

한편 2003년의 경우 일일 145,420톤 발생된 건설폐기물은 매립(13,715톤/일, 9.4%), 소각(2,233톤/일, 1.5%), 재활용(129,462톤/일, 89.0%), 해양배출(10톤/일) 등으로 처리되었으며, 대부분 성토용(66.2%), 파쇄골재(18.4%), 도로기층용(11.3%)으로 재활용되고 있었다.

현재 수도권매립지 주변에 위치한 건설폐기물 중간처리업체는 서울시, 경기도 및 인천시에서 발생되고 있는 건설폐기물을 반입·처리하고 있는데 반입된 건설폐기물의 조성은 건설폐토석 및 콘크리트가 대부분을 차지하고 있으며, 이외 페목재, 철근, 비닐 등의 혼잡물 등도 일부 포함되어 있다. 이러한 건설폐기물은 중간처리업체내 자체 처리공정을 거쳐 토분이 먼저 분리·선택되며, 콘크리트가 파쇄되어서 골재, 석면, 철근 등이 발생한다.

분리·선택된 골재류는 수요가 지속적으로 발생하여 적치되는 일 없이 반출되고 있는 상황이나 토분 및 석면은 위해성이 크지 않음에도 불구하고 현재 수요처가 없는 관계로 상당량이 중간처리업체내 적치되어 있는 관계로 미관상의 문제뿐만 아니라 먼지 발생 등의 환경적인 문제도 야기시키고 있는 실정이다.
분리·선별된 토분의 대부분은 토사(흙)이고, 미량의 혼합물 및 석분이 섞여 있는 상태로 일반 토사의 성상과는 다소 차이가 있을 것으로 판단되나 개량 등의 방법을 통해 충분히 재활용할 수 있을 것으로 사료된다.

따라서 본 연구에서는 중간처리업체에서 분리·선별한 토분을 건설발생토로 정의하고 이러한 건설발생토를 수도권매립지내 조성되고 있는 식생대층 및 야생화단지 조성에 활용할 수 있는 토양으로 개량 또는 활용할 수 있는 방안을 마련하여 식생대층에 소요되는 토사의 안정적 확보뿐만 아니라 중간처리업체내 적재·방치되어 제반 문제를 초래하고 있는 건설발생토의 활용방안을 마련하고자 한다.

1.2 연구목적 및 범위
1.2.1 연구목적
본 연구의 목적은 수도권매립지 주변 중간처리업체에 적체되어 있는 건설발생토의 성상을 정확히 파악하고, 개량 등을 통한 식생토사로서의 활용방안을 마련하는 데 있다. 이를 바탕으로 수도권매립지 식생대층 조성 및 매립지 사후관리에 필요한 토사확보와 중간처리업체내 적재·방치된 건설발생토로 인해 발생하고 있는 문제점들을 해소하고자 한다.

1.2.2 연구범위
수도권매립지 식생토사확보를 위한 건설발생토 활용방안에 관한 연구범위는 다음과 같다.
첫째, 수도권매립지 주변 식생성장 여건별 토양특성 파악
둘째, 건설발생토의 발생환경 및 특성 조사
셋째, 건설발생토 개량방안 검토
넷째, 건설발생토 활용방안 및 타당성 검토

1.3 연구내용
1) 수도권매립지 주변 식생성장 여건별 토양특성 파악
 ◦ 문헌 등을 통한 식생대층별(성토층, 근권 등) 요구되는 적정한 토양조건 파악
 ◦ 수도권매립지 주변을 식생성장 여건에 따라 구분하고, 식생성장 여건별 토양
특성을 분석하여 식생토사로서 갖추어야 할 특성과 제한인자 파악
- 조사내용 : 조사대상지 토양의 물리・화학적 특성

2) 건설발생토의 발생현황 및 특성 조사
- 식생토사로 활용시 고려해야 할 건설발생토의 물리・화학적 특성 파악
 - 조사내용 : 건설발생토의 유해물질 함유여부, 토양오염도 및 토양특성

3) 건설발생토 개량방안 검토
 - 개량물질 검토 및 선정
 - 고정/액상 폐기물류(하수/폐지/식품슬러지 및 폐수 등) 중에서 개량물질로 사용하기에 적절한 물질 검토 및 선정
 - 건설발생토 개량에 적정한 비료 및 부숙토 검토 및 선정
 - 선정된 개량물질을 이용한 건설발생토 개량방안 검토 제시
 - 개량물질 적용에 따른 개량효과 파악
 - 성장이 빨른 초본류를 이용한 개량효과 파악
 - 조사내용 : 개량 전・후 건설발생토, 대조구인 산흙의 물리・화학적 특성 및 초본류 생육특성

4) 건설발생토 활용방안 및 타당성 검토
 - 개량 전・후 건설발생토의 식생토사로서 활용방안 수립
 - 파악된 개량 전・후 건설발생토를 식생대층별로 활용하는 방안에 대한 검토
 - 우리공사 용역결과물인 수도권매립지 외곽경계지역(3, 4매립장) 식재공사 실시설계 보고서, 수도권매립지 1,000만그루 나무심기(3차년도) 100만그루 식재공사 실시설계 보고서와 연계하여 검토
 - 건설발생토 개량 및 활용에 따른 타당성 검토
 - 식생토사 구립비용 대비 건설발생토 개량 및 적용에 따른 경제성 비교
 - 건설발생토 재활용에 따른 자원재활용 측면과 매립장 주변 환경개선 효과 등 고려
1.4 추진체계
본 연구의 추진체계는 그림 1.1에 나타낸 바와 같다.
① 연구목표를 설정하고, 연구범위를 확정한다.
② 식생대층별로 식물성장에 필요한 토양특성을 파악하며, 또한 매립지의 토양특성에 대한 사례조사를 실시한다.
③ 수도권매립지내 식생성장 여건별 토양특성을 분석한다.
④ 건설발생토의 개량목표치를 설정한다.
⑤ 건설발생토의 토양특성을 파악한다.
⑥ 건설발생토의 개량방안을 검토한다.
⑦ 초본류를 이용한 건설발생토 개량설계용 실시한다.
⑧ 개량 전·후 건설발생토의 식생토사로서 활용방안을 강구한다.
이상에서 얻어진 결과를 토대로 본 연구의 목적인 수도권매립지 식생대층 조성 및 사후관리사 필요한 식생토사 확보 및 건설폐기물 감량화 촉진 기반조성에 이바지 하고자 하며, 나아가 건설폐기물 중간처리업체내 적재·방치된 건설발생토의 활용방안 마련으로 매립장 주변 환경을 개선하는 데 기여하고자 한다.

그림 1.1 추진체계도
2. 수도권매립지 주변 식생성장 여건별 토양특성 파악

2.1 연구내용

본 장에서는 먼저 문헌조사 등을 통해 식생대층별 요구되는 적정 토양조건을 파악하고, 수도권매립지와 주변 환경조건 등이 유사한 매립지 및 해안지역의 토양특성에 대한 사례조사를 실시한다. 다음으로 수도권매립지 주변을 식생성장 여건에 따라 구분하여 식생성장 여건별 토양특성을 조사하고, 식생대층별로 요구되는 건설 발생도의 개량목표치를 설정한다.

2.2 문헌조사

2.2.1 식생대층의 토양특성

식재기반이라고도 하는 식생대층은 식물이 식재되어 성장하는 토층으로서 그림 2.1에 나타낸 바와 같이 크게 유효토층과 하층지반 혹은 배수층으로 구분되며, 또한 유효토층은 상층과 하층으로 구분된다.

그림 2.1 식생대층(이규석 등, 2003)

각 식생대층에 요구되는 토양조건으로는 먼저 유효토층 상층의 경우 세균이 잘 자랄 수 있도록 부드럽고, 투수성이 양호하며, 양분과 부식이 풍부해야 하고, 하층
의 경우 뿌리가 신흥하는 것이 가능하며, 투수성이 양호해야 한다. 또한 하층지반은 배수가 양호하게 이루어지는 토층이어야 한다.

이러한 식생대층에 요구되는 토양조건에 대해 각 토양특성 항목별로 살펴보면 다음과 같다.

2.2.1 유효토층

1) 토양물리성

① 토성(soil texture)

![그림 2.2 미농무성법에 의한 토성구분(농업과학기술원, 2000)](image)

일반적으로 토양을 구성하는 토양 입자는 크기에 따라 자갈(2~5mm), 모래(0.02~2mm), 미사(0.002~0.02mm), 그리고 점토(0.002mm 이하)로 구분되며, 토성이나그림2.1에 나타낸 바와 같이 토양을 구성하고 있는 모래, 미사, 점토의 상대적 비율을 가리킨다. 점토와 모래는 서로 반대되는 특성을 가지고 있다. 점토는 보수력이 좋고, 양분보유능력이 뛰어난 대신 배수가 잘 안 되고, 통기성이 나쁘다. 반면에 모래는 배수가 잘 되고, 통기성이 좋은 대신 보수력이 나쁘고, 양분보유능력이 떨어진다. 그런데 수목이 잘 자라려면 토양의 보수력, 양분보유능력, 배수성, 통기성 등
이 모두 양호해야 한다. 따라서 점토가 너무 많거나 혹은 모래가 너무 많은 극단적인 토양은 위의 네 가지 성질을 동시에 만족시켜 줄 수 없기 때문에 가장 이상적인 토양은 점토와 모래가 적절하게 섞인 토양이어야 한다. 양토(loam)는 점토, 미사, 모래가 적절하게 섞인 토양을 의미하며, 식생성장에 가장 유리하다.

② 용적밀도(Bulk density)

용적밀도는 토양의 주어진 부피에 대한 고상의 건조중량비, 즉 토양의 단위부피당 건조중량을 말한다. 토양의 부피(용적)란 고상의 부피뿐 아니라 공극까지 포함한 시료 전체의 부피를 말하며, 유기물함량, 토성 및 구조에 따라 변한다. 일반적으로 용적밀도가 낮을수록 통기성이 좋고, 수목생장에 유리하다. 산림토양의 경우 유기물이 많이 섞여 있고, 수목뿌리가 뻗으면서 토양에 구멍을 만들기 때문에 공극률이 보통 40~60%정도 되며, 용적밀도가 0.8~1.6g・cm-3정도 된다(이경준 등, 2002).

③ 투수계수(Hydraulic conductivity)

토양과 같은 다공성 매체는 투수성을 나타내는데 이를 통상적으로 투수계수라고도 한다. 또한 포화토양의 투수계수를 포화투수계수라 한다. 균일한 토양에서의 포화투수계수는 시간이 경과되어도 비교적 일정하게 유지되고, 토양공극의 크기와 형태에 좌우된다. 따라서 투수계수는 토양 속에서 토양수분이 움직이기 쉬운 정도를 나타내는 지표이고, 뿌리에 양분, 수분 및 공기(산소)의 공급이라는 측면에서 중요한 지표이다. 일반적으로 포화투수계수는 사절토양일수록 높고, 식절토양일수록 낮으며, 조경설계기준(건설교통부, 1999)에 의하면 매립지 유효토층의 경우 10-3 ~ 10-4cm・sec-1 이상이어야 한다고 규정되어 있다.

④ 통기성

토양 중의 공기조성은 식물뿌리와 미생물이 호흡을 하고 있으므로 탄산가스 농도가 높아지기 쉽다. 그러나 대기로 탄산가스를 방출하고 그 대신에 새로운 공기가 유입되므로 토양 중의 공기조성은 달라진다. 이러한 가스교환이 외부에 미치하긴 하지만 강우나 관개수에 의하여 용해된 산소의 유입도 있다. 가스교환이 불충분한 토양공기는 탄산가스가 많고 따라서 식물생육에 있어서는 산소부족 상태에 이르게 된다. 따라서 통기성은 토양통기성의 정도로 토양에 흡인력 또는 장력을 증가시키면 큰 공극의 물이 먼저 빠지면서 공기가 유입된다. 대개는 -1/3bar에 해당하는 장력을 작용시킬 때 이와 평형을 이루는 포화수분함량에서 공기로 채워진 토양의 공
극량을 통기성(통기공극률)이라 한다.

5) 토양삼상

토양은 암석의 풍화물인 무기물과 동식물의 잔사나 배설물 등의 유기물로부터 형성된 고체와 이들 입자간의 공극으로 구성되어 있으며, 공극에는 토양수와 토양 공기가 들어 있다. 이러한 고체(고상), 토양수(액상), 토양공기(기상)를 토양의 삼상이라고 하며, 이들 삼상을 용적비로 표시한 것을 삼상분포라 한다. 삼상분포는 고 상의 충진정도나 건습상태를 나타내는 지표이고, 식물의 뿌리신장과 밀접한 관계가 있다. 마스타(増田 등, 1983) 등은 공원의 녹화수를 대상으로 한 조사에서 고상률이 55% 이하면 근계발달에 지장이 없지만 고상률이 60% 이상이거나 고상률이 적정범 위 내에 있어도 기상률이 10% 이하로 되면 근계발달이 곤란하다고 보고하였다.

2) 토양화학성

1) 토양산도(pH)

토양산도는 토양용액 중에 유리상태로 있는 수소이온 활동도의 역수 대수치이다. 따라서 토양산도는 토양용액 중에 수소이온의 농도를 표시하는 지수이고, 농도 그 자체는 아니다. 토양산도는 토양 중에 존재하는 각종 양분의 유 효도, 유해물질의 용해도, 식물뿌리 미생물체내의 생리화학반응 등을 좌우하는 매우 중요한 토양의 화학적 특성이다. 만약 토양의 pH가 4~5로 내려가 강산성으로 되면 일반적으로 식물에 대하여 독성을 나타낼 정도로 가용성 알루미늄과 몰리브덴의 농도가 높아 진다. 반대로 토양의 pH가 높아져 알칼리성으로 되면 미량원소의 용해도가 떨어지게 되며, 특히 철, 망간, 아연, 구리 등이 결핍되기 쉽다(유순호와 임선욱, 1994). 따라서 조경식재를 위한 토양산도는 pH 5.0~7.0(中島康博, 1992), 산림용 묘목 및 관 상수의 토양개량목표는 pH 5.5~6.0(藤原俊六郎, 1996)이라 보고되어 있다.

2) 전기전도도(EC)

전기전도도는 용액 중의 전류를 운반할 수 있는 정도를 측정하여 용액 중의 이 온도를 신속하게 평가할 수 있고, 이온성분과 불순물이 어느 정도 포함되어 있는 지를 측정하여 편의용 이온과 염의 농도를 종합적으로 표시하는 지표이며, 수소이 온, 칼륨, 나트륨, 칼슘, 마그네슘 등 치환성양이온 등과 밀접한 관련이 있다(오왕근 등, 1989; 조성진 등, 1990). 따라서 토양의 염류는 토양수 중에 녹아 이온상태로 되
어 전기의 전도를 용이하게 해 주며, 전기전도도를 측정함으로서 염류의 농도를 간접적으로 알 수 있다. 일반적으로 간척지, 매립지 및 건조지대 등 특수지역 토양은 많은 염류로 인하여 전기전도도가 높아 식물생육에 지장을 주고 있다. 토양에 염류가 집적되면 삼투압이 증가하여 물의 흡수를 저해하고, 식물의 양분흡수를 방해하여 길항작용을 일으키므로 식생성장의 주요 제한인자라 하였으며(岡島正規 등, 1982; Etherington, 1982; 小平哲夫 등, 1984; Loveland 등, 1990), 조경설계기준(건설교통부, 1999)에는 전기전도도 1.0dS·m−1미만을 수목생육에 크게 유해하지 않는 수준으로 보고 있다.

③ 유기물 함량(OM)

토양유기물을 낙엽이나 식물의 뿌리 등이 쌓은 부식과 같은 물질을 말한다. 토양유기물의 기능은 토양 내의 암모니아를 흡착함으로서 질소성분의 유실을 막아주며, 같은 양의 점토에 비해 3~5배의 양이온환영능력을 증가시킨다. 또한 수분흡수능력이 커서 토양의 보수력 증진에 기여한다. 그리고 산과 알칼리에 대한 환동능력이 있어 어느 정도의 산과 알칼리의 유입에도 토양산도가 변하지 않도록 해 준다. 이 외에도 토양의 구조를 안정하게 하고 자체에 양분을 보유하고 있어 양분의 저장고 역할을 하며, 유효인산의 고정을 막아 식생성장에 도움을 주게 된다. 따라서 토양유기물 특히 부식을 많이 함유한 토양이 비옥한 토양이라고 할 수 있다.

④ 양이온환영량(CEC)

양이온환영량은 일정량의 토양이 가지고 있는 치환성염이온의 총량을 나타낸 것으로 실제로는 토양 일정량이 보유하고 있는 음전하의 양을 뜻한다. 양이온환영량이 큰 토양은 일정량의 토양 안에 영양분인 치환성염이온 등이 많다는 의미이므로 토양이 비옥하면 양이온환영량은 증가한다. 또한 비료를 공급했을 때의 영양분을 토양이 보유하여 식물에게 공급하므로 시비의 효율도 증진시킨다.

⑤ 치환성염이온

치환성염이온 중 치환성칼륨은 식물체 대사에 중요한 역할을 하며, 특히 식물의 증산작용을 조절하는데 기여한다. 따라서 식물체내에 칼륨이 부족하면 식물체 생육이 크게 장해를 받아 잎이 작고 회록색을 띄게 되며, 성숙 전에 잎의 첨단부위에서 부터 고사하여 잎의 가장자리를 따라 번져가며, 과실이나 종자의 수, 용적 및 중량이 모두 감소하게 된다.
또한 칼슘은 토양 중의 교환성나트륨퍼센트(Exchangeable Sodium Percent, ESP)와 나트륨흡착비(Sodium Adsorption Ratio, SAR)를 낮추어 투수를 좋게 하고, 치환성나트륨을 씻어내어 토양질량을 형성하게 하므로 제염을 촉진한다. 한편 칼슘의 집적은 원소간 길항작용에 의하여 타 양분의 흡수를 저해하므로 수목생육에 나쁜 영향을 주게 된다. 따라서 칼슘은 토양에 적당량이 함유되어 있으면 긍정적인 작용을 하지만 과다할 경우에는 수목생육에 나쁜 영향을 미치게 된다.

마그네슘도 토양악화에 미치는 영향은 나트륨이온과 비슷하며, 나트륨과 마그네슘의 농도가 칼슘이온과 수소이온보다 큰 토양을 알칼리토양이라고 하였다(USDA staff, 1984).

6) 유효인산(Av.P2O5)

인(P)은 식물체내에서 탄수화물 대사와 에너지 대사 등 여러 가지 대사를 주도하는 무기영양소로서 핵산, 단백질, 인지질 등 원형질의 구성요소로 식물세포의 생장과 번식에 필수적인 요소이다. 질소 다음으로 부족되기 쉬운 원소로 인산이 흡수되면 뿌리의 생장점이나 세포 분열조직에 집중되어 식물의 생육조기에 필요한 원소이므로 결핍될 경우 왜성화로 묘목이 자라지 않는 현상이 나타난다. 특히 유효인산은 식물체에 흡수 이용될 수 있는 형태의 토양인산을 말한다.

2.2.1.2 배수층

유효도층이 식생정량에 요구되는 토양조건을 갖추었다 하더라도 하층지반인 배수층에서 배수가 불량하다면 식생대층으로서 성립되지 않는다. 그 이유로는 수목이
과습으로 인한 생육장해로 결국 고사하는 경우가 발생할 수 있기 때문이며, 따라서 이에 대한 대책이 필요하다. 그러나 현재까지 배수층에 대한 명확한 평가등급 등이 마련되어 있지 않은 관계로 본 연구에서는 조경설계기준(건설교통부, 1999) 유효토층 투수계수 등급인 $10^{-4}\text{cm} \cdot \text{sec}^{-1}$이상이라면 배수층으로 활용 가능하다고 판단된다.

2.2.2 매립지 토양특성

김기대(2001)는 수도권 지역 10개 매립지를 대상으로 토양특성을 분석한 결과 토양의 용적밀도가 $0.84 \text{g} \cdot \text{cm}^{-3}$에서 $1.48 \text{g} \cdot \text{cm}^{-3}$까지의 범위를 나타내 목본의 뿌리 생장이 억제되지 않는다고 보고하였다. 이는 용적밀도가 $1.80 \text{g} \cdot \text{cm}^{-3}$이상일 경우 나무의 생명이 방해를 받기 때문이며, 용적밀도가 클수록 토양 내의 공극이 줄고, 공극의 크기가 작아지면서 뿌리의 생장이 억제되어 토양 내부로 깊숙이 자랄 수 없기 때문이라고 하였다.

표 2.1 매립지 토양의 용적밀도

<table>
<thead>
<tr>
<th>구분</th>
<th>과주</th>
<th>과주</th>
<th>성남</th>
<th>용인</th>
<th>인천</th>
<th>이천</th>
<th>이천동</th>
<th>평택</th>
<th>인천동</th>
<th>원창동</th>
<th>원창동</th>
</tr>
</thead>
<tbody>
<tr>
<td>분수리</td>
<td>두지리</td>
<td>하순동</td>
<td>고매리</td>
<td>경서동</td>
<td>모전리</td>
<td>상패동</td>
<td>산대동</td>
<td>196</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>용적밀도 (g/cm^3)</td>
<td>0.90</td>
<td>0.95</td>
<td>1.48</td>
<td>1.29</td>
<td>1.21</td>
<td>1.30</td>
<td>1.04</td>
<td>1.37</td>
<td>1.05</td>
<td>0.84</td>
<td></td>
</tr>
</tbody>
</table>

매립지내 토양수분함량은 주변 지형에 따라 다른 경향을 보인다고 하였는데 이는 주변에 야산, 기타 구조물로 둘러싸인 매립지보다 개방지역인 매립지의 경우 적사광선을 받기 쉽고, 매립지에서 방출되는 메탄, 이산화탄소 등 온실효과를 일으키는 가스 때문이라고 판단하였다. 지온 역시 토양 표면에서 일어나는 복사 때문에 주변 야산보다 상당히 높은 경향을 나타내 결국 식물의 발아와 뿌리 생육에 영향을 미칠 수 있다고 보고하였다.
표 2.2 매립지 토양의 토양수분함량

<table>
<thead>
<tr>
<th>구 분</th>
<th>파주</th>
<th>파주</th>
<th>성남 용인</th>
<th>인천</th>
<th>이천 동두천</th>
<th>경북</th>
<th>인천 원장동</th>
<th>원장동</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>분수리</td>
<td>두지리</td>
<td>하산운동</td>
<td>고매리</td>
<td>경서동</td>
<td>모전리</td>
<td>상패동</td>
<td>신대동</td>
</tr>
<tr>
<td>토양수분 함량(%)</td>
<td>8.59</td>
<td>10.64</td>
<td>13.03</td>
<td>15.50</td>
<td>4.63</td>
<td>17.87</td>
<td>7.59</td>
<td>22.40</td>
</tr>
<tr>
<td></td>
<td>20.79</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

토양수분의 경우, 파주 분수리, 성남 두지리, 인천 하산운동, 이천 고매리, 경북 경서동, 인천 원장동, 원장동의 토양수분 함량은 각각 8.59%, 10.64%, 13.03%, 15.50%, 4.63%, 17.87%, 7.59%, 22.40%로 나타났다. 일반적으로 조경식재를 위한 토양수분은 pH 5.0~7.0(中島康博, 1992)이므로 이와 비교해 보았을 때, 전기적으로 약간 높은 경향을 나타냈다.

표 2.3 매립지 토양의 토양산도

<table>
<thead>
<tr>
<th>구 분</th>
<th>파주</th>
<th>파주</th>
<th>성남 용인</th>
<th>인천</th>
<th>이천 동두천</th>
<th>경북</th>
<th>인천 원장동</th>
<th>원장동</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>분수리</td>
<td>두지리</td>
<td>하산운동</td>
<td>고매리</td>
<td>경서동</td>
<td>모전리</td>
<td>상패동</td>
<td>신대동</td>
</tr>
<tr>
<td>pH (H2O)</td>
<td>7.91</td>
<td>6.38</td>
<td>6.14</td>
<td>7.01</td>
<td>7.83</td>
<td>5.67</td>
<td>7.98</td>
<td>7.94</td>
</tr>
<tr>
<td></td>
<td>6.41</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

전기전도도의 경우, 전기전도도는 0.065dS·m⁻¹에서 0.436dS·m⁻¹의 범위로, 지역에 따라 상당한 차이가 있다고 보고하였으나 일반적으로 식재지 적정치(건설교통부, 1999)가 1.0dS·m⁻¹미만이므로 이에 비해 낮아 식물생육에 유해하지 않을 것으로 판단되었다.

표 2.4 매립지 토양의 전기전도도

<table>
<thead>
<tr>
<th>구 분</th>
<th>파주</th>
<th>파주</th>
<th>성남 용인</th>
<th>인천</th>
<th>이천 동두천</th>
<th>경북</th>
<th>인천 원장동</th>
<th>원장동</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>분수리</td>
<td>두지리</td>
<td>하산운동</td>
<td>고매리</td>
<td>경서동</td>
<td>모전리</td>
<td>상패동</td>
<td>신대동</td>
</tr>
<tr>
<td>EC (dS/m)</td>
<td>0.147</td>
<td>0.106</td>
<td>0.089</td>
<td>0.091</td>
<td>0.436</td>
<td>0.065</td>
<td>0.166</td>
<td>0.161</td>
</tr>
<tr>
<td></td>
<td>0.173</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
유기물 함량의 경우 0.45%에서 4.38%의 범위였다고 하였다. 일반적으로 식재지 적정치(건설교통부, 1999)가 0.3%이상이므로 이와 비교해 볼 때 인천시 원창동 매립지를 제외한 매립지에서 낮은 경향을 보였다.

표 2.5 매립지 토양의 유기물 함량

<table>
<thead>
<tr>
<th>구분</th>
<th>파주</th>
<th>파주</th>
<th>성남</th>
<th>용인</th>
<th>인천</th>
<th>이천</th>
<th>동두천</th>
<th>평택</th>
<th>인천</th>
<th>원창동</th>
<th>원창동</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM (%)</td>
<td>0.45</td>
<td>1.03</td>
<td>3.25</td>
<td>0.75</td>
<td>0.58</td>
<td>0.75</td>
<td>2.49</td>
<td>1.76</td>
<td>4.38</td>
<td>196</td>
<td>420</td>
</tr>
</tbody>
</table>

식물성장에 대한 비료 3요소 중의 하나인 전질소 함량(T-N)의 경우 매립지가 2차전이의 초기 단계이기 때문에 천이가 진행된 야산지역보다 질소의 축적이 작았다고 하였으며, 질소의 공급원으로서 식물, 대기 중의 질소침착(deposition), 토양 내 질소고정박테리아에 의한 산물 등이라고 하였다. 그러나 매립지에서는 침출수에 의해 암모니아디 형태로 질소를 공급받을 수 있다고 하였다.

표 2.6 매립지 토양의 전질소 함량

<table>
<thead>
<tr>
<th>구분</th>
<th>파주</th>
<th>파주</th>
<th>성남</th>
<th>용인</th>
<th>인천</th>
<th>이천</th>
<th>동두천</th>
<th>평택</th>
<th>인천</th>
<th>원창동</th>
<th>원창동</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-N (%)</td>
<td>0.059</td>
<td>0.077</td>
<td>0.118</td>
<td>0.055</td>
<td>0.143</td>
<td>0.054</td>
<td>0.117</td>
<td>0.116</td>
<td>0.126</td>
<td>0.093</td>
<td></td>
</tr>
</tbody>
</table>

표 2.7에는 매립지 토양의 치환성양이온 및 중금속 함량을 나타냈다. 이에 따르면 치환성양이온 함량의 경우 대체적으로 높은 경향을 나타냈는데 이는 매립지가스에 의해 지온과 기온이 상승하여 쓰레기의 부속이 진행되었기 때문이라고 해석하고 있다. 한편 지온과 기온의 상승은 많은 증발산을 초래할 가능성이 있으므로 이로 인해 식물이 수분스트레스를 받을 수도 있다고 하였다.

토양 중 중금속 함량의 경우 전체적으로 대조구인 야산의 토양보다 높은 경향을
보였으며, 지역간 차이도 심했다고 하였는데 이는 토양생성모양의 기원에 의하여 결정될 수 있어 지역간 차이가 나타나게 되었다고 하였다.

표 2.7 매립지 토양의 치환성양이온 및 중금속 함량

<table>
<thead>
<tr>
<th>구분</th>
<th>K (mg/kg)</th>
<th>Na (mg/kg)</th>
<th>Ca (mg/kg)</th>
<th>Mg (mg/kg)</th>
<th>Cd (mg/kg)</th>
<th>Cr (mg/kg)</th>
<th>Cu (mg/kg)</th>
<th>Pb (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>파주</td>
<td>111.0</td>
<td>6.31</td>
<td>1955</td>
<td>59.7</td>
<td>2.219</td>
<td>0.118</td>
<td>6.32</td>
<td>53.41</td>
</tr>
<tr>
<td>파주</td>
<td>184.4</td>
<td>12.36</td>
<td>1153</td>
<td>109.9</td>
<td>0.059</td>
<td>0.074</td>
<td>3.92</td>
<td>3.26</td>
</tr>
<tr>
<td>성남</td>
<td>123.0</td>
<td>6.05</td>
<td>1537</td>
<td>123.9</td>
<td>0.073</td>
<td>0.157</td>
<td>3.10</td>
<td>2.54</td>
</tr>
<tr>
<td>용인</td>
<td>90.2</td>
<td>15.95</td>
<td>1094</td>
<td>166.2</td>
<td>0.029</td>
<td>0.030</td>
<td>27.79</td>
<td>3.33</td>
</tr>
<tr>
<td>인천</td>
<td>138.9</td>
<td>33.43</td>
<td>1712</td>
<td>194.3</td>
<td>0.177</td>
<td>0.225</td>
<td>5.99</td>
<td>7.42</td>
</tr>
<tr>
<td>이천</td>
<td>152.6</td>
<td>9.99</td>
<td>381</td>
<td>85.6</td>
<td>0.004</td>
<td>0.027</td>
<td>3.57</td>
<td>9.34</td>
</tr>
<tr>
<td>동두천</td>
<td>177.2</td>
<td>15.11</td>
<td>2351</td>
<td>52.5</td>
<td>0.158</td>
<td>0.535</td>
<td>6.62</td>
<td>7.36</td>
</tr>
<tr>
<td>평택</td>
<td>230.9</td>
<td>24.08</td>
<td>2326</td>
<td>168.6</td>
<td>0.111</td>
<td>0.144</td>
<td>3.06</td>
<td>4.93</td>
</tr>
<tr>
<td>인천</td>
<td>122.4</td>
<td>29.91</td>
<td>1052</td>
<td>147.5</td>
<td>0.105</td>
<td>0.046</td>
<td>2.98</td>
<td>2.41</td>
</tr>
<tr>
<td>인천</td>
<td>125.0</td>
<td>42.01</td>
<td>1545</td>
<td>179.9</td>
<td>0.070</td>
<td>0.058</td>
<td>2.60</td>
<td>2.86</td>
</tr>
</tbody>
</table>

한편 이경재 등(2001)은 서울 난지도 쓰레기 매립지를 대상으로 한 연구에서 난지의 매립지 쓰레기류가 선별되지 않아 지하에서 유기물이 미생물에 의해 부식이 진행되고 그 과정에서 발생되는 '가스'와 발효열에 의한 식물의 피해가 예상되므로 온도차이 정도를 조사하기 위해 지온을 측정한 결과 쓰레기 부속이 진행되어 미생물활동에 의한 발열반응이 나타나고 있다고 보고하였다. 또한 대상지역의 경우 매립지 목재로 사용된 토양의 토성은 대부분 사질양토와 양질사토로 나타나 수목식재에 있어서 큰 문제가 되지 않을 것으로 판단하였으나 토양건밀도가 높고, 통기성이 불량할 뿐만 아니라 공극량이 매우 적어 수목생육에는 부적합한 것으로 판단하였다. 토양사상의 경우 토양 용적밀도가 높아 고성의 비율이 높았으며, 액상도 일반 산림토양에 비해 2배 이상 낮아 수목의 수분결핍 현상이 초래될 우려가 있다.
고 보고하였다. 이는 복토용 토사로 사용된 흙이 대부분 지하철공사장 심토에서 채취하여 공극량이 적고, 토양물리성이 나쁜 모래토양이었으며, 쓰레기 부속으로 인한 발열 때문에 토양수분의 결핍현상이 가중되었을 것으로 추정하였다. 토양산도의 경우 pH7이 넘는 알칼리성으로 나타나 수목식재시 생리장해를 일으키거나 고사할 우려가 많은 토양상태라고 하였다. 질소와 유효인산의 함량이 비교적 낮은 지역이 많았으며, 유기물 함량은 0.7~7.0%까지 다양하게 나타났으나 대부분 3.0%미만의 토양이어서 비교적 척박한 토양이 많았다고 하였다. 그러나 칼슘의 함량은 일반적인 산림토양에 비해 매우 높게 나타났으며, 이는 쓰레기에 건축공사 잔해물이 섞인 데 기인한 것으로 판단하였으며, 이로 인한 영양불균형 상태가 원소간 길항작용 등으로 수목생장에 나쁜 영향을 미칠 것으로 판단하고 있었다.
2.3 수도권매립지 주변 토양특성 파악

여기에서는 수도권매립지 주변 토양특성을 파악하기 위해 먼저 사례조사 대상지의 식생현황을 문헌연구와 현장조사를 통해 분석하고, 사례조사 대상지에 식재되어 있는 수목을 대상으로 수목활력도를 측정하여 식생성장 여건별로 대상지를 구분한 다음 구분된 대상지별로 토양특성을 조사한다.

2.3.1 대상지 현황

수도권매립지는 해안지역인 인천시 서구 검단동 일대에 위치한 쓰레기 매립장이다. 한편 수도권매립지 주변을 식생성장 여건에 따라 구분하기 위한 조사대상지인 제1매립장 제방 3~6단은 그림 2.3에 나타낸 바와 같이 2000년 10월 9년간의 매립이 종료되어, 현재 안정화공사가 마무리 단계에 있는 상황이다. 또한 식재공사를 위한 반입토사는 관급토사로 인천시, 서울시 및 경기도에서 반입되고 있는 것으로 조사되었다.

그림 2.3 제1매립장 현황도

한편 조사대상지인 제1매립지는 2004년 12월 안정화공사가 종료되면 본격적인 공원화사업이 계획되어 있어 ’05년 4월 현재도 지속적인 식재공사가 이루어지고 있
었다.

2004년 「수도권매립지 1000만그루 나무심기(3차년도) 100만그루 식재공사 실시 설계」보고서 등의 문헌조사와 현장답사를 통해 수집한 조사대상지의 식생현황은 다음과 같다.

제1매립지 제방 3단의 경우 중간 중간 억새가 자라고 있었으며, H2.5×W1.0 및 H3.0×W1.0 해송, H2.5×B6 산벚나무, H2.5×R8 자귀나무, H1.5×W0.3 무궁화 등이 열식 또는 군식되어 자라고 있었다.

그림 2.4 3단 식생현황(수도권매립지관리공사, 2004)

4단에는 H3.0×W1.0 해송이 일정 간격으로 식재되어 있었을 뿐 해송 이외의 수목은 식재되어 있지 않았다.

그림 2.5 4단 식생현황(수도권매립지관리공사, 2004)
5단에는 중간 중간 억제가 자라고 있었으며, H3.0×W1.0 해송, H2.5×B6 산벚나무, H1.2×W0.3 무궁화가 일정 간격으로 식재되어 있었다.

6단에는 H2.5×W1.0 해송, H2.0×B6 산벚나무, H1.2×W0.3 무궁화가 일정 간격으로 식재되어 있었으며, 제1매립장 제방 모두 식생대층은 60cm로 조성된 것으로 조사되었다.
2.3.2 식생성장 여건별 대상지 선정

2.3.2.1 선정방법

식생현황 조사를 마친 조사대상지를 식생성장 여건에 따라 구분하기 위해 각 단
에 고르게 식재되어 있는 해송을 대상으로 그림 2.8에 나타낸 바와 같은 수목활력
d측정기(Shigometer Model OZ-93)를 사용하여 수목활력도를 측정하여 해송의 생
육상태를 분석하였다.

수목활력도는 수목의 생육상태를 쉽게 비교할 수 있는 방법으로 삼림지역 수목
의 생장측정을 위해 일반적으로 사용되는 방법이다. 수목활력도는 전기저항치
(Electric Resistance)로 나타내며, 수목활력도와 전기저항치는 반비례한다. 예를 들 면 수목활력도 수치가 9ER이 어떤 지역의 평균치일 경우 수치가 7ER인 것이
11ER인 것보다 빨리 생육한다고 해석할 수 있다. 또한 수목활력도의 수치가 50ER
이상이면 수목이 손상되었다고 판단할 수 있다(Osmos Co., 1994). 낮은 전기저항치
는 상대적으로 수목의 활력이 높음을 나타내며, 따라서 수목의 생육상태가 양호하
d고 볼 수 있다.

그림 2.8 수목활력도 측정기(Shigometer Model OZ-93)

2.3.2.2 수목활력도 실험결과

제1매립지 제방 3~6단에 고르게 식재되어 있는 해송 중 30주를 무작위로 선정
하여 2반복으로 수목활력도를 측정한 결과 평균값 18.2ER, 범위 14.1~22.4ER을 얻
을 수 있었다. 이상과 같이 구한 평균값 18.2ER을 중심으로 평균값보다 높은 지역을 식생양호지, 평균값보다 낮은 지역을 식생불량지로 구분하였으며, 이미 수목이 고사한 후 묘목 등이 보식되어 있는 지역의 경우 식생불량지에 포함시켰다. 식생양호지의 경우 수목활력도가 평균 15.3ER, 범위 14.3 ~ 16.1ER이었으며, 식생불량지의 경우 수목활력도가 평균 21.4ER, 범위 20.4 ~ 22.2ER를 나타냈다.

표 2.8 대상지의 수목활력도

(단위 : ER)

<table>
<thead>
<tr>
<th>조사구</th>
<th>식생양호지</th>
<th>식생불량지</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.3</td>
<td>20.4</td>
</tr>
<tr>
<td>2</td>
<td>16.1</td>
<td>21.5</td>
</tr>
<tr>
<td>3</td>
<td>15.5</td>
<td>22.2</td>
</tr>
</tbody>
</table>

그러나 해송을 비롯한 수목의 생육상태는 본 조사대상지가 식재 경과기간이 2년 미만으로 짧았고, 분진, 해풍 등 주변 환경의 영향으로 식생양호지, 식생불량지를 불문하고 비교적 불량한 편이었다.

그림 2.9 식생양호지 현황
이상의 결과를 토대로 식생양호지는 그림 2.9에 나타낸 바와 같이 제1매립지 제방 4단에서 수목활력도 14.3ER과 15.5ER를 나타낸 H3.0×W1.0 해송이 식재된 2개 지역 및 5단에서 생육이 양호한 H2.5×B6 산벚나무가 식재된 1개 지역 등 총 3개 지역을 선정하였다.

한편 식생불량지는 그림 2.10에 나타낸 바와 같이 제1매립지 제방 4단과 5단에서 각각 수목활력도 22.2ER과 21.5ER를 나타낸 H3.0×W1.0 해송이 식재된 2개 지역 및 4단에 식재한 해송이 고사한 후 새로이 해송 묘목을 보식한 1개 지역 등 총 3개 지역을 선정하였다.

![그림 2.10 식생불량지 현황](image)

2.3.3 대상지역의 토양특성 파악

식재공사를 위한 반입되는 토사는 관급토사로 인천시, 서울시 및 경기도에서 반입된 것으로 식재지역의 위치에 따라서는 해풍 등의 영향 때문에 식생양호지와 불량지로 구분될 수도 있으므로 수목 식재예정지의 토양을 식생양호지 및 식생불량 지 토양과 함께 분석함으로써 각각의 특성을 비교해 보고자 하였다.

비교·분석을 위해 선정된 식재예정지는 그림 2.11에 나타낸 바와 같이 제1매립지 제방 5단에 조성된 3개 지역을 선정하였다.
한편 이들 각 대상지의 토양특성을 분석하기 위해 분석시료를 이물질이 포함되지 않도록 표면을 10cm이상 제거한 후 각각 3반복으로 채취하였다.

또한 위와 같이 식생성장 여건별로 구분한 식생양호지, 식생불량지, 식재예정지 등 대상지역의 토양특성을 파악하기 위해 실시한 토양 시료채취 및 조제, 토양물리 성, 화학성 분석방법, 그리고 이를 통해 얻어진 식생성장 여건별 토양특성은 다음과 같다.

2.3.3.1 토양 시료채취 및 조제

토양의 용적밀도와 삼상분석용 시료는 Daiki-1601 채토기를 이용하여 100cm³의 원통형 캔에 채취하였으며, 토양의 화학적 성질을 분석하기 위한 시료는 약 1kg의 토양시료를 채취하여 비닐봉지에 담아 실험실로 운반하였다.

실험실로 운반된 토양시료를 플라스틱 용기에 담아 열풍건조기를 사용하여 실험실에서 풍건시킨 후 고무망치로 홈 속에 섞인 작은 돌들이 부서지지 않도록 흔들어 리를 잘 부순 다음 40mesh(0.5mm)체와 10mesh(2mm)체를 통과시키며 수분이 흡수되지 않게 밀봉할 수 있는 비닐봉지에 넣어 토양물리성 및 화학성 분석용 시료로 사용하였다.
2.3.3.2 실험방법

40mesh(0.5mm)체와 10mesh(2mm)체를 통과한 시료를 대상으로 농촌진흥청 고시(1996-6호) 기준을 토대로 다음과 같은 방법에 따라 토양물리성 및 화학성(농촌진흥청, 1988; 농업과학기술원, 2000)을 분석하였다.

1) 토양물리성 실험
① 토성 : 미농무성(USDA)의 Hydrometer 측정법
 110℃ 건조기에서 18시간 이상 건조시킨 토양 50g을 5% Sodium hexametaphosphate ((NaPO₃)₆) 100㎖를 가한 후 18시간 이상 침적시키고 교반기로 5분간 교반시켰다. 분산된 시료를 1ℓ 메스실린터에 옮겨서 mess를 채우고 Hand stirrer를 이용하여 1분에 20회 상하로 교반시킨 후 Cylinder의 장시간을 기록한 다음 소요시간 간격으로 Hydrometer를 삽입하여 눈금을 읽어 점토 함량을 구하였다. Hydrometer 측정이 끝난 현탁액을 U.S. No.300번 체에 Wet sieving하여 물로 세척한 다음 증발 접시에 옮겨 건조기에서 건조한 후 모래 함량을 구하였다.
② 용적밀도, 토양삼상 : 건토중량법
 100cm³ 스텐레스 원통 캔을 이용하여 채취한 토양시료를 건조기에서 건조시킨 다음 건토중량을 측정하여 부피로 산출하였다.
 용적밀도는 토양의 건토중량을 측정하여 그 중량을 토양전체 용적으로 나누었다. 토양삼상은 토양의 건토중량을 토양입자밀도로 나누어 고상의 부피로 하였으며, 전체 부피에서 고상의 부피를 뺀 값을 공극의 부피로 하였다.
③ 포화투수계수 : 변수법
 100cm³ 스텐레스 원통 캔을 이용하여 채취한 토양시료를 물로 포화시킨 다음 일정 수두높이에서 시작하여 일정시간 후 수관에서 내려간 물의 높이를 측정하고, Darcy의 식을 사용해서 포화투수계수를 계산하였다.
④ 통기성 : 흡인법(-1/3bar)
 압력챔버인 다공질판(Pressure porous plate) 위에 고무링(6cm 직경, 1cm 높이)을 놓고 0.5mm체를 통과한 풍건토양 약 25g정도를 고무링에 붙고 관관하게 하였더. 물을 토양에 떨어지지 않게 조심하면서 다공질판에 부여 밑으로부터 고무링의 반중 스머들어 차게 한 다음 토양을 16시간정도 침적하였다. 토양의 세공까지 완전히 포화가 되면 과감의 물을 스폴로드로 뽑아내고 두경을 단아 공기압축기와 압력
계에 연결하여 -1/3bar의 압력을 48시간 정도 가하였다. 각 다궁절판에서 물이 나오지 않음이 확인되면 각 관에 붙은 추출관에 Pinch clamp를 잡고(이것은 압력을 빼 때 수분이 역류하는 것을 막기 위한 것이다) 압력을 충분히 뺀 다음 수분평량기에 옮겨 수분을 평량한 후 건토중량법으로 계산하였다.

2) 토양화학성 실험

① 토양산도 : pH meter 측정법
2mm체를 통과한 풍건토양 5g을 50ml 비이끼에 취하여 증류수 25ml를 가하고 때때로 유리봉으로 저어주면서 1시간 방치 후 pH meter(Horiba compact pH meter B-212)를 buffer용액으로 보정한 다음 60초 이내에 읽었다.
② 전기전도도 : EC meter 측정법
0.5mm체를 통과한 풍건토양 10g을 100ml 삼각플라스크에 넣고 50ml의 증류수를 가하여 30분간 진탕한 후 Toyo No.2 여과지로 여과한 다음 전기전도도 측정기(Horiba conductivity meter ES-14)를 이용하여 측정하였다.
③ 유기물 함량 : Tyurin 적정법
0.5mm체를 통과한 풍건토양 0.1~0.5g을 250ml 삼각플라스크에 취하고 10ml의 0.4N-중크롬산칼리황산혼합용액을 가한 다음 소형 여두를 덮고 200℃의 전열판에서 가열하였다. 기포가 발생할 때부터 정확히 5분간 끓인 다음 전열판으로부터 내렸다. 유수 중에서 냉각시켜 삼각플라스크에 물 약 150ml를 가하고 5ml의 85% H₃PO₄와 D.P.A.용액 10방울을 가한 다음 0.2N-FeSO₄(NH₄)₂SO₄・6H₂O 용액으로 적정하였으며, Blank test를 동시에 실시하였다.
④ 양이온치환용량 : Brown법
0.5mm체를 통과한 풍건토양 5g을 2개의 100ml 삼각플라스크에 취하고 각각 1N-NH₄OAc(pH7.0)와 1N-CH₃COOH(pH2.31) 50ml를 가하여 30분간 진탕한 후 현탁액을 100ml 비이끼에 옮겨 pH meter로 소수점 둘째자리까지 정확히 측정하여 Base 환산표에 의해 양이온치환용량을 구하였다.
⑤ 칼륨, 나트륨 : Atomic Absorption Spectrometer 측정법
양이온치환용량 측정시 사용한 침출액(1N-NH₄OAc)을 Toyo No.2 여과지로 여과하고 여액을 측정용 Plastic Cap에 취하여 Atomic Absorption Spectrometer(Perkin-ELMER
AAS AAAnalyst 800)로 측정하였다.

⑥ 칼슘, 마그네슘 : ICP 측정법
양이온치환용량 측정시 사용한 침출액(1N-NH₄OAc)을 Toyo No.2 여과지로 여과하고 여액을 ICP(Perkin-ELMER Optima 3100 XL)로 측정하였다.

⑦ 유효인산 : Lancaster법
0.5mm체를 통과한 풍건토양 5g을 100㎖ 삼각플라스크에 넣고 20㎖의 침출액을 가한 후 10분간 진탕한 다음 Toyo No.2 여과지로 여과하였다. 침출액과 표준액 3㎖를 각각 시험관에 넣고 물리브텐산 암모니움 황산화석 혼합액을 6㎖씩 넣은 후 0.4㎖의 1, 2, 4 amino naphtol-sulfonic acid 발색제를 가하여 30℃에서 30분간 발색시킨 다음 UV-Spectrophotometer (Shimadzu UV-1201)로 파장 720nm에서 측정하였다.

2.3.3.3 실험결과 및 고찰
제1매립지 제방 3~6단 중 상대적으로 수목의 생육이 양호한 3개 지역, 불량하거나 고사한 후 보식한 3개 지역 및 향후 식재할 목적으로 식생대층 조성 등이 이루어진 식재예정지 3개 지역을 대상으로 토양특성을 분석한 결과는 다음과 같다.

1) 물리적 특성
조사대상지 토양의 물리적 특성은 표 2.9에 나타낸 바와 같다.

표 2.9 조사대상지 토양의 물리적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>입도조성(%)</th>
<th>토성</th>
<th>용적밀도</th>
<th>포화투수계수</th>
<th>통기성</th>
<th>고상률</th>
<th>공극률</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>모래 미사 점토</td>
<td></td>
<td></td>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>식재예정지1</td>
<td>59 27 14</td>
<td></td>
<td>1.43</td>
<td>4.8×10⁻¹</td>
<td>28</td>
<td>54</td>
<td>46</td>
</tr>
<tr>
<td>식재예정지2</td>
<td>67 27 6</td>
<td></td>
<td>1.46</td>
<td>4.1×10⁻¹</td>
<td>30</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>식재예정지3</td>
<td>61 28 11</td>
<td></td>
<td>1.38</td>
<td>4.9×10⁻¹</td>
<td>29</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>식생양호지1</td>
<td>58 30 12</td>
<td></td>
<td>1.31</td>
<td>4.4×10⁻³</td>
<td>31</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>식생양호지2</td>
<td>63 28 9</td>
<td></td>
<td>1.59</td>
<td>4.6×10⁻³</td>
<td>39</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>식생양호지3</td>
<td>57 28 15</td>
<td></td>
<td>1.33</td>
<td>4.4×10⁻³</td>
<td>36</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>식생불량지1</td>
<td>55 37 8</td>
<td></td>
<td>1.26</td>
<td>2.5×10⁻³</td>
<td>33</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>식생불량지2</td>
<td>57 31 12</td>
<td></td>
<td>1.16</td>
<td>1.9×10⁻³</td>
<td>33</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>식생불량지3</td>
<td>58 30 12</td>
<td></td>
<td>1.11</td>
<td>1.1×10⁻³</td>
<td>38</td>
<td>42</td>
<td>58</td>
</tr>
</tbody>
</table>
① 토성
조사대상지의 입도조성은 모래함량 55~67%, 미사함량 27~37%, 점토함량 6~15% 범위로 토성은 사양토에 해당되었다. 따라서 우리나라 산림토양의 대부분이 사양토임을 감안한다면 토성만을 놓고 볼 때 대부분의 수종 생육이 가능하다고 볼 수 있다.

② 용적밀도
조사대상지의 용적밀도 평균은 식재예정지, 식생양호지, 식생불량지 순으로 낮게 나타났다. 그러나 전체 조사대상지 용적밀도 범위는 1.11~1.59g·cm⁻³을 나타내 우리나라 경기도 지역 산림토양의 B층 평균 1.05g·cm⁻³(정진현 등, 2002)보다 높고, 과수의 적정기준인 1.13g·cm⁻³(藤原俊六郎 등, 1996) 보다 대부분 높았는데 이는 중장비로 복토하면서 답압되었기 때문인 것으로 판단되었다. 따라서 매립지 최종복토층의 식생대층을 조성할 때에는 중장비 사용으로 인한 답압 등이 식생성장의 제한 인자로 작용하지 않도록 각별한 주의가 필요하다고 생각되었다.

![용적밀도 그래프](그림 2.12 조사대상지의 용적밀도)

③ 투수계수
조사대상지의 포화투수계수는 4.6x10⁻³~4.1x10⁻⁴ cm/sec⁻¹범위였으며, 식생양호지가 가장 높았고, 다음으로 식생불량지, 식재예정지 순이었다. 이를 조경설계기준(건...
설 교통부, 1999과 비교해 보면 조사대상지 모두 중급 \((10^{-3} \sim 10^{-4} \text{ cm} \cdot \text{sec}^{-1})\)에 해당 되었다.

<table>
<thead>
<tr>
<th></th>
<th>투수계수(cm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>식재예정지</td>
<td>5\times10^{-3}</td>
</tr>
<tr>
<td>식생양호지</td>
<td>4\times10^{-3}</td>
</tr>
<tr>
<td>식생불량지</td>
<td>3\times10^{-3}</td>
</tr>
<tr>
<td>식재예정지</td>
<td>2\times10^{-3}</td>
</tr>
<tr>
<td>식생양호지</td>
<td>1\times10^{-3}</td>
</tr>
<tr>
<td>식생불량지</td>
<td>0</td>
</tr>
<tr>
<td>식재예정지</td>
<td>1.8\times10^{-3}</td>
</tr>
<tr>
<td>식생양호지</td>
<td>4.5\times10^{-3}</td>
</tr>
<tr>
<td>식생불량지</td>
<td>4.6\times10^{-4}</td>
</tr>
</tbody>
</table>

그림 2.13 조사대상지의 투수계수

④ 통기성
조사대상지의 통기성은 28 ~ 39%범위로 식생양호지와 식생불량지가 가장 높았고, 다음으로 식재예정지 순이었으며, 양질사토인 토성 등의 영향으로 모두 양호한 수준을 나타냈다.

그림 2.14 조사대상지의 통기성
⑤ 고상률과 공극률
조사대상지의 고상률은 42~55%범위였으며, 평균은 식재예정지, 식생양호지, 식생불량지 순으로 낮게 나타났다. 한편 식재예정지를 제외하면 과수의 적정함량인 50%이하(藤原俊六郎 등, 1996)와 비슷한 수준이었다.

그림 2.15 조사대상지의 고상률

조사대상지의 공극률은 45~58%범위였으며, 평균은 식생불량지, 식생양호지, 식재예정지 순으로 낮게 나타났다.

그림 2.16 조사대상지의 공극률
2) 화학적 특성
조사대상지 토양의 화학적 특성은 표 2.10에 나타낸 바와 같다.

표 2.10 조사대상지 토양의 화학적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>CEC (cmol/kg)</th>
<th>Ex. Cation (cmol/kg)</th>
<th>Av. P2O5 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>식재예정지1</td>
<td>5.8</td>
<td>0.16</td>
<td>5</td>
<td>2</td>
<td>0.2 1.2 0.7 0.2</td>
<td>3</td>
</tr>
<tr>
<td>식재예정지2</td>
<td>5.5</td>
<td>0.14</td>
<td>5</td>
<td>1</td>
<td>0.3 1.1 0.6 0.1</td>
<td>2</td>
</tr>
<tr>
<td>식재예정지3</td>
<td>5.8</td>
<td>0.12</td>
<td>6</td>
<td>1</td>
<td>0.3 1.0 0.8 0.1</td>
<td>2</td>
</tr>
<tr>
<td>식생양호지1</td>
<td>5.8</td>
<td>0.11</td>
<td>5</td>
<td>1</td>
<td>0.2 2.4 0.5 0.1</td>
<td>9</td>
</tr>
<tr>
<td>식생양호지2</td>
<td>5.7</td>
<td>0.11</td>
<td>7</td>
<td>1</td>
<td>0.2 3.0 0.9 0.1</td>
<td>23</td>
</tr>
<tr>
<td>식생양호지3</td>
<td>8.4</td>
<td>0.15</td>
<td>4</td>
<td>1</td>
<td>0.4 6.8 1.3 0.1</td>
<td>58</td>
</tr>
<tr>
<td>식생불량지1</td>
<td>6.7</td>
<td>0.11</td>
<td>3</td>
<td>1</td>
<td>0.2 4.0 1.2 0.1</td>
<td>20</td>
</tr>
<tr>
<td>식생불량지2</td>
<td>6.4</td>
<td>0.11</td>
<td>3</td>
<td>1</td>
<td>0.2 4.5 1.4 0.1</td>
<td>14</td>
</tr>
<tr>
<td>식생불량지3</td>
<td>8.0</td>
<td>0.31</td>
<td>4</td>
<td>3</td>
<td>0.7 3.6 2.5 1.4</td>
<td>36</td>
</tr>
</tbody>
</table>

① 토양산도 (pH)
문헌조사에 의하면 조경 식재를 위한 토양산도는 pH 5.0 7.0(中島康博, 1992), 산림용 묘목 및 관상수의 토양개량목표는 pH 5.5 6.0(藤原俊六郎, 1996)으로 보고되어 있다. 이를 토대로 볼 때 조사대상지 토양산도는 특이하게 높았던 식생양호지3의 pH 8.4와 식생불량지3의 pH 8.0을 제외하면 수목이 생장하는데 있어선 양호한 조건이었다.
한편 조사대상지 토양산도 평균은 식생불량지, 식생양호지, 식재예정지 순으로 낮게 나타났다.
식생예정지 식생양호지 식생불량지

그림 2.17 조사대상지의 토양산도

② 전기전도도(EC)
조사대상지 전기전도도 평균은 식생불량지, 식재예정지, 식생양호지 순으로 낮게 나타났다. 한편 조경설계기준(건설교통부, 1999)에는 전기전도도 1.0dS·m⁻¹미만을 수목생육에 크게 유해하지 않는 수준으로 보고 있는데 이와 비교해 볼 때 조사대상지의 전기전도도는 모두 식물생육에 크게 유해하지 않은 것으로 판단되었다.

식재예정지 식생양호지 식생불량지

그림 2.18 조사대상지의 전기전도도
③ 유기물 함량
조사대상지의 유기물 함량은 식재예정지와 식생양호지가 서로 유사하였으며, 이 들에 비해 식생불량지가 약간 낮은 수준을 나타냈다.
그러나 조사대상지 모두 조경수목의 식재를 위한 적정범위인 30g·kg⁻¹의 약 1/5~1/10정도로 매우 낮은 함량이었다.

![유기물 함량 그래프]

그림 2.19 조사대상지의 유기물 함량

④ 양이온치환용량
조사대상지의 양이온치환용량은 1~3cmol·kg⁻¹범위로 조경수목의 식재를 위한 최소한의 함량인 6cmol·kg⁻¹에 비해 매우 낮은 함량이었다.

⑤ 치환성칼륨 함량
조사대상지의 치환성칼륨 함량은 0.2~0.7cmol·kg⁻¹범위로 조사대상지간 차이는 거의 없었으나 조경설계기준(건설교통부, 1999) 하급에 해당하는 0.6cmol·kg⁻¹보다 대부분 낮은 수준이었다.

⑥ 치환성칼슘 함량
조사대상지의 치환성칼슘 함량은 1.0~6.8cmol·kg⁻¹범위였으며, 평균은 식생양호지가 가장 높았고, 다음으로 식생불량지, 식재예정지 순이었다. 조경설계기준(건설 교통부, 1999)과 비교해 보면 전체적으로 식재예정지가 하급, 식생양호지와 식생불량지가 중급에 해당되었다.
식재예정지 식생양호지 식생불량지
치환성칼슘 함량(cmol/kg)

그림 2.20 조사대상지의 치환성칼슘 함량

⑦ 치환성나트륨 함량
조사대상지의 치환성나트륨 함량은 식생불량지3의 1.4cmol·kg\(^{-1}\)을 제외하면 0.1 ~ 0.2cmol·kg\(^{-1}\) 범위로 낮은 수준을 보여 치환성나트륨으로 인한 장해는 없을 것으로 예상되었다.

⑧ 치환성마그네슘 함량
조사대상지의 치환성마그네슘 함량은 0.5 ~ 2.5cmol·kg\(^{-1}\)범위로 조경설계기준(건설교통부, 1999)과 비교해 보면 대부분 중급(0.6 ~ 3.0cmol·kg\(^{-1}\))에 해당되었다.

⑨ 유효인산 함량
조사대상지의 유효인산 함량은 3 ~ 58mg·kg\(^{-1}\)범위였으며, 평균은 식생양호지, 식생불량지, 식재예정지 순으로 낮게 나타났다. 또한 조경설계기준(건설교통부, 1999)과 비교해 보면 대부분 하급(100mg·kg\(^{-1}\)미만)에 해당되었다.
2.3.4 식생성장의 제한인자

윤근영(1997)은 일반적으로 수목의 고사 및 생육불량원인은 명확히 규명하기 곤란하나 수목 생장의 주 영향요인으로 토성, 질소, 지상부의 온도와 풍속 및 공해, 수목의 품질, 수목운반 및 식재방법 부적합에 의해 뿌리건조 등이 유발되는 식재상의 문제를 지적하였고, 이에 후에는 보수력 부족에 의한 수분스트레스가 가장 큰 고사원인이며, 잡초도 영양과 수분을 앗아가 수목고사를 유발한다고 하였다. 또한 고사 및 생육불량원인을 식재공사단계별로 지적하고 주의사항을 열거하였는데 식재기반 조성에 있어서는 토양경화, 양분결핍, 독성물질의 존재, 토양물리성 악화, 배수불량 등의 문제를 지적하였으며, 수목준비에서 식재단계까지는 부적합한 수목 굴취와 수목품질 불량, 뿌리분노출과 뿌리의 손상 및 협소한 식재구덩이 크기 등이 문제가 되고, 식재 후의 조치 및 관리에서는 잡초, 배수불량, 건조, 영양결핍 등과 수목지지재료의 관리소홀, 인위적 훼손, 잔디기계의 수간피해 그리고 특정 지역과 특정 수목의 경우 병충해, 공해, 염해 등이 있다고 하였다.

한편 Harris(1983)는 수목 고사 원인을 토양경화, 기계적 피해, 가스 피해, 염분 피해, 공해, 낮은 토양산도의 피해 등으로 파악하였고, 이러한 원인에 대한 해결책으로 수목 주변의 아스팔트 제거, 다져진 토양을 분쇄 및 개방, 관수, 수목외과수술, 시비 등의 필요하다 하였으며, 시공단계에서는 식재구덩이를 가능한 크게 하고, 토양구조를 보전하고, 다져지는 것을 방지하며, 모든 종류의 오염물질로부터 토양
을 보호해야 하고, 토양생물의 활동을 위해 적당한 지피식물의 심을 것을 추천하였 다.

이상의 내용을 정리해 보면 일반적으로 식물은 식물 자체의 유전적 요인과 식물
이 생육되고 있는 주변 환경적 요인 등에 영향을 받으며 자라게 되며, 이 중 환
경적 요인은 크게 토양요인, 기상요인, 그리고 생물적 요인으로 구분할 수 있고, 또
한 주요 토양요인으로서는 토양산도, 무기염류의 함량, 수분함량, 유기물 함량, 그
리고 토양의 물리적 성질 등, 기상요인으로서는 일사량, 일조시간, 습도, 온도, 강우
량, 풍속 등, 생물적 요인으로서는 병충해의 발생 등을 들 수 있다. 따라서 식물의
생장이 불량하거나 또는 식물이 고사한다는 것은 위에 열거한 각 요인이 단독으로
또는 복합적으로 식물성장에 영향을 미친 결과라고 생각되며, 이러한 결과를 초래
하는 인자를 식생성장의 제한인자라 할 수 있다.

한편 앞서 구한 식생양호지와 식생불량지의 토양특성을 그림 2.22에 나타낸 바와
같이 조경설계기준(건설교통부, 1999) 토양평가등급 중 중급이상의 기준을 적용하
여 분석해 본 결과 두 지역간 토양특성은 유사한 경향을 나타냈으며, 특히 두 지역
모두 토양물리성보다 토양화학성이 매우 척박한 상태라는 것을 알 수 있었다.

그림 2.22 식생양호지와 식생불량지의 토양특성 비교
또한 이들 결과를 앞서 언급한 매립지 토양특성(김기대, 2001; 이정재 등, 2001)의 항목별 평균치와 비교해 본 결과 용적밀도의 경우 평균치 1.14g/cm3에 비해 식생양호지(1.41g·cm$^{-3}$), 식생불량지(1.18g·cm$^{-3}$) 모두 높았으며, 토양산도의 경우 평균치 pH7.0에 비해 식생양호지(pH6.6)는 낮았고, 식생불량지(pH7.0)는 유사한 경향을 각각 나타냈다. 전기전도도의 경우 평균치 0.16dS·m$^{-1}$에 비해 식생양호지(0.12dS·m$^{-1}$)는 낮았고, 식생불량지(0.18dS·m$^{-1}$)는 높은 경향을 나타냈다. 그 밖에 유효인산을 제외한 유기물 함량, 치환성양이온 등은 평균치가 식생양호지, 식생불량지보다 높은 경향을 나타냈다.

이에 본 연구에서는 식생성장 여건별 토양특성을 분석하여 다음과 같은 식생성장 제한인자를 얻을 수 있었다.

첫째, 토양물리성 중에서는 식재기반 조성시 중장비 등의 사용으로 인한 답압으로 매우 높은 용적밀도를 들 수 있다. 앞서 기술한 바와 같이 조사대상지의 용적밀도는 1.11~1.59g·cm$^{-3}$범위로 우리나라는 경기도 지역 산림토양의 B층 평균 1.05g·cm$^{-3}$(정진현 등, 2002)보다 높았고, 과수의 적정기준인 1.13g·cm$^{-3}$(藤原俊六郎 등, 1996)보다도 대부분 높았다. 일반적으로 다져진 성토지반의 고결현상은 식물의 근계 발달을 저해하므로 결국 식물의 생육불량을 초래하게 된다.

둘째, 토양화학성 중에서는 식재기반 조성시 산호 또는 척박한 객토재의 사용으로 인한 매우 낮은 유기물함량 및 양이온치환용량을 들 수 있다. 먼저 유기물함량의 경우 조사대상지 모두 조경수목의 식재를 위한 적정범위인 30g·kg$^{-1}$의 약 1/5~1/10정도였다. 일반적으로 토양유기물은 질소성분의 유실을 막아주며, 양이온치환용량을 증가시킨다. 또한 수분흡수능력이 커서 토양의 보수력 증진에 기여하며, 산과 알칼리에 대한 완충능력이 있고, 토양의 구조를 안정하게 하고 자체에 양분을 보유하고 있어 양분의 저장과 역할을 하며, 유효인산의 고정을 막아 식생성장에 도움을 주게 되는데 유기물 함량이 낮다는 것은 이와 같은 기능을 할 수 없다는 것을 의미한다. 다음으로 양이온치환용량의 경우 조사대상지의 모두 1~3cmol·kg$^{-1}$범위로 조성수목의 식재를 위한 최소한의 함량인 6cmol·kg$^{-1}$에 비해 매우 낮은 수준이었다. 일반적으로 양이온치환용량이 큰 토양은 일정량의 토양 안에 영양분인 치환성 양이온 등이 많다는 의미이므로 토양이 비옥하면 양이온치환용량은 증가한다. 또한 비료를 공급했을 때의 영양분을 토양이 보유하여 식물에게 공급하므로 시비의 효
율도 증진시킨다. 따라서 양이온치환용량이 낮다는 것은 이와 같은 기능을 할 수 없다는 것을 의미한다.

그러나 위에서 살펴본 식생성장의 제한인자는 식생성장 여건별로 구분한 식생양호지, 식생불량지, 식재예정지 등 조사대상지 공통적인 경향으로 당초 목적한 식생성장 여건별 식생성장 제한인자의 차는 확인할 수 없었다.

이러한 경향에 대해 김기대(2001)는 공통적인 매립지의 생태학적 특이사항이라고 하였으며, 우선적으로 매립지 토양의 척박함에 기인한다고 보고하였다. 물론 토양의 조성은 어느 토양으로 복토를 하였는지에 따라 토질, 토성, 토양의 화학적 특성 등의 차이가 나게 마련이다. 이와 더불어 매립지의 독특한 오염된 환경, 다시 말해 메탄을 포함한 매립지 가스의 방출 등을 들었다. 매립지 가스의 경우 토양 내 산소층을 대체하여 무산소층으로 만들어서 식물 뿌리 생장을 저해하고, 온실효과에 의한 기온 상승을 통해 식생에 변화를 미치게 된다고 보고하였다.

한편 Gilman et al.(1981)은 토양계에 존재하는 매립지 가스, 토양수분의 부족과 암모니아, 질, 망간, 아연, 구리의 함량 증가 등의 환경요인들이 본의 생장에 많은 영향을 미친다고 보고하였다. 또한 쓰레기 매립지의 식재 후 식생성장의 제한인자로 많이 거론되고 있는 것은 배수불량, 매립토사불량, 최소 성토높이 부족, 토양유기물 부족, 토양건조, 배식밀도 불량 등이 있다고 보고되어 있다(대한주택공사 주택연구소, 1995).

이와 더불어 현 수도권매립지가 해안에 인접한 지역에 위치하고 있는 관계로 바다로부터의 강풍, 조풍, 비염 등의 영향을 받고 있을 것으로 예상된다.

이상에서 살펴본 바와 같이 현 수도권매립지내 식생성장 환경요인들이 토양특성 이외에도 매립지 가스, 매립기반경화, 배수불량, 기상특성 등 다양한 제한인자가 종합적으로 영향을 미친 결과라고 판단된다.

따라서 본 결과를 토대로 건설발생토의 개량목표치를 설정한다는 것은 무의미한 일이라 판단하고 문헌조사 등을 통해 건설발생토의 개량목표치를 설정토록 하였다.

2.4 식생대층별 개량목표치 설정

건설발생토의 식생대층별 개량목표치 설정에 앞서 먼저 일반적인 식생대층 조성 및 정비에 대해 살펴보면, 식생대층 다시 말해 식재기반은 식물을 식재하는 것을
목적으로 하는 토층으로서 식물의 뿌리가 지장없이 신장하고 수분과 양분을 흡수할 수 있는 조건을 갖추고 있어야 한다. 또한 배수층이 있는 경우에는 이것을 포함한다. 그래서 식재기반은 유효토층과 하층지반인 배수층으로 구분된다.

한편 유효토층은 다시 상층과 하층으로 구분된다. 상층은 세사(細砂)이며, 양분과 부식을 충분히 포함하고, 부드러우며, 투수성이 양호한 토층을, 하층은 뿌리가 신장하는 것이 가능하고 투수성이 양호한 토층을 말한다. 따라서 유효토층은 표 2.11과 같이 식재규격에 따른 두께를 갖추어야 하는 것이 일반적이다.

표 2.11 식재 식물 규격별 유효토층 두께

<table>
<thead>
<tr>
<th>구분</th>
<th>교목</th>
<th>관목</th>
<th>잔디/초화류</th>
</tr>
</thead>
<tbody>
<tr>
<td>수고</td>
<td>12m이상</td>
<td>7 ~ 12m</td>
<td>3 ~ 7m</td>
</tr>
<tr>
<td>유효토층 상층</td>
<td>60cm</td>
<td>60cm</td>
<td>40cm</td>
</tr>
<tr>
<td>유효토층 하층</td>
<td>40 ~ 90cm</td>
<td>20 ~ 40cm</td>
<td>20 ~ 40cm</td>
</tr>
</tbody>
</table>

자료: 조우, 2000, 인천시 해안매립지 녹지조성 기법개발 연구, 인천발전연구원.

식재기반 조성목적은 식재식 토양조건을 정확히 파악하여 식재에 불량한 내용을 밝히고, 식물의 생육이 양호하도록 조성목표를 설정하고, 그것을 실현하기 위한 방법을 제시하는 것이다. 따라서 표 2.12와 같이 물리적 그리고 화학적인 식재기반 성립조건을 만족시키도록 하는 것이라고 할 수 있다.

표 2.12 식재기반 성립조건

<table>
<thead>
<tr>
<th>물리적 조건</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- 투수성이 양호하고, 상층과 하층의 경계부에 물이 정체하지 않을 것</td>
<td>- 토양경도가 적당할 것</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 적당한 보수성이 있을 것</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>화학적 조건</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- 산도가 적당할 것</td>
<td>- 식물생육에 장해를 주는 유해물질을 함유하고 있지 않은 것</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 어느 정도 이상의 양분을 함유하고 있을 것</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
또한 식재기반 성립조건 중에서 식재기반 조성시 우선적으로 고려되어야 할 순위를 정하자면 다음과 같다.

첫째, 유효토층에서 투수성이나 토양경도와 같은 토양물리성이 양호할 것(유효토층 하부에 배수층이 있는 경우에는 이 부분에서 배수성이 양호하거나 암거 등에 의한 배수가 가능할 것)과 더불어 토양산도가 적정범위일 것, 유해물질이 존재하지 않은 것 등이다.

둘째, 양분이 적당할 것으로 사토 등 특수토양을 제외하면 녹화식물에 있어서 양분은 식재할 당시 반드시 필요로 하는 것은 아니고, 환착 후 근계의 발달과 더불어 흡수되며, 또한 관리단계에서 보충할 수도 있으므로 최우선 조건으로 취급하지 않는다.

셋째, 적당한 보수성을 지닐 것으로 식재 식물과 보수성의 관계는 학술적으로 충분히 검증되지 않는 부분도 많으며, 또한 특수한 경우를 제외하면 관리단계에서 관수시설 설치로 대응이 가능하므로 식재기반 조성시 우선순위로서는 하위로 취급될 수 있다.

한편 앞서 살펴본 바와 같이 수도권매립지 주변을 식생성장 여건에 따라 구분하고, 식생성장 여건별 토양특성을 조사·분석하여 식생토사로서 갖추어야 할 특성과 제한인자를 파악한 결과 첫째, 토양물리성 중에서는 식재기반 조성시 중장비 등의 사용으로 인한 답압으로 매우 높은 용적밀도를 들 수 있으며, 둘째, 토양화학성 중에서는 식재기반 조성시 산호 또는 척박한 객토재의 사용으로 인한 매우 낮은 유기물 함량 및 양이온치환용량을 들 수 있다.

그러나 식생성장의 제한인자는 식생성장 여건별로 구분한 식생양호지, 식생불량지, 식재예정보다 조사대상지 공동적인 경향으로 당초 목적한 식생성장 여건별 식생성장 제한인자의 차는 확인할 수 없었다.

이것은 현 수도권매립지내 식생성장 환경여건이 토양특성 이외에도 매립지 가스, 매립기반환경, 배수불량, 기상특성 등 다양한 제한인자가 종합적으로 영향을 미친 결과라고 판단된다. 따라서 본 결과를 토대로 건설발생토의 개량목표치를 설정한다는 것은 무의미한 일이라 판단하여 앞서 기술한 식재기반 성립조건 및 조성목표 등을 토대로 등급별로 작성된 국내외 기설 식재기반조성 및 정비를 위한 토양평가 항목 및 평가기준에 준해 건설발생토의 개량목표치를 설정토록 한다.
를 위해 국내외 기설 식재기반조성 및 정비를 위한 토양평가항목 및 평가기준
에 대한 문헌조사를 통해 토양특성 각 항목별로 다음과 같이 정리하여 보았다.

토양특성 각 항목별로 언급하기에 앞서 이규석 등(2003)이 제안한 평가기준에 대
해 언급하면 일반적으로 상급은 수목의 경우 왕성한 생육을 보이며, 생육이 빠르
고, 잎의 경우 엽량이 많고, 색과 광택이 양호한 수준을 의미한다.

중급은 수목의 경우 정상적으로 생육하고, 이상 현상은 보이지 않으며, 잎의 경
우 엽량이 조금 적고, 엽형, 색, 광택, 낙엽 등이 모두 정상적인 수준을 가리킨다.

하급은 수목의 경우 생육이 불량하고, 이상 현상이 명확히 확인되며, 잎의 경우 엽량이 적고, 엽형, 색 등이 불량하며, 조기 낙엽이 지는 수준을 말한다.

끝으로 불량은 수목의 경우 별로 생육하지 않고, 마르고 처지는 등 회복의 징표
가 보이지 않으며, 잎의 경우 엽량이 아주 적고, 엽형, 색이 이상 징후를 나타내며,
조기 낙엽이 현저한 수준을 가리킨다.

또한 조경설계기준(건설교통부, 1999)의 식제기반 토양평가등급에 따르면 토양평
가등급의 적용기준은 “식물의 생육환경이 열악한 매립지, 인공지반 위에 조성되는
식재기반이나 담압의 피해가 우려되는 곳의 토양은 「중급」 이상의 토양평가등급
을 적용한다”라는 것에 준해 이 기준을 중심으로 토양특성 각 항목별로 다음과 같
이 설정토록 한다.

2.4.1 토양특성 항목별 개량목표치 설정

2.4.1.1 투수계수의 개량목표치 설정

투수계수의 경우 표 2.13에 나타낸 바와 같이 문헌에 따라 약간의 차이는 있지만
d대체적으로 10^{-3}\text{cm} \cdot \text{sec}^{-1} 내지 10^{-4}\text{cm} \cdot \text{sec}^{-1}이상이 중급이상 수준이었다. 따라서 본
연구에서는 투수계수의 경우 10^{-4}\text{cm} \cdot \text{sec}^{-1}이상을 건설발생토의 개량목표치로 설정
하였다.

2.4.1.2 공극률의 개량목표치 설정

공극률의 경우 표 2.14에 나타낸 바와 같이 문헌에 따라 차이가 심해 50\% 내지
70\%이상이 중급이상 수준이었다. 따라서 본 연구에서는 공극률의 경우 50\%이상을
건설발생토의 개량목표치로 설정하였다.
표 2.13 투수계수의 평가기준

(단위 : cm/sec)

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*1</td>
<td>10⁻³이상</td>
<td>10⁻³~10⁻⁴</td>
<td>10⁻⁴~10⁻⁶</td>
<td>10⁻⁶미만</td>
</tr>
<tr>
<td>B*2</td>
<td>10⁻¹~10⁻²</td>
<td>10⁻²~10⁻⁴</td>
<td>10⁻⁴~10⁻⁶</td>
<td>10⁻⁶이하</td>
</tr>
<tr>
<td>C*3</td>
<td>10⁻²이상</td>
<td>10⁻²~10⁻³</td>
<td>10⁻³~10⁻⁴</td>
<td>10⁻⁴이하</td>
</tr>
<tr>
<td>D*4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

C*3 : 日本造園学会, 2000, 緑化事業の植栽基盤整備マニュアル.
D*4 : 日本緑化センター, 1999, 植栽基盤整備技術マニュアル

표 2.14 공극률의 평가기준

(단위 : %)

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*1</td>
<td>60이상</td>
<td>60~50</td>
<td>50~40</td>
<td>40미만</td>
</tr>
<tr>
<td>B*2</td>
<td>80이상</td>
<td>80~70</td>
<td>70~60</td>
<td>60이하</td>
</tr>
<tr>
<td>C*3</td>
<td>80이상</td>
<td>80~50</td>
<td>50~40</td>
<td>40이하</td>
</tr>
<tr>
<td>D*4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2.4.1.3 토성 및 토양산도의 개량목표치 설정

토성의 경우 사양토~양토가 중급이상의 수준이었다. 따라서 본 연구에서는 토성의 경우 사양토~양토를 건설발생토의 개량목표치로 설정하였다.

한편 토양산도는 표 2.15에 나타낸 바와 같이 중급이상의 경우 조경설계기준(건설교통부, 1999)이 pH5.5~7.0인데 비해 다른 기준은 pH4.5~8.0이었다. 따라서 중급별 범위를 포함한 향후 연구가 필요하다고 판단되며, 본 연구에서는 자문위원들의 의견을 종합하여 pH6.0~6.5로 설정하게 되었다.
표 2.15 토양산도의 평가기준

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.0~6.5</td>
<td>5.5~6.0</td>
<td>4.5~5.5</td>
<td>4.5이만</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5~7.0</td>
<td>7.0~8.0</td>
<td>8.0이상</td>
</tr>
<tr>
<td>B</td>
<td>5.6~6.8</td>
<td>4.5~5.6</td>
<td>3.5~4.5</td>
<td>3.5이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.8~8.0</td>
<td>8.0~9.5</td>
<td>9.5이상</td>
</tr>
<tr>
<td>C</td>
<td>5.6~6.8</td>
<td>4.5~5.6</td>
<td>3.5~4.5</td>
<td>3.5이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.8~8.0</td>
<td>8.0~9.5</td>
<td>9.5이상</td>
</tr>
<tr>
<td>D</td>
<td>5.6~6.8</td>
<td>4.5~5.5</td>
<td>4.5이하</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.9~8.0</td>
<td>8.0이상</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.4.4 전기전도도의 개량목표치 설정

전기전도도의 경우 대체적으로 1.0dS・m⁻¹이하하면 중급이상 수준을 나타내고 있었다. 따라서 본 연구에서는 전기전도도의 경우 1.0dS・m⁻¹이하를 건설발생토의 개량 목표치로 설정하였다.

표 2.16 전기전도도의 평가기준

(단위 : dS/m)

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.2미만</td>
<td>0.2~1.0</td>
<td>1.0~1.5</td>
<td>1.5이상</td>
</tr>
<tr>
<td>B</td>
<td>0.2이하</td>
<td>0.2~1.0</td>
<td>1.0~1.5</td>
<td>1.5이상</td>
</tr>
<tr>
<td>C</td>
<td>0.1~0.2</td>
<td>0.2~0.5</td>
<td>0.5~1.5</td>
<td>1.5이상</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.0~9.5</td>
<td>0.2이하</td>
</tr>
<tr>
<td>D</td>
<td>0.2이하</td>
<td>0.2~1.0</td>
<td>1.0이상</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.4.5 양이온치환용량의 개량목표치 설정

양이온치환용량의 경우 문헌자료 모두 6cmol・kg⁻¹이상이 중급이상의 수준이었다.
또한 모두 불량 등급은 설정되어 있지 않았다. 따라서 본 연구에서는 양이온치환용량의 경우 6cmol・kg$^{-1}$이상을 건설발생토의 개량목표치로 설정하였다.

표 2.17 양이온치환용량의 평가기준

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>20이상</td>
<td>20~6</td>
<td>6미만</td>
<td>-</td>
</tr>
<tr>
<td>B2</td>
<td>20이상</td>
<td>20~6</td>
<td>6이하</td>
<td>-</td>
</tr>
<tr>
<td>C3</td>
<td>20이상</td>
<td>20~6</td>
<td>6이하</td>
<td>-</td>
</tr>
<tr>
<td>D4</td>
<td>20이상</td>
<td>20~6</td>
<td>6이하</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.4.6 유효인산의 개량목표치 설정

유효인산의 경우 앞선 양이온치환용량과 마찬가지로 문헌자료 모두 100mg・kg$^{-1}$이상이 중급이상의 수준이었으며, 또한 모두 불량 등급은 설정되어 있지 않았다. 따라서 본 연구에서는 유효인산의 경우 100mg・kg$^{-1}$이상을 건설발생토의 개량목표치로 설정하였다.

표 2.18 유효인산의 평가기준

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>200이상</td>
<td>200~100</td>
<td>100미만</td>
<td>-</td>
</tr>
<tr>
<td>B2</td>
<td>200이상</td>
<td>200~100</td>
<td>100이하</td>
<td>-</td>
</tr>
<tr>
<td>C3</td>
<td>200이상</td>
<td>200~100</td>
<td>100이하</td>
<td>-</td>
</tr>
<tr>
<td>D4</td>
<td>200이상</td>
<td>200~100</td>
<td>100이하</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.4.7 유기물 함량의 개량목표치 설정

유기물 함량의 경우 두 문헌은 기준이 설정되어 있지 않았으며, 기준이 설정되어 있는 문헌에서는 30g・kg$^{-1}$이상이 중급이상의 수준이었다. 따라서 본 연구에서는 유
기물 함량의 경우 30g·kg⁻¹이상을 건설발생토의 개량목표치로 설정하였다.

표 2.19 유기물 함량의 평가기준

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*¹</td>
<td>50이상</td>
<td>50 ~ 30</td>
<td>30미만</td>
<td>-</td>
</tr>
<tr>
<td>B*²</td>
<td>50이상</td>
<td>50 ~ 30</td>
<td>30이하</td>
<td>-</td>
</tr>
<tr>
<td>C*³</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D*⁴</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.4.8 치환성칼륨 함량의 개량목표치 설정

치환성칼륨 함량의 경우 문헌자료 모두 0.6cmol·kg⁻¹이상이 중급이상의 수준이었다. 또한 모두 불량 등급은 설정되어 있지 않았다. 따라서 본 연구에서는 치환성칼륨 함량의 경우 0.6cmol·kg⁻¹이상을 건설발생토의 개량목표치로 설정하였다.

표 2.20 치환성칼륨 함량의 평가기준

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*¹</td>
<td>3.0이상</td>
<td>3.0 ~ 0.6</td>
<td>0.6미만</td>
<td>-</td>
</tr>
<tr>
<td>B*²</td>
<td>3.0이상</td>
<td>3.0 ~ 0.6</td>
<td>0.6이하</td>
<td>-</td>
</tr>
<tr>
<td>C*³</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D*⁴</td>
<td>3.0이상</td>
<td>3.0 ~ 0.6</td>
<td>0.6이하</td>
<td>-</td>
</tr>
</tbody>
</table>

2.1.4.9 치환성칼슘 함량의 개량목표치 설정

치환성칼슘 함량의 경우 문헌에 따라 약간의 차이가 있었으나 0.6cmol·kg⁻¹ 또는 2.5cmol·kg⁻¹이상이 중급이상 수준이었다. 따라서 본 연구에서는 치환성칼슘 함량의 경우 2.5cmol·kg⁻¹이상을 건설발생토의 개량목표치로 설정하였다.
표 2.21 치환성칼슘 함량의 평가기준

(단위 : cmol/kg)

<table>
<thead>
<tr>
<th>구분</th>
<th>상급</th>
<th>중급</th>
<th>하급</th>
<th>불량</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*1</td>
<td>5.0이상</td>
<td>5.0~2.5</td>
<td>2.5미만</td>
<td>-</td>
</tr>
<tr>
<td>B*2</td>
<td>3.0이상</td>
<td>3.0~0.6</td>
<td>0.6이하</td>
<td>-</td>
</tr>
<tr>
<td>C*3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D*4</td>
<td>3.0이상</td>
<td>3.0~0.6</td>
<td>0.6이하</td>
<td>-</td>
</tr>
</tbody>
</table>

2.4.2 설정 개량목표치 종합

토양특성 항목별로 정리한 개량목표치를 토대로 표 2.22에 나타낸 바와 같은 유효토층의 식생토사로 활용시 건설발생토의 개량목표치를 설정하였다. 이를 살펴보면 먼저 투수성의 경우 포화투수계수를 측정하여 판단토록 하였으며, 개량목표치는 \(10^{-4} \text{cm} \cdot \text{sec}^{-1} \) 이상으로 하였다. 다음으로 공극률은 50%이상, 토성은 사양토～양토로 하였다. 다음으로 토양산도는 pH6.0～6.5, 전기전도도는 1.0dS·m^{-1} 미만, 양이온치환용량은 6cmol·kg^{-1} 이상, 유효인산은 100mg·kg^{-1} 이상, 토양유기물은 30g·kg^{-1} 이상, 치환성칼륨과 치환성칼슘은 각각 0.6cmol·kg^{-1} 이상, 2.5cmol·kg^{-1} 이상으로 설정하였다.

표 2.22 유효토층의 식생토사로 활용시 건설발생토의 개량목표치

<table>
<thead>
<tr>
<th>항목</th>
<th>개량목표치</th>
<th>항목</th>
<th>개량목표치</th>
</tr>
</thead>
<tbody>
<tr>
<td>투수계수</td>
<td>(10^{-4} \text{cm/sec}) 이상</td>
<td>양이온치환용량</td>
<td>6cmol/kg 이상</td>
</tr>
<tr>
<td>공극률</td>
<td>50%이상</td>
<td>유효인산</td>
<td>100mg/kg 이상</td>
</tr>
<tr>
<td>토성</td>
<td>사양토～양토</td>
<td>토양유기물</td>
<td>30g/kg 이상</td>
</tr>
<tr>
<td>토양산도</td>
<td>6.0～6.5</td>
<td>치환성칼륨</td>
<td>0.6cmol/kg 이상</td>
</tr>
<tr>
<td>전기전도도</td>
<td>1.0dS/m 미만</td>
<td>치환성칼슘</td>
<td>2.5cmol/kg 이상</td>
</tr>
</tbody>
</table>
한편 배수층으로 활용할 경우에 있어서는 현재 평가등급 등의 기준이 제시되어 있지 않은 관계로 앞서 정리한 식재기반 성립조건 등을 토대로 표 2.23에 나타낸 바와 같이 포화투수계수와 토양산도에 대해서만 건설발생토의 개량목표치를 설정 하였다.

표 2.23 배수층으로 활용시 건설발생토의 개량목표치

<table>
<thead>
<tr>
<th>항목</th>
<th>개량목표</th>
<th>항목</th>
<th>개량목표</th>
</tr>
</thead>
<tbody>
<tr>
<td>투수계수</td>
<td>10^{-4} cm/sec이상</td>
<td>토양산도</td>
<td>6.0 ~ 6.5</td>
</tr>
</tbody>
</table>
3. 건설발생토의 발생현황 및 특성

3.1 연구내용
본 연구에서는 건설발생토를 수도권매립지 내 조성되고 있는 식생대층 및 야생화 단지 조성에 활용할 수 있는 토양으로 개량 또는 활용할 수 있는 방안을 마련하여 식생대층에 소요되는 토사의 안정적 확보뿐만 아니라 중간처리업체 내 적재· 방치 되어 재반 문제를 초래하고 있는 건설발생토의 활용방안을 마련하고자 수행되었으며, 이를 위해 본 장에서는 건설발생토의 개념 정의, 발생원, 건설폐기물 및 혼합건설폐기물의 중간처리, 건설발생토의 유해물질 함량 및 토양오염도 평가, 건설발생토의 물리·화학적 특성, 건설발생토 재활용 관련 법제도 검토 등을 통해 건설발생토의 발생현황 및 특성을 파악하고자 한다.

3.2 건설발생토의 발생현황
3.2.1 건설발생토의 개념 정의
건설폐기물의 재활용촉진에 관한 법률(환경부, 2005) 중 법 제2조(정의)에 의하면 “건설폐기물”이라 함은 「건설산업기본법」 제2조제4호에 해당하는 건설공사로 인하여 공사를 착공하는 때부터 완료하는 때까지 건설현장에서 발생되는 5톤 이상의 폐기물로서 대통령령이 정하는 것을 말하며, “건설폐기물처리업”이라 함은 수집·운반업 또는 중간처리업을 말하고, “중간처리업”이라 함은 건설폐기물 분리·선별, 파쇄하는 영업을 말한다고 되어 있다.
또한 법 제3조(다른 법률과의 관계)에 의하면 건설폐기물을 친환경적으로 적정처리하고, 재활용을 촉진하기 위한 사항은 이 법을 다른 법률에 우선하여 적용하고, 이 법에서 규정되지 아니한 사항은 관계 법률의 규정에 적용한다고 되어 있다.
법 제2조제1호 규정에 의한 건설폐기물은 폐콘크리트, 폐아스팔트콘크트, 폐벽돌, 폐블럭, 폐기와, 폐목재, 폐합성수지, 폐섬유, 폐벽지, 건설오니, 폐금속류, 폐유리, 건설폐기물, 혼합건설폐기물 등이며, 이 중 건설폐기물이라 함은 건설공사에서 발생되거나 건설폐기물을 중간처리하는 과정에서 발생된 흙·모래·자갈 등으로서 자연상태의 것을 제외한 것, 혼합건설폐기물이라 함은 건설폐기물 중 둘 이상의 건설폐기물이 혼합된 것으로서 건설폐기물을 제외한 것을 말한다고 되어 있다.
한편 본 연구에서는 건설공사로 인하여 발생된 건설폐토석 또는 혼합건설폐기물
을 중간처리업체가 중간처리하는 과정에서 분리・선별한 토분을 현재 국내에서 미
사용 중인 건설발생토라는 용어로 정의하고 한다.
따라서 본 연구의 공시토양인 건설발생토는 건설폐기물의 재활용촉진에 관한 법
률에 따라 건설폐기물에 속하며, 이를 친환경적으로 적정처리하고, 재활용을 촉진
하기 위한 사항에 있어서는 동법을 다른 법률에 우선하여 적용해야 하고, 동법에서
규정되지 아니한 사항은 관계 법률의 규정을 적용해야 한다.
그러나 건설발생토라는 새로운 용어의 사용이 경우에 따라서는 혼동 등을 초래
할 수도 있으므로 이에 대해서는 후속과제 등을 통해 충분한 검토와 토의를 거쳐
용어의 통일과 개념의 정립이 이루어지길 기대한다.

3.2.2 건설발생토의 발생원
2003년도 환경부 통계자료에 따르면 우리나라 건설폐기물의 양은 표 3.1에 나타
낸 바와 같이 일일 145,420톤으로 연간 약 53,080,000톤인 것으로 파악되었다. 이는
전년대비 21.0% 증가한 것으로 ’96년부터 ’03년까지 지속적인 증가추세를 보이고
있으며, 폐기물 중 건설폐기물이 차지하는 점유율 역시 16.2%에서 49.3%로 급격히
증가하고 있는 실정이다.

표 3.1 연도별 폐기물 발생현황
(단위 : 톤/일)

<table>
<thead>
<tr>
<th>구분</th>
<th>’96</th>
<th>’97</th>
<th>’98</th>
<th>’99</th>
<th>’00</th>
<th>’01</th>
<th>’02</th>
<th>’03</th>
</tr>
</thead>
<tbody>
<tr>
<td>총계 발생량</td>
<td>175,334 189,200 184,989 211,728 226,668 252,927 269,548 295,047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>증감(%)</td>
<td>7.9</td>
<td>△2.2</td>
<td>14.5</td>
<td>7.1</td>
<td>11.6</td>
<td>6.6</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>생활폐기물 발생량</td>
<td>49,925 47,895 44,583 45,614 46,438 48,499 49,902 50,736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>증감(%)</td>
<td>△4.1</td>
<td>△6.9</td>
<td>2.3</td>
<td>1.8</td>
<td>4.4</td>
<td>2.9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>사업장폐출 발생량</td>
<td>96,984 93,528 92,713 103,893 101,456 95,908 99,505 98,891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>시설재폐기물 증감 (%)</td>
<td>△3.6</td>
<td>△0.9</td>
<td>12.1</td>
<td>△2.3</td>
<td>△5.5</td>
<td>3.8</td>
<td>△0.6</td>
<td></td>
</tr>
<tr>
<td>건설폐기물 발생량</td>
<td>28,425 47,777 47,693 62,221 78,777 108,520 120,141 145,420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>증감(%)</td>
<td>68.1</td>
<td>△0.2</td>
<td>30.5</td>
<td>26.6</td>
<td>37.8</td>
<td>10.7</td>
<td>21.0</td>
<td></td>
</tr>
</tbody>
</table>

사업장폐기물 중 지정폐기물을 제외
또한 건설폐기물 중 건설폐재의 양 역시 표 3.2에 나타낸 바와 같이 ‘96년 일일 23,577톤에서 ’03년 130,615톤으로 증가하였고, 건설폐재 중 건설폐토석의 발생량도 표 3.3에 나타낸 바와 같이 ’96년 일일 약 3,954톤에서 ’03년 약 9,399톤으로 증가추세를 보이고 있으며, 여기에 신고가 이루어지지 않은 건설폐토석을 포함할 경우 그 양은 더욱 늘어날 것으로 추정된다.

표 3.2 건설폐기물의 성상현황

(단위 : 톤/일)

<table>
<thead>
<tr>
<th>구분</th>
<th>'96</th>
<th>'97</th>
<th>'98</th>
<th>'99</th>
<th>'00</th>
<th>'01</th>
<th>'02</th>
<th>'03</th>
</tr>
</thead>
<tbody>
<tr>
<td>총계</td>
<td>28,425</td>
<td>47,777</td>
<td>47,693</td>
<td>62,221</td>
<td>78,777</td>
<td>108,520</td>
<td>120,141</td>
<td>145,420</td>
</tr>
<tr>
<td>가연성</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>종이류</td>
<td>546</td>
<td>455</td>
<td>348</td>
<td>613</td>
<td>591</td>
<td>557</td>
<td>507</td>
<td>452</td>
</tr>
<tr>
<td>나무류</td>
<td>1,064</td>
<td>1,848</td>
<td>1,547</td>
<td>2,063</td>
<td>2,367</td>
<td>3,111</td>
<td>2,632</td>
<td>2,534</td>
</tr>
<tr>
<td>합성수지류</td>
<td>833</td>
<td>811</td>
<td>655</td>
<td>968</td>
<td>1,311</td>
<td>1,821</td>
<td>1,800</td>
<td>1,445</td>
</tr>
<tr>
<td>기타</td>
<td>548</td>
<td>678</td>
<td>598</td>
<td>781</td>
<td>938</td>
<td>1,260</td>
<td>1,113</td>
<td>1,376</td>
</tr>
<tr>
<td>소계</td>
<td>2,991</td>
<td>3,792</td>
<td>3,148</td>
<td>4,425</td>
<td>5,207</td>
<td>6,749</td>
<td>6,053</td>
<td>5,807</td>
</tr>
<tr>
<td>불연성</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>건설폐재류</td>
<td>23,577</td>
<td>42,320</td>
<td>45,445</td>
<td>56,212</td>
<td>71,063</td>
<td>98,660</td>
<td>101,992</td>
<td>130,615</td>
</tr>
<tr>
<td>금속류</td>
<td>1,170</td>
<td>719</td>
<td>818</td>
<td>661</td>
<td>1,087</td>
<td>1,316</td>
<td>1,323</td>
<td>922</td>
</tr>
<tr>
<td>유리류</td>
<td>192</td>
<td>159</td>
<td>127</td>
<td>174</td>
<td>181</td>
<td>304</td>
<td>430</td>
<td>354</td>
</tr>
<tr>
<td>기타</td>
<td>495</td>
<td>787</td>
<td>1,155</td>
<td>749</td>
<td>1,239</td>
<td>1,491</td>
<td>10,343</td>
<td>7,722</td>
</tr>
<tr>
<td>소계</td>
<td>25,434</td>
<td>43,985</td>
<td>44,545</td>
<td>57,796</td>
<td>73,570</td>
<td>101,771</td>
<td>114,088</td>
<td>139,613</td>
</tr>
</tbody>
</table>

건설폐토석의 지역별 배출량을 살펴보면 일일 총배출량 약 9,399톤 중 서울시에서 약 3,550톤, 그리고 경기도 및 인천시에서 약 2,220톤이 발생되어 이들 지역에서 만 총배출량의 약 61%정도를 배출하고 있는 것으로 조사되었다.

일반적으로 건설현장에서 발생하는 건설폐기물은 단일 품목으로 배출되는 경우도 있으나, 대부분 복수의 것이 혼합된 상태로서 배출되고 있는 실정이다. 따라서 건설공사 종류별 폐기물 종류 및 개략적인 발생량을 살펴보면 표 3.4에 나타낸 바와 같이 건설폐재의 경우 포장공사와 철근·철골·콘크리트·석조건물의 해체공사에서 다량 배출되고 있으며, 그 외 댐·제방공사, 굴살 및 절·성토 등 토공사, 목조산축공사, 철근·철골·콘크리트·석조건물의 산축공사 등에서 소량 배출되고 있고, 목조해체 등에서도 약간 배출되는 것으로 조사되었다.
표 3.3 건설폐재류의 성장현황

(단위 : 톤/일)

<table>
<thead>
<tr>
<th>구분</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>23,577</td>
<td>42,320</td>
<td>42,445</td>
<td>56,212</td>
<td>71,063</td>
<td>98,660</td>
<td>101,992</td>
<td>130,615</td>
</tr>
<tr>
<td>건설폐토석</td>
<td>3,954</td>
<td>6,990</td>
<td>4,881</td>
<td>4,727</td>
<td>5,579</td>
<td>8,210</td>
<td>7,428</td>
<td>9,399</td>
</tr>
<tr>
<td>콘크리트</td>
<td>14,981</td>
<td>25,469</td>
<td>28,165</td>
<td>39,819</td>
<td>49,352</td>
<td>66,051</td>
<td>72,526</td>
<td>92,639</td>
</tr>
<tr>
<td>아스팔트</td>
<td>3,398</td>
<td>7,489</td>
<td>7,867</td>
<td>9,317</td>
<td>11,388</td>
<td>13,700</td>
<td>14,729</td>
<td>18,352</td>
</tr>
<tr>
<td>폐벽돌</td>
<td>1,244</td>
<td>2,372</td>
<td>1,532</td>
<td>2,849</td>
<td>4,744</td>
<td>10,699</td>
<td>7,309</td>
<td>10,225</td>
</tr>
</tbody>
</table>

표 3.4 건설공사 종류별 폐기물 종류 및 발생량

<table>
<thead>
<tr>
<th>구분</th>
<th>오니</th>
<th>건설폐재</th>
<th>금속조각</th>
<th>폐목재</th>
<th>폐플라스틱류</th>
<th>잔토</th>
<th>준설토사</th>
</tr>
</thead>
<tbody>
<tr>
<td>포장공사</td>
<td>-</td>
<td>◎</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>△</td>
<td>-</td>
</tr>
<tr>
<td>교량, 고가교공사</td>
<td>○</td>
<td>-</td>
<td>△</td>
<td>△</td>
<td>-</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>도로, 지하철공사</td>
<td>△</td>
<td>-</td>
<td>△</td>
<td>△</td>
<td>-</td>
<td>◎</td>
<td>-</td>
</tr>
<tr>
<td>댐, 제방공사</td>
<td>-</td>
<td>△</td>
<td>-</td>
<td>△</td>
<td>-</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>준설공사</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>△</td>
<td>-</td>
<td>○</td>
<td>◎</td>
</tr>
<tr>
<td>배립공사</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>△</td>
<td>-</td>
<td>-</td>
<td>△</td>
</tr>
<tr>
<td>굴삭, 철 및 석재 등 토공사</td>
<td>-</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>-</td>
<td>◎</td>
<td>-</td>
</tr>
<tr>
<td>목조식축</td>
<td>-</td>
<td>△</td>
<td>-</td>
<td>△</td>
<td>-</td>
<td>△</td>
<td>-</td>
</tr>
<tr>
<td>철근, 철골, 콘크리트, 석조건물 신축</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>◎</td>
<td>-</td>
</tr>
<tr>
<td>목조재체</td>
<td>-</td>
<td>○</td>
<td>△</td>
<td>◎</td>
<td>△</td>
<td>△</td>
<td>-</td>
</tr>
<tr>
<td>철근, 철골, 콘크리트, 석조건물 해체</td>
<td>-</td>
<td>◎</td>
<td>△</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>-</td>
</tr>
</tbody>
</table>

주 : - ; 극소량배출, △ ; 소량배출, ○ ; 보통량 배출, ◎ ; 대량배출.
이상에서 살펴본 바와 같이 건설발생토를 발생시키는 건설폐토석 또는 혼합건설폐기물의 발생량은 현재 증가추세를 보이고 있으며, 또한 주된 발생원으로는 각종 건축물의 해체공사와 포장공사 등임을 알 수 있었다.

3.2.3 건설폐토석 및 혼합건설폐기물의 중간처리

건설현장에서 발생한 건설폐기물은 단일 품목으로 운반이 가능한 경우 사업장에서 바로 재활용하며, 혼합건설폐기물과 같이 분리가 필요한 경우 자사 소유의 중간집하장에서 각 현장에서 반출된 것을 한꺼번에 모아 분리작업을 한 후 토분, 철재, 목재 등은 재활용하고, 잔재물은 매립하고 있다.

또한 사업장에서 직접 또는 중간집하장을 거쳐 중간처리업체로 반출된 혼합폐기물은 중간처리업체에서 자체 처리공정을 통해 분리·선별되며, 선별된 골재, 토분, 석분 등은 재활용하고, 잔재물은 소각 또는 매립하고 있다.

![그림 3.1 건설폐기물의 유통경로](image)

이와 같은 건설폐기물의 처리방법별 및 처리주체별 처리현황을 통계자료를 통해 살펴보면 표 3.5와 표 3.6에 나타낸 바와 같이 건설폐기물은 거의 불연성이기 때문에 소각의 비율이 매우 적은 편이며, 대부분 재활용이나 매립되고 있는 상황이고, 또한 재활용업소를 통해 대부분이 처리되고 있는 실정이다.
한편 통계상으로 재활용업소에서 89% 처리되고 있으며, 재활용이 89%로 거의 대부분을 차지하고 있으나, 이는 중간처리업체에 반출 처리한 양을 재활용한 것으로 파악하고 있기 때문에 나타나는 현상이라 할 수 있다.

표 3.5 건설폐기물의 처리방법별 처리현황

(단위 : 톤/일)

<table>
<thead>
<tr>
<th>구분</th>
<th>'96</th>
<th>'97</th>
<th>'98</th>
<th>'99</th>
<th>'00</th>
<th>'01</th>
<th>'02</th>
<th>'03</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>28,425</td>
<td>47,777</td>
<td>47,693</td>
<td>62,221</td>
<td>78,777</td>
<td>108,520</td>
<td>120,141</td>
<td>145,420</td>
</tr>
<tr>
<td>매립</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
</tr>
<tr>
<td>소각</td>
<td>10,988</td>
<td>9,747</td>
<td>7,112</td>
<td>10,600</td>
<td>10,021</td>
<td>12,943</td>
<td>17,462</td>
<td>13,715</td>
</tr>
<tr>
<td>재활용</td>
<td>(38.7)</td>
<td>(20.4)</td>
<td>(14.9)</td>
<td>(17.0)</td>
<td>(12.7)</td>
<td>(11.9)</td>
<td>(14.5)</td>
<td>(9.4)</td>
</tr>
<tr>
<td>재활용</td>
<td>848</td>
<td>1,456</td>
<td>1,007</td>
<td>1,278</td>
<td>2,071</td>
<td>2,424</td>
<td>2,462</td>
<td>2,233</td>
</tr>
<tr>
<td>해역배출</td>
<td>(3.0)</td>
<td>(3.0)</td>
<td>(2.1)</td>
<td>(2.1)</td>
<td>(2.6)</td>
<td>(2.3)</td>
<td>(2.1)</td>
<td>(1.5)</td>
</tr>
</tbody>
</table>

표 3.6 건설폐기물의 처리주체별 처리현황

(단위 : 톤/일)

<table>
<thead>
<tr>
<th>구분</th>
<th>'96</th>
<th>'97</th>
<th>'98</th>
<th>'99</th>
<th>'00</th>
<th>'01</th>
<th>'02</th>
<th>'03</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>28,425</td>
<td>47,777</td>
<td>47,693</td>
<td>62,221</td>
<td>78,777</td>
<td>108,520</td>
<td>120,141</td>
<td>145,420</td>
</tr>
<tr>
<td>자치단체</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
<td>(100)</td>
</tr>
<tr>
<td>대형처리업소</td>
<td>6,129</td>
<td>4,800</td>
<td>3,266</td>
<td>8,987</td>
<td>10,545</td>
<td>14,395</td>
<td>18,933</td>
<td>15,063</td>
</tr>
<tr>
<td>자가처리업소</td>
<td>(21.6)</td>
<td>(10.0)</td>
<td>(6.8)</td>
<td>(14.4)</td>
<td>(13.4)</td>
<td>(13.3)</td>
<td>(15.8)</td>
<td>(10.4)</td>
</tr>
<tr>
<td>재활용업소</td>
<td>242</td>
<td>376</td>
<td>112</td>
<td>762</td>
<td>90</td>
<td>111</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>해역배출</td>
<td>(0.9)</td>
<td>(0.8)</td>
<td>(0.2)</td>
<td>(1.2)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

다음은 사업장에서 반출된 건설폐토석 및 혼합건설폐기물의 분리·선별에 관계하는 국내 중간처리 업체현황에 대해 정리토록 한다. 또한 중간처리업체에서 실시하고 있는 처리공정에 대해 수도권매립지 주변에 위치한 중간처리업체인 C업체를 사례업체로 하여 정리토록 한다. 한편 중간처리 사례업체인 C업체의 경우 본 연구의 공시토양인 건설발생토를 제공한 업체였다.

3.2.3.1 중간처리 업체현황

2002년도 한국자원재생공사 통계자료에 따르면 표 3.7에 나타낸 바와 같이 건설폐기물 중간처리업체는 2001년도 현재 총 90개 업체가 가동 중인 것으로 조사되었으며, 이를 폐기물 종류별로 구분해 보면 건설폐토석 17개, 폐콘크리트 30개, 폐아스팔트콘크리트 28개, 폐벽돌 15개 업체였다.

표 3.7 2001년도 건설폐기물 종류별 중간처리업체 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>총계</th>
<th>허가업체</th>
<th>신고업체</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>90</td>
<td>31</td>
<td>59</td>
</tr>
<tr>
<td>폐기물</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>건설폐토석</td>
<td>17</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>폐콘크리트</td>
<td>30</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>폐벽돌</td>
<td>15</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>종류</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>폐아스팔트콘크리트</td>
<td>28</td>
<td>7</td>
<td>21</td>
</tr>
</tbody>
</table>

자료: 한국자원재생공사, 2002, 2001 전국 폐기물중간처리업 허가 및 재활용신고 업체 현황

또한 지역별 분포를 살펴보면 표 3.8에 나타낸 바와 같이 경상도에 가장 많은 23개 업체, 다음으로 경기도 22개, 충청도 19개, 전라도 16개 업체 순이었다. 따라서 총 90개 업체 중 경기도와 서울시에 27개 업체가 가동 중인 것으로 조사되었다.
표 3.8 2001년도 지역별 건설폐기물 중간처리업체 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>총계</th>
<th>허가업체</th>
<th>신고업체</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>90</td>
<td>31</td>
<td>59</td>
</tr>
<tr>
<td>강원도</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>경기도</td>
<td>22</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>경상도</td>
<td>23</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>서 울</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>전라도</td>
<td>16</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>제주도</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>충청도</td>
<td>19</td>
<td>13</td>
<td>6</td>
</tr>
</tbody>
</table>

3.2.3.2 중간처리공정

수도권매립지 주변에 위치한 중간처리업체인 C업체에서 실시하고 있는 반입 건설폐기물의 처리공정은 그림 3.2에 나타낸 바와 같다.

처리공정에 대해 살펴보면 먼저 건설폐기물이 반입되면 굴삭기를 이용하여 Hopper에 투입하게 된다. 이 때 인력(4명)으로 철근 및 쓰레기를 1차 선별한다. 1차 선별된 건설폐기물은 시간당 200톤 코크라싸에 투입되어 1차 파쇄가 이루어진다. 1차 파쇄된 건설폐기물은 크게 두 공정으로 나뉘어 처리되는데 한 쪽 공정은 배출된 골재와 철근을 인력(2명)으로 2차 선별한다. 다음으로 마그네틱(자석)을 이용하여 철근을 분리한다. 철근 분리 후 재생골재를 규격별(40mm, 70mm, 토분)로 분리한다.

한편 다른 쪽 공정에서는 Over size의 골재를 규격에 맞게 2차 파쇄한다. 2차 파쇄 후 Over size 골재 및 쓰레기를 3차 선별한다. 3차 선별 후 송풍기를 이용하여 생산된 골재를 분리한다. 다음으로 생산된 골재의 쓰레기를 인력(1명)으로 4차 선별하며, 마지막으로 부력을 이용한 선별공정을 거쳐 골재를 생산하게 된다.
화물 루터의 처리공정도

중간처리 C업체의 경우 '04년도 약 1,004,522톤의 건설폐기물을 위탁받아 위와 같은 처리공정을 통해 약 976,911톤의 골재, 토분, 석분 및 철근·폐목 등을 분리·선별하고 있었으며, 분리·선별된 각각의 조성비는 골재 40%, 토분 30%, 석분 27%, 철근 및 폐목 3%인 것으로 조사되었다. 이 중 토분이 본 연구의 공시토양인 건설 발생도에 해당하며, '04년도 약 293,000톤이 분리·선별된 것으로 파악되었다.

표 3.9 2004년도 건설폐기물 수집운반 실적(C업체)

<table>
<thead>
<tr>
<th>구분</th>
<th>건설폐기물(톤/년)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>반입총계</td>
<td>1,004,521.96</td>
<td>100%</td>
</tr>
<tr>
<td>반입폐기물</td>
<td>5,476.96</td>
<td>0.5%</td>
</tr>
<tr>
<td>중간처리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>소각</td>
<td>35.85</td>
<td>0.0%</td>
</tr>
<tr>
<td>재활용</td>
<td>3,299.06</td>
<td>0.3% 고철 등</td>
</tr>
<tr>
<td>매립</td>
<td>7,723.13</td>
<td>0.8%</td>
</tr>
<tr>
<td>과쇄</td>
<td></td>
<td></td>
</tr>
<tr>
<td>골재, 석분, 토분 등</td>
<td>976,911.30</td>
<td>97.3%</td>
</tr>
<tr>
<td>2차 폐기물</td>
<td>11,075.6</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

또한 C업체가 위탁받은 건설폐기물을 지역별로 구분해 보면 반입 건설폐기물 중 서울지역이 약 62%정도를 차지하고 있었으며, 나머지가 경기도지역으로 조사되었 다. 특히 서울지역의 경우 재건축현장의 구조물해체공사로 발생한 건설폐기물이 대
부분인 것으로 조사되었으며, 서울지역에서 위탁받은 것 중 약 30~40%가 집하장
을 거쳐 C업체로 수집·운반되고 있었고, 집하장을 통해 운반되고 있는 것에는 거
의 흔이 함유되어 있지 않는 것으로 조사되었다.

표 3.10 2004년도 반입 건설폐기물의 지역별 분포(C업체)

<table>
<thead>
<tr>
<th>구분</th>
<th>건설폐기물(톤/년)</th>
<th>비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>반입총계</td>
<td>1,004,521.96</td>
<td>100</td>
</tr>
<tr>
<td>서울지역</td>
<td>620,243.21</td>
<td>62</td>
</tr>
<tr>
<td>경기지역</td>
<td>384,278.75</td>
<td>38</td>
</tr>
</tbody>
</table>

한편 건설 발생토의 발생원을 파악하기 위해 C업체에 문의한 결과 현재 각 중간
처리업체가 경영상 영세한 관계로 정확한 이력관리 자료를 갖추고 있지 않은 것으
로 조사되었으며, 과세 등 처리공정 역시 발생원별로 이루어지고 있는 것이 아니라
중간 처리업체 규모에 따라 일정량의 건설폐토석 또는 혼합 건설폐기물의 적정한 후
일괄 처리하고 있는 것으로 파악되어 향후 건설폐토석 또는 혼합 건설폐기물의 반
입단계에서부터 발생원별로 관리할 필요가 있으며, 처리공정도 발생원별로 이루어
짐으로서 보다 평균이 우수한 건설 발생토를 확보할 수 있을 것으로 판단되었다.

한편 건설 발생토의 발생원을 파악하기 위해 C업체에 문의한 결과 현재 각 중간
처리업체가 경영상 영세한 관계로 정확한 이력관리 자료를 갖추고 있지 않은 것으
로 조사되었으며, 과세 등 처리공정 역시 발생원별로 이루어지고 있는 것이 아니라
중간 처리업체 규모에 따라 일정량의 건설폐토석 또는 혼합 건설폐기물의 적정한 후
일괄 처리하고 있는 것으로 파악되어 향후 건설폐토석 또는 혼합 건설폐기물의 반
입단계에서부터 발생원별로 관리할 필요가 있으며, 처리공정도 발생원별로 이루어
짐으로서 보다 평균이 우수한 건설 발생토를 확보할 수 있을 것으로 판단되었다.

또한 앞서 언급한 바와 같이 각 중간처리업체가 경영상 영세한 관계로 현재 정
확한 이력관리 자료를 갖추고 있지 않은 것으로 조사되었으나 비단 이러한 문제는
건설폐기물 중간처리업체들의 영세한 경영상태만의 문제가 아니라 다음과 같은 건
설폐기물의 특수성과도 관련된 문제라고 판단된다.

한국환경정책·평가연구원(2004)에 따르면 건설현장에서 혼합 건설폐기물의 발생
할 때의 가장 큰 원인은 발생과정에서 폐기물이 혼합되는 것을 방지하지 못하는데
있다고 하였다. 폐기물이 혼합되는 원인은 첫째, 현장의 털스튜트와 같이 자연스
럽게 폐기물이 혼합되는 방법을 이용하여 폐기물을 처리하는 경로상의 문제점, 둘
째 폐기물관리법에 의해 폐기물 처리 책임이 원도급자에 있고, 실제 작업이행자인
전문사공업체(하청업체)나 해체공사업자에게는 폐기물 처리의 책임이 없는 제도적
문제점, 셋째 현장내 폐기물 전용 적치장소가 부족하여 폐기물의 혼합방지가 장려
하는 점, 넷째 제도와 현장의 상황에 큰 차이가 있는 점 등이라고 하였다. 또한 건
설폐기물 발생량에 있어서 거의 대부분이 해체공사로 인하여 발생하고 있는데 해체공사현장의 경우 그 과정에서 발생하는 폐기물이 동시에 다양한 성상으로 발생하고, 발생원단위를 통하여 폐기물 발생량을 예측할 수 있으나 현장의 특성에 따라 변동될 수 있는 부분이 너무 많이 존재하므로 기존 해체공사 과정을 답습할 경우 건설현장에서 성상별로 폐기물을 분리배출한다는 것은 거의 불가능한 수밖에 없다고 보고하였다.

더불어 건설폐기물의 가장 기본적인 문제점은 발생량이 정확히 파악되지 않고 있다는 점을 들 수 있다. 대부분의 건설현장에서는 대략적인 발생 실태를 파악하기 위하여 ‘선처리 후송장으로 파악’하는 방식을 사용하고 있으나, 실제 폐기물 성상별로 정확한 양을 파악하지 못하고 있는 실정이다. 이는 건설공사가 여러 장소에서 동시에 이루어지기 때문에 건설폐기물은 발생장소의 다양한 특성을 갖고 있기 때문이기도 하다.

더욱이 건설폐기물은 폐기물 운반시 운반거리가 증가함으로 인해 운반비 등의 상승을 가져올 수 있는 문제점을 지니고 있을 뿐만 아니라 대게 다량으로 발생되며, 대부분 부피가 크기 때문에 매립처리시 매립지 수명이 단축되는 결과를 초래하고 있다. 이는 대부분의 현장에서 폐기물관리법에서 분류하는 지정폐기물을 제외하고는 제대로 분리하지 않거나 발생된 혼합폐기물을 그대로 처리업체에 맡겨서 처리하고 있으므로 건설폐기물의 발생 성상별로 분리배출이 제대로 이루어지지 않았기 때문인 것으로 생각된다.

또한 건설폐기물은 그 발생에 있어서 계절성을 가지고 있기 때문에 일정한 기간 동안 집중적으로 배출되는 경우가 많아 일정 시설을 가지고 재활용하기에 어려운 점이 많다. 실제로도 재활용되는 건설폐기물 중 건설업체가 건설현장에서 직접 재생플레이트로 재활용하는 비율은 낮다. 이는 건축물 철거시 폐기물 배출 및 처리에 대한 규정이 없어 경제성이나 민원이 등의 이유로 재활용이 가능한 폐기물을 제외한 또는 소각으로 처리해야 하는 폐기물과 혼합 배출시키는 경우가 많기 때문이 다.

따라서 정부가 제시하고 있는 건설폐기물의 높은 재활용률은 중간처리업체에 반출 처리한 양을 재활용한 것으로 파악하고 있기 때문에 나타나는 현상이며, 실제로 대다수의 중간처리업체에 위탁 처리되는 건설폐기물은 거의 단순화해 및 선별을
거쳐 성토, 복토재로 재이용되거나 심한 경우 방치폐기물화 되어 추후에 또 다른 이용을 들어 처리가 되고 있는 경우가 많고, 도로기층재, 콘크리트 원료 등 실제로 재활용되어 재생골재로 이용되는 경우는 그리 많지 않은 편이다. 이러한 특수성은 건설폐기물의 유효이용을 곤란하게 하는 원인이 된다. 특히 건설폐기물은 다중다양한 것이 포함되어 있어 타 사업활동에서 배출되는 폐기물에 비하여 아직까지 자원화 및 재생이용되는 비율이 낮으며, 매립처분되는 비율이 높다고 할 수 있다.

이상의 이유로 해서 건설폐토석의 통계수치상 일일 발생량은 약 9,399톤으로 파악되었으나 정확한 발생원별 발생량은 파악할 수 없었다. 또한 중간처리 C업체의 경우 '04년도 약 1,004,522톤의 건설폐기물을 위탁받아 자체 처리공정을 통해 약 976,911톤의 골재, 토분, 석분 및 철근, 폐목 등을 분리・선별하고 있다고 앞서 언급하였다. 이 중 골재 및 석분의 경우 80%이상 성토재나 도로기층재로 재활용되고 있다는 조사되었으나 건설발생토에 해당하는 토분의 경우 거의 재활용되지 않은 상태로 중간처리업체내 적재되고 있는 설정이라는 관계자의 답변이었다.

3.3 건설발생토의 특성 파악
3.3.1 건설발생토의 유해물질 함량 및 토양오염도 평가
3.3.1.1 실험시료의 선정
채취한 건설발생토가 중간처리업체내 건설발생토를 대표해야 한다는 점에서 분석시료 채취에 주의를 기울였다. 따라서 건설발생토의 분석시료를 채취할 때에는 항상 건설발생토의 적치지역 중심에서 1점을 주변 4방위에서 각 1점씩 총 5점의 시료를 채취한 후 이를 well mixing하여 분석시료로 사용하였다. 더불어 중간처리업체내 건설발생토의 경우 발생원별·채취 시기별 특성변이가 존재할 수 있으므로 채취시기를 각기 달리하여 총 3회 4개체의 시료를 채취하여 분석에 사용하였다.

3.3.1.2 실험방법
그럼 3.3에 나타낸 바와 같이 수도권매립지 주변 건설폐기물 중 자연처리 C업체에 반입된 건설폐기물 중 자체 처리공정을 거쳐 분리・선별된 건설발생토를 대상으로
먼저 건설폐기물인 건설발생토를 토양으로 활용할 수 있는지 아니면 폐기물로 처분해야 하는지 여부를 확인하기 위해 폐기물공정시험법에 따라 용출시험을 실시하였다.

다음으로 토양환경보전법에는 토양오염도를 토양오염공정시험법으로 측정토록 되어 있으므로 본 연구의 공시토양인 건설발생토에 대해서도 토양오염공정시험법에 따라 토양오염도를 측정·분석하였으며, 시료조제 및 시험방법은 다음과 같다.

1) 폐기물공정시험법에 의한 용출시험
 ① 시료액의 조제
 시료액의 조제는 시료와 용매를 1:10의 비율로 혼합하여 혼합액이 500ml이상이 되도록 하였다. 따라서 시료를 50g이상 사용하였으며, 용매는 증류수에 염산을 가하여 pH 5.8 ~ 6.3으로 조절된 것을 사용하였다.
 ② 용출조작
 진탕 횟수가 분당 약 200회, 진폭 4 ~ 5cm의 진탕기를 사용하여 6시간 연속으로 진탕한 후 여과액을 적당량 취해 시험용액으로 하였다.
③ 카드뮴
원자흡광광도법(Perkin-ELMER AAS AAnalyyst 800)에 따라 228.8nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 카드뮴의 양을 구하고 농도(mg/ℓ)를 산출하였다. 바탕시험을 행하여 보정하였다.
④ 납
원자흡광광도법에 따라 283.3nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 납의 양을 구하고 농도(mg/ℓ)를 산출하였다. 바탕시험을 행하여 보정하였다.
⑤ 6가크롬
원자흡광광도법에 따라 357.9nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 6가크롬의 양을 구하고 농도(mg/ℓ)를 산출하였다. 바탕시험을 행하여 보정하였다.
⑥ 비소
염화제일주석으로 시료 중의 비소를 3가비소로 환원한 다음 아연을 넣어 발생되는 비화수소를 통기하여 알곤-수소 불꽃으로 원자화시켜 193.7nm에서 흡광도를 측정하고 비소를 정량화하였다.
⑦ 수은
시료에 염화제일주석을 넣고 금속수은으로 환원시킨 다음 이 용액에 통기하여 발생하는 수은증기를 원자화시켜 253.7nm에서 흡광도를 측정하고 수은을 정량화하였다.
⑧ 구리
원자흡광광도법에 따라 324.7nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 구리의 양을 구하고 농도(mg/ℓ)를 산출하였다. 바탕시험을 행하여 보정하였다.
⑨ 시안
pH2이하의 산성에서 에틸랜디아민테드라아세트산이나트륨을 넣고 가열 중류하여 시안화물 및 시안화합물의 대부분을 시안화수소로 유출시키고 수산화나트륨용액에 포집하였다.
포집된 시안화물을 중화하고 클로라민T를 넣어 염화시안으로하여 피리딘・피라
줄론 혼액을 넣어 나타나는 청색을 620nm에서 측정하였다.

⑩ 유기인

시험용액 2㎕을 마이크로시린지를 사용하여 가스크로마토그래프에 주입하고 크로마토그램을 기록하였다. 각 성분별 유지시간에 해당하는 피크로부터 피크면적을 측정하여 미리 작성한 검량선으로부터 각 성분별 양을 구하고 농도(mg/ℓ)를 산출하였다. 결과는 각 성분별 농도를 합산하여 유기인으로 표시하였다.

⑪ PCE 및 TCE

시험용액 2㎕을 마이크로시린지를 사용하여 가스크로마토그래프에 주입하고 크로마토그램을 기록하였다. 각 성분별 유지시간에 해당하는 피크로부터 피크면적을 측정하여 미리 작성한 검량선으로부터 각 성분별 양을 구하고 농도(mg/ℓ)를 산출하였다.

2) 토양오염공정시험법에 의한 토양오염도 측정

① 시료액의 조제

토양시료 10g을 100ml 삼각프라스크에 취하여 0.1-HCl 50ml(크롬의 경우 0.2M-CH₃COONH₄, 비소의 경우 1N-HCl 침출성)를 가한 다음 실온에서 1시간 진탕하고 No. 5B로 여과하여 시험용액으로 하였다.

② 카드뮴

원자흡광광도법(Perkin-ELMER AAS AAnalyst 800)에 따라 228.8nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 카드뮴의 양을 구하고 농도(mg/kg)를 산출하였다. 바탕시험을 행하여 보정하였다.

③ 납

원자흡광광도법에 따라 283.3nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 납의 양을 구하고 농도(mg/kg)를 산출하였다. 바탕시험을 행하여 보정하였다.

④ 6가크롬

원자흡광광도법에 따라 357.9nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 6가크롬의 양을 구하고 농도(mg/kg)를 산출하였다. 바탕시험을 행하여 보정하였다.
⑤ 비소
염화제일주석으로 시료 중의 비소를 3가비소로 환원한 다음 아연을 넣어 발생하는 비화수소를 통기하여 알곤-수소 불꽃으로 원자화시켜 193.7nm에서 흡광도를 측정하고 비소를 정량화하였다.

⑥ 수은
시료에 염화제일주석을 넣고 금속수은으로 환원시킨 다음 이 용액에 통기하여 발생하는 수은증기를 원자화시켜 253.7nm에서 흡광도를 측정하고 수은을 정량화하였다.

⑦ 구리
원자흡광광도법에 따라 324.7nm에서 전처리한 시험용액의 흡광도를 측정하고 미리 작성한 검량선으로부터 구리의 양을 구하고 농도(mg/kg)를 산출하였다. 바탕시험을 행하여 보정하였다.

⑧ 시안
pH2이하의 산성에서 에틸렌디아미네트라세트산이나트륨을 넣고 가열 증류하여 시안화물 및 시안착화합물의 대부분을 시안화수소로 유출시키고 수산화나트륨용액에 포집하였다.
포집된 시안이온을 중화하고 클로라민T를 넣어 염화시안으로하여 피리딘-피라졸론 혼액을 넣어 나타나는 청색을 620nm에서 측정하였다.

⑨ 유기인
시험용액 2μl을 마이크로서린지를 사용하여 가스크로마토그래프에 주입하고 크로마토그램을 기록하였다. 각 성분별 유지시간에 해당하는 피크로부터 피크면적을 측정하여 미리 작성한 검량선으로부터 각 성분별 양을 구하고 농도(mg/kg)를 산출하였다. 결과는 각 성분별 농도를 합산하여 유기인으로 표시하였다.

⑩ PCB
PCB를 핵산으로 추출하여 알칼리 분해한 다음 다시 추출하고 플로리실킬림을 통과시켜 정제하였다. 이 용액을 농축시켜 가스크로마토그래프에 주입하고 크로마토그램을 작성하여 나타난 피크의 형태에 따라 PCB를 확인하고 정량화하였다.

⑪ 폐놀
시험용액 2μl을 마이크로서린지를 사용하여 가스크로마토그래프에 주입하고 크
로마토그램을 기록하였다. 각 성분별 유지시간에 해당하는 피이크로부터 피이크면적을 측정하여 미리 작성한 검량선으로부터 각 성분별 양을 구하고 농도(mg/kg)를 산출하였다.

3.3.1.3 결과 및 고찰
건설발생토를 토양으로 활용할 수 있는지 아니면 지정폐기물로 처분 또는 매립지복토재 등으로 활용할 것인지를 여부를 확인하기 위해 폐기물공정시험법에 따라 카드뮴, 구리, 비소, 수은, 납, 6가크롬, 시안, 유기인, PCE, TCE 함량 등 유해물질 용출시험을 실시하였으며, 얻어진 결과는 표 3.11에 나타낸 바와 같다.

표 3.11 폐기물공정시험법에 의한 건설발생토의 유해물질 용출시험 결과

<table>
<thead>
<tr>
<th>구분</th>
<th>카드뮴</th>
<th>납</th>
<th>6가크롬</th>
<th>비소</th>
<th>수은</th>
<th>구리</th>
<th>시안</th>
<th>유기인</th>
<th>PCE</th>
<th>TCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설발생토1</td>
<td>0.06</td>
<td>0.2</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토2</td>
<td>0.09</td>
<td>0.2</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토3</td>
<td>0.10</td>
<td>0.3</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토4</td>
<td>0.08</td>
<td>0.2</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토5</td>
<td>0.10</td>
<td>0.3</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토6</td>
<td>0.10</td>
<td>0.3</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토7</td>
<td>ND</td>
<td>0.1</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토8</td>
<td>0.07</td>
<td>0.1</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토9</td>
<td>0.08</td>
<td>0.1</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토10</td>
<td>ND</td>
<td>0.1</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토11</td>
<td>0.07</td>
<td>0.1</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토12</td>
<td>0.07</td>
<td>0.1</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>기준치*</td>
<td>0.30</td>
<td>3.0</td>
<td>1.5</td>
<td>1.5</td>
<td>0.005</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

* : 지정폐기물에 함유된 유해물질(폐기물관리법 시행규칙 별표1 참조)

건설발생토의 용출시험 결과 비소, 수은, 시안, 유기인, PCE, TCE는 검출되지 않았다. 카드뮴의 경우 0.06 ~ 0.10mg·L⁻¹범위로 지정폐기물에 함유된 유해물질 기준
치 0.30mg·L⁻¹보다 매우 낮은 수준이었다. 남의 경우 0.1~0.3mg·L⁻¹범위로 기준치의 약 1/10이상 낮았다. 6가크롬 역시 0.1~0.2mg·L⁻¹범위로 기준치 1.5mg·L⁻¹보다 매우 낮은 수준이었다. 구리의 경우 0.1~0.2mg·L⁻¹범위로 기준치의 약 1/15이상 낮았다.

분석결과를 종합해 볼 때 건설발생토의 유해물질 함량은 분석항목 모두 지정폐기물에 함유된 유해물질 기준치 이내였다. 따라서 본 연구 공시토양인 건설발생토의 경우 일반 지정폐기물로 취급해서는 안 되며, 자원으로서 재활용 가능성이 인정되었다.

한편 토양오염이란 “중금속 및 유해화합물 등과 같은 오염물질이 토양에 유입 점적되면서 그 농도가 천연부존량을 초과하고, 이에 따라 토양의 정상적인 기능이 저하될 뿐 아니라, 토양에서 생산되는 Biomass에 오염물질이 축적되어 인체에 악 영향을 미치는 현상”이라고 정의할 수 있다. 즉 토양오염을 간단히 정의하면, 인간 생활의 과정으로 발생된 화합물이 토양에 유입되고, 이들에게 의해 환경구성요소로서의 토양이 기능을 상실하는 것이다. 토양의 사막화, 토양침식 및 품질 등과 같이 토양 자원을 근원적으로 고갈시키는 환경피해도 있지만, ‘토양오염’이란 일반적으로 유기 오염물질이나 영양염류, 중금속 등의 오염물질이 토양 중에 집적되어 나타나는 현상을 뜻한다(Sigh, 1997).

토양오염의 물질로서는 카드뮴, 아연, 구리, 남, 수은, 니켈, 크롬 등의 중금속과 바나듐, 베릴륨 등의 경금속, 비소, 안티몬 등의 비금속, 농약, 비료 등이 있다. 최근에는 유류 등 유기성 오염물질에 의한 토양오염이 큰 문제가 되고 있다. 또한 중금속 등의 유해물질은 환경 중에서 분해되어 없어지지 않으므로 다양한 점오염원에서 발생된 중금속이 광범위하게 확산되고 있는 현상들이 관찰되고 있다. 더불어 산성화의 영향으로 농작물을 포함한 식물체 중의 중금속 농도가 지속보다 높아질 가능성이 있으며, 토양의 산성화에 의하여 중금속의 용출이 쉬워져 이들 중금속이 식물에 흡수되고, 동물체내에 축적될 수 있게 된다. 자연계로 방출된 중금속은 최 종적으로 토양, 식물, 동물, 인간으로 이어지는 먹이사슬을 통하여 인체에 축적된 다.

토양 중에서 중금속의 거동에 대하여 살펴보면 유해 중금속이 존재하고 있어도 그것이 불용성 혹은 난용성 형태로 존재한다면 토양용액 중의 중금속 이온농도는
매우 낮으므로 식물에 의한 흡수량은 적어서 생물에 대한 독성 영향은 적을 수 있다. 토양 중에서 중금속의 용해도는 토양조건 혹은 다른 공존 원소의 농도 등에 의해 많은 차이가 있다. 이러한 중금속의 특성에 영향을 미치는 주된 요인은 다음과 같다.

첫째, 토양 중에서의 중금속의 용해도는 토양산도가 낮을수록 증가한다. 식물의 미량영양소인 몰리브덴은 예외로 토양의 반응이 산성조건이라면 몰리브덴의 용해도는 감소하고, 대부분의 중금속은 토양산도가 높은 조건에서 불용성이 된다. 토양 중에서 중에는 산화/환원 조건에 따라 용해도가 달라져 독성을 다르게 나타내는 것들이 있다. 철, 망간 등은 산화적 조건하에서 불용화 되고, 카드뮴, 구리, 아연, 크롬 등은 환원적 조건하에서 불용화 되는 것이다. 또한 크롬과 같이 산화와 환원의 형태에 따라 독성이 달라지는 원소도 있다. 크롬은 산화상에서는 6가크롬이 되고, 환원상에서는 3가크롬이 되며, 6가크롬은 3가크롬보다 독성이 강하다. 반면에 비소의 경우 산화상태의 비소보다 환원상태의 비소가 높은 독성을 나타낸다.

셋째, 중금속은 토양 중에서 다른 성분과 결합해 불용성의 화합물을 만드는 경우가 있다.

이와 같은 이유로 토양환경보전법에서는 토양오염도를 토양오염공정시험법으로 측정하도록 하고 있으며, 토양환경기준을 우려기준과 대책기준 2가지로 설정하고 있다. 우려기준이란 사람의 건강 및 재산과 동식물의 생육에 지장을 초래할 우려가 있는 토양오염의 기준이며, 대책기준이란 우려기준을 초과하여 사람의 건강 및 재산과 동식물의 생육에 지장을 주어서 토양오염에 대한 대책을 필요로 하는 토양오염의 기준을 말한다.

이런 우려기준을 상회하는 토양에 대해서는 지방자치단체장이나 환경부장관이 토양오염물질의 제거, 오염시설의 이전, 오염방지시설의 설치, 오염시설 사용제한 및 금지 등의 조치를 취하도록 하고 있으며, 또한 대책기준을 상회하는 경우에는 농경지의 경우 농토개량사업, 오염토양 매립 등을 실시하는 동시에 오염에 강한 식물을 재배토록 권장하고 있다. 따라서 건설발생토의 오염도를 알아보기 위해 토양 오염공정시험법에 따라 카드뮴, 구리, 비소, 수은, 납, 6가크롬, 시안, 유기인, PCB, 폐들 등을 측정하였으며, 얻어진 결과는 표 3.12에 나타낸 바와 같다.
표 3.12 토양오염공정시험법에 의한 건설발생토의 토양오염도

<table>
<thead>
<tr>
<th>구분</th>
<th>카드뮴 (mg/kg)</th>
<th>납</th>
<th>크롬 (mg/kg)</th>
<th>비소</th>
<th>수은</th>
<th>구리 (mg/kg)</th>
<th>시안</th>
<th>유기인 (mg/kg)</th>
<th>PCB</th>
<th>폐ولاد (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설발생토1</td>
<td>0.7</td>
<td>1.7</td>
<td>1.2</td>
<td>ND</td>
<td>ND</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토2</td>
<td>1.0</td>
<td>2.0</td>
<td>1.6</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토3</td>
<td>1.3</td>
<td>3.1</td>
<td>1.5</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토4</td>
<td>0.9</td>
<td>2.4</td>
<td>1.6</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토5</td>
<td>1.1</td>
<td>3.0</td>
<td>2.1</td>
<td>ND</td>
<td>ND</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토6</td>
<td>1.0</td>
<td>2.2</td>
<td>2.2</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토7</td>
<td>0.5</td>
<td>0.2</td>
<td>1.1</td>
<td>ND</td>
<td>ND</td>
<td>0.4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토8</td>
<td>0.8</td>
<td>0.2</td>
<td>1.3</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토9</td>
<td>1.0</td>
<td>0.8</td>
<td>1.1</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토10</td>
<td>0.6</td>
<td>0.9</td>
<td>0.9</td>
<td>ND</td>
<td>ND</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토11</td>
<td>0.8</td>
<td>0.7</td>
<td>1.5</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>건설발생토12</td>
<td>0.8</td>
<td>0.7</td>
<td>1.3</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>우려기준*</td>
<td>1.5</td>
<td>100</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>50</td>
<td>2</td>
<td>10</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>대책기준*</td>
<td>4.0</td>
<td>300</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>125</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

* : 논, 벼, 꽃수원, 목장용지, 하천체육용지(수목, 잔디 식생지 포함) (환경부, 2001)

건설발생토의 토양오염공정시험 결과 비소, 수은, 시안, 유기인, PCB, 폐ولاد은 검출되지 않았다. 카드뮴의 경우 0.6 ~ 1.3mg·kg⁻¹범위로 우려기준인 1.5mg·kg⁻¹을 초과하지는 않았지만 매우 근접된 수준으로 향후 카드뮴을 최대한 줄일 수 있는 조치가 이루어져야 한다고 판단되었다. 납의 경우 0.2 ~ 3.0mg·kg⁻¹범위로 우려기준의 약 1/30이상 낮은 수준이었다. 6가크롬의 경우 0.9 ~ 2.2mg·kg⁻¹범위로 우려기준의 4.0mg·kg⁻¹보다 낮은 수준이었으나 이것은 역시 카드뮴과 마찬가지로 향후 최대한 줄일 수 있는 방안이 강구되어야 한다고 판단되었다. 구리의 경우 0.1 ~ 0.3mg·kg⁻¹범위로 우려기준의 약 1/20이상 낮은 수준이었다.

분석결과를 종합해 볼 때 건설발생토의 오염도는 분석항목 모두 토양오염 우려기준을 초과하지 않았다. 다만 카드뮴과 6가크롬의 경우 채취시기에 따라서는 우려
기준에 근접하는 경우도 발생할 수 있으므로 감소방안을 강구할 필요가 있다고 판단되었다.

3.3.2 건설발생토의 물리·화학적 특성

3.3.2.1 실험방법

3.3.1 건설발생토의 활용여부에 관한 사전실험에 사용한 재료와 동일한 재료로 그림 3.3에 나타낸 바와 같이 수도권매립지 주변 건설폐기물 중간처리 C업체에 반입된 건설폐기물 중 자체 처리공정을 거쳐 분리·선별된 건설발생토를 대상으로 건설발생토의 토양특성을 파악하기 위해 토양물리성 및 화학성을 측정·분석하였으며, 시료조제 및 시험방법은 다음과 같다.

건설발생토의 물리·화학적 특성을 파악하기 위한 토양시험의 조제 및 토양물리성·화학성 분석방법은 2. 수도권매립지 주변 식생성장 여건별 토양특성 파악에서 제시한 것과 동일한 방법으로 실시하였으나, 내용의 중복을 피하고자 요약해서 기술하면 다음과 같다. 토양시험의 조제는 토양화학분석법(농촌진흥청, 1988)과 토양 및 식물체 분석법(농업과학기술원, 2000)에 준하여 실시하였으며, 물리적 특성 중 입도분석은 비중계 및 체분석을 이용하고, 미국농무부의 입도조성에 의한 삼각분류법(농업과학기술원, 2000)에 따라 토성을 분류하였다. 또한 용적밀도, 변수위법으로 구한 포화투수계수, 흡인법으로 구한 통기성(-1/3bar) 그리고 삼상분포는 토양 및 식물체 분석법(농업과학기술원, 2000)에 준하여 측정·분석하였다. 또한 화학적 특성은 토양화학분석법(농촌진흥청, 1988)에 따라 토양산도는 토양과 H₂O를 1:5로 하여 Horiba compact pH meter B-212로, 전기전도도는 토양과 H₂O를 1:5로 하여 Horiba conductivity meter ES-14로 측정하였으며, 유기물 함량은 Tyurin법, 양이온치환용량은 Brown법, 치환성양이온은 1N-NH₄OAc(pH7.0)용액으로 추출 후 칼륨과 나트륨을 Atomic Absorption Spectrometer 측정법으로, 칼슘과 마그네슘을 ICP 측정법으로 분석하였고, 유 효인산은 Lancaster법으로 측정·분석하였다.

3.3.2.2 실험결과 및 고찰

건설발생토의 물리적 특성은 표 3.13에 나타낸 바와 같다. 앞에서도 언급한 바와 같이 토성에 따라 토양의 배수능력, 보수능력, 양분저장능
력 등이 달라진다. 측정결과 건설발생토의 입도조성은 모래함량 77~83%, 미사함량 12~19%, 점토함량 3~6%범위였으며, 토성은 양질사토에 해당되었다. 여기서 우려되는 점은 모래함량이 많다는 것 이외에 너무 입도가 한 쪽에 편중되어 있기 때문에 답압 등의 외압을 받을 경우 다른 토양물리성의 악화를 초래할 수 있다는 점이다.

표 3.13 건설발생토의 물리적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>입도조성(%)</th>
<th>토성</th>
<th>용적밀도(g/cm³)</th>
<th>포화투수계수(cm/sec)</th>
<th>통기성(%)</th>
<th>고상률(%)</th>
<th>공극률(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설발생토 1</td>
<td>78 19 3</td>
<td>양질사토</td>
<td>1.11</td>
<td>1.7×10⁻³</td>
<td>28</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>건설발생토 2</td>
<td>80 16 4</td>
<td>양질사토</td>
<td>1.07</td>
<td>1.7×10⁻³</td>
<td>27</td>
<td>41</td>
<td>59</td>
</tr>
<tr>
<td>건설발생토 3</td>
<td>77 19 4</td>
<td>양질사토</td>
<td>1.09</td>
<td>2.0×10⁻³</td>
<td>26</td>
<td>41</td>
<td>59</td>
</tr>
<tr>
<td>건설발생토 4</td>
<td>80 16 4</td>
<td>양질사토</td>
<td>1.32</td>
<td>1.0×10⁻³</td>
<td>28</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>건설발생토 5</td>
<td>82 15 3</td>
<td>양질사토</td>
<td>1.30</td>
<td>2.0×10⁻³</td>
<td>29</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>건설발생토 6</td>
<td>82 13 5</td>
<td>양질사토</td>
<td>1.33</td>
<td>1.7×10⁻³</td>
<td>27</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>건설발생토 7</td>
<td>81 14 5</td>
<td>양질사토</td>
<td>1.29</td>
<td>1.8×10⁻³</td>
<td>27</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>건설발생토 8</td>
<td>78 18 4</td>
<td>양질사토</td>
<td>1.31</td>
<td>1.6×10⁻³</td>
<td>28</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>건설발생토 9</td>
<td>83 12 5</td>
<td>양질사토</td>
<td>1.33</td>
<td>2.1×10⁻³</td>
<td>28</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>건설발생토 10</td>
<td>78 18 4</td>
<td>양질사토</td>
<td>1.30</td>
<td>1.5×10⁻³</td>
<td>28</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>건설발생토 11</td>
<td>77 18 5</td>
<td>양질사토</td>
<td>1.31</td>
<td>1.9×10⁻³</td>
<td>26</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>건설발생토 12</td>
<td>81 13 6</td>
<td>양질사토</td>
<td>1.33</td>
<td>1.8×10⁻³</td>
<td>28</td>
<td>48</td>
<td>52</td>
</tr>
</tbody>
</table>

용적밀도는 유기물함량, 토성 및 구조에 따라 변한다. 측정결과 건설발생토의 용적밀도는 1.07~1.33g·cm⁻³범위로 우리나라 경기도 지역 산림토양의 B층 평균 1.05g·cm⁻³(정진현 등, 2002)보다 높았고, 과수의 적정기준인 1.13g·cm⁻³(藤原俊六郎 등, 1996)보다 대부분 높았다. 이것은 앞서 언급한 토성의 결과, 즉 너무 입도조성이 편중되어 고른 분포를 나타낸 결과라고 추정되지만 상세한 내용에 대해서 추가 연구가 필요하다고 판단된다.

투수계수는 토양공극의 크기와 형태에 좌우되며, 특히 토양의 토성과 구조가 가장 직접적으로 관련되는 특성이라 할 수 있다. 측정결과 건설발생토의 포화투수계수...
수는 1.0×10⁻³ ~ 2.1×10⁻³범위로 토성이 양질사토인 관계로 매우 양호한 수준이었다. 통기성 역시 26 ~ 29%범위로 토성의 영향을 받아 양호한 경향을 나타냈다. 건설발생토의 고상률은 41 ~ 50%범위로 과수의 적정함량인 50%이하(藤原俊六郎 등, 1996)였으며, 공극률은 50 ~ 59%범위였다. 한편 건설발생토의 화학적 특성은 표 3.14에 나타낸 바와 같다.

표 3.14 건설발생토의 화학적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>CEC (cmol/kg)</th>
<th>Ex. Cation (cmol/kg)</th>
<th>BS (%)</th>
<th>Av.P₂O₅ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>건설발생토1</td>
<td>9.8</td>
<td>0.84</td>
<td>2</td>
<td>8</td>
<td>1.1</td>
<td>28.9</td>
<td>0.3</td>
</tr>
<tr>
<td>건설발생토2</td>
<td>9.9</td>
<td>0.84</td>
<td>3</td>
<td>8</td>
<td>1.3</td>
<td>28.2</td>
<td>0.3</td>
</tr>
<tr>
<td>건설발생토3</td>
<td>9.9</td>
<td>0.81</td>
<td>2</td>
<td>8</td>
<td>1.3</td>
<td>29.0</td>
<td>0.3</td>
</tr>
<tr>
<td>건설발생토4</td>
<td>11.5</td>
<td>1.86</td>
<td>2</td>
<td>19</td>
<td>1.0</td>
<td>35.0</td>
<td>0.2</td>
</tr>
<tr>
<td>건설발생토5</td>
<td>11.4</td>
<td>1.74</td>
<td>2</td>
<td>17</td>
<td>1.1</td>
<td>34.6</td>
<td>0.2</td>
</tr>
<tr>
<td>건설발생토6</td>
<td>11.5</td>
<td>1.91</td>
<td>3</td>
<td>19</td>
<td>1.1</td>
<td>33.9</td>
<td>0.2</td>
</tr>
<tr>
<td>건설발생토7</td>
<td>9.9</td>
<td>0.85</td>
<td>2</td>
<td>8</td>
<td>1.1</td>
<td>27.7</td>
<td>0.5</td>
</tr>
<tr>
<td>건설발생토8</td>
<td>9.5</td>
<td>0.90</td>
<td>2</td>
<td>9</td>
<td>1.1</td>
<td>24.0</td>
<td>0.6</td>
</tr>
<tr>
<td>건설발생토9</td>
<td>10.7</td>
<td>0.93</td>
<td>2</td>
<td>9</td>
<td>1.1</td>
<td>33.4</td>
<td>0.5</td>
</tr>
<tr>
<td>건설발생토10</td>
<td>9.0</td>
<td>0.69</td>
<td>3</td>
<td>7</td>
<td>0.6</td>
<td>19.3</td>
<td>0.5</td>
</tr>
<tr>
<td>건설발생토11</td>
<td>9.1</td>
<td>0.68</td>
<td>2</td>
<td>7</td>
<td>1.1</td>
<td>24.1</td>
<td>0.6</td>
</tr>
<tr>
<td>건설발생토12</td>
<td>9.4</td>
<td>0.64</td>
<td>3</td>
<td>6</td>
<td>1.1</td>
<td>25.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

앞서 언급한 바와 같이 일반적으로 토양의 pH가 4 ~ 5로 내려가 강산성으로 되면 식물에 대하여 독성을 나타낼 정도로 가용성 알루미늄과 몰리브덴의 농도가 높아진다. 반대로 토양산도가 높아져 알칼리성으로 되면 미량원소의 용해도가 떨어지게 되며, 특히 철, 망간, 아연, 구리 등이 결핍되기 쉽다(유순호와 임선욱, 1994). 따라서 조경식재를 위한 토양산도는 pH 5.0 ~ 7.0(中島康博, 1992), 산림용 목목 및 관상수의 토양개량목표는 pH 5.5 ~ 6.0(藤原俊六郎, 1996)이라 보고하였다. 측정결과 건설발생토의 토양산도는 pH 9.1 ~ 11.5범위로 매우 높았다. 따라서 토양산도를 개량하지 않고서 식생토사로서 재활용한다는 것이 매우 콘란한 일이라 판단되었다.
전기전도도는 토양용액 중의 함유된 이온과 염의 농도를 종합적으로 표시하는 지표이며, 수소이온, 칼륨, 나트륨, 칼슘, 마그네슘 등 치환성양이온 등과 밀접한 관련이 있다(오왕근 등, 1989; 조성진 등, 1990). 따라서 토양의 염류는 토양수 중에 녹아 이온상태로 되어 전기의 전도를 용이하게 해 주며, 전기전도도를 측정함으로서 염류의 농도를 간접적으로 알 수 있다. 일반적으로 간척지, 매립지 및 건조지대 등 특수지역 토양은 많은 염류로 인하여 전기전도도가 높아 식물생육에 지장을 주고 있다. 토양에 염류가 집적되면 삼투압이 증가하여 물의 흡수를 저해하고, 식물의 양분흡수를 방해하여 간행작용을 일으키므로 식생성장의 주요 제한인자라 하였으며(岡島正規 등, 1982; Etherington, 1982; 小平哲夫 등, 1984; Loveland 등, 1990), 조경설계기준(건설교통부, 1999)에는 전기전도도 1.0dS・m-1미만을 수목생육에 크게 유해하지 않는 수준으로 보고 있다. 측정결과 표 3.14에 나타낸 건설발생토 4, 5, 6을 제외한 나머지 전기전도도는 0.64~0.93dS・m-1범위를 나타내 수목생육에 크게 유해하지 않는 수준이었으나 건설발생토 4, 5, 6의 경우 1.74~1.91dS・m-1의 범위로 수목생육에 유해한 수준이었다. 이와 같이 건설발생토의 경우 채취시기에 따라 심한 전기전도도의 차이를 보였다.

토양유기물은 토양 내의 암모니아를 흡착함으로서 질소성분의 유실을 막아주며, 같은 양의 점토에 비해 3~5배의 양이온치환능력을 증가시킨다. 또한 수분흡수능력이 커서 토양의 보수력 증진에 기여한다. 그리고 산과 알칼리에 대한 완충능력이 있어 어느 정도의 산과 알칼리의 유입에도 토양산도가 변하지 않도록 해 준다. 이 외에도 토양의 구조를 안정하게 하고 자체에 양분을 보유하고 있어 양분의 저장고 역할을 하며, 유효인산의 고정을 막아 식생성장에 도움을 주게 된다. 건설발생토의 유기물 함량은 2~3g・kg-1범위로 조경수목의 식재를 위한 적정범위인 30g・kg-1의 약 1/10이상 낮은 수준이었다.

토양비옥도의 척도인 건설발생토의 양이온치환용량은 6~19cmol・kg-1로 조경수목의 식재를 위한 최소한의 함량인 6cmol・kg-1보다 높은 수준이었다.

식물체 대사에 중요한 역할을 하며, 특히 식물의 증산작용을 조절하는데 기여하는 건설발생토의 치환성칼슘 함량은 0.6~1.3cmol・kg-1범위로 조경설계기준(건설교통부, 1999) 중급(0.6cmol・kg-1)이상의 수준이었다.

앞서 살펴본 바와 같이 칼슘은 토양 중의 교환성나트륨과 센트와 나트륨흡착비를
낮추어 투수를 좋게 하고, 치환성나트륨을 씻어내어 토양입단을 형성하게 하므로 제염을 촉진한다. 한편 칼슘의 집적은 원소간 길항작용에 의하여 타 양분의 흡수를 저해하므로 수목생육에 나쁜 영향을 주게 된다. 따라서 칼슘은 토양에 적당량이 함유되어 있으면 긍정적인 작용을 하지만 과다할 경우에는 수목생육에 나쁜 영향을 미치게 한다. 측정결과 건설발생토의 치환성칼슘 함량은 19.3 ~ 35.0 cmol·kg⁻¹ 범위로 과다할 정도로 매우 높은 수준이었다. 이는 건설발생토에 시멘트 등이 혼합된 결과로, 식생토사로 재활용하기 위해서는 우선적으로 개량되어야 할 부분이라고 판단되었다.

건설발생토의 치환성나트륨 함량은 0.6 ~ 1.0 cmol·kg⁻¹ 범위로 나타내 치환성나트륨으로 인한 장해는 없을 것으로 판단되었다.

건설발생토의 치환성마그네슘 함량은 0.2 ~ 0.6 cmol·kg⁻¹ 범위로 조경설계기준(건설교통부, 1999)과 비교해 보면 대부분 중급(0.6 ~ 3.0 cmol·kg⁻¹)과 유사하거나 약간 낮은 경향을 보였다.

염기포화도(BS; Base Saturation)는 양이온치환용량에 대한 치환성양이온(cmol·kg⁻¹의 단위로 나타낸 Ca²⁺, Mg²⁺, K⁺, Na⁺의 합)의 비율이며, 산림용료목의 토양양분 전단기준은 양이온치환용량의 60%, 시설재배지 토양의 개량기준은 80 ~ 100%라고 하였다(藤原俊六郎, 1996). 또한 염기포화도는 토양교질의 종류가 같은 때에는 토양 pH와 일정한 관계가 있으며, 염기포화도가 높을수록 토양산도도 높아진다. 우리나라 자연토양의 염기포화도는 50%보다 낮은 것이 일반적이다. 측정결과 건설발생토의 염기포화도는 194 ~ 465%범위로 앞서 언급한 시설재배지 토양의 개량기준보다 높게 나타나 염기포화도가 수목생장에 나쁜 영향을 미칠 것이 예상되었다.

인(P)은 식물체내에서 탄수화물 대사와 에너지 대사 등 여러 가지 대사를 주도하는 무기영양소이며, 식물의 생육 초기에 필요한 원소이므로 결핍될 경우 왜성화로 묘목이 자라지 않는 현상이 나타난다. 특히 유효인산은 식물체에 흡수·이용될 수 있는 형태의 토양인산을 말한다. 측정결과 건설발생토의 유효인산 함량은 56 ~ 112 mg·kg⁻¹ 범위로 조경설계기준(건설교통부, 1999)과 비교해 보면 대부분 하급(100 mg·kg⁻¹ 미만)이거나 이보다 약간 높은 수준이었다.

위에서 살펴본 바와 같은 건설발생토의 특성을 앞서 제시한 건설발생토의 개량 목표치와 비교해 보면 그림 3.4에 나타낸 바와 같이 유효토층의 식생토사로 활용하
고사하는 경우에 있어서는 강알칼리성인 토양산도, 과잉 치환성칼슘 및 치환성칼륨 함량 등이 식생 제한인자로서 작용할 것이라 판단되었다. 이와 더불어 그림에는 표현하지 못했지만 양질사토인 토성, 높은 용적밀도 등이 또한 식생 제한인자라 판단되었다.

그림 3.4 건설발생토의 토양특성과 개량목표치와의 비교

한편 배수층으로 활용하고자 하는 경우에 있어서는 강알칼리성인 토양산도만이 제한인자가 될 것으로 판단되었다.

3.4 건설발생토 재활용 관련 법제도 검토

앞서 언급한 바와 같이 본 연구에서는 건설공사로 인하여 발생된 건설폐토석 또는 혼합건설폐기물을 중간처리업체가 중간처리하는 과정에서 분리・선별한 토분을 건설발생토라 정의하였다.

따라서 본 연구의 공시토양인 건설발생토는 건설폐기물의 재활용촉진에 관한 법률에 따라 건설폐기물에 속하며, 이를 친환경적으로 적정처리하고, 재활용을 촉진하기 위한 사항에 있어서는 동법을 다른 법률에 우선하여 적용해야 한다고 규정되어 있으므로 여기에서는 먼저 건설폐기물의 재활용촉진에 관한 법률에 대해 살펴
보도록 한다.

또한 동법에서 규정되지 아니한 사항은 관계 법률의 규정을 적용해야 한다고 규정되어 있으므로 관계 법률인 폐기물관리법과 도양환경보전법에 대해서도 정리도록 한다.

3.4.1 건설폐기물의 재활용촉진에 관한 법률

건설폐기물의 재활용 촉진에 관한 법률은 건설공사 등으로 발생한 건설폐기물을 친환경적으로 적정처리하고, 재활용을 촉진하여 국가자원의 효율적 이용은 물론 국민경제발전과 공공복리증진에 기여함을 목적으로 하고 있다.

건설폐기물의 재활용 촉진에 관한 법률에서는 국가 및 지방자치단체가 건설폐기물을 친환경적으로 적정처리하고, 재활용을 촉진할 수 있도록 필요한 시책을 강구하도록 하고 있으며, 국가·지방자치단체 및 국가·지방자치단체가 투자·출연한 기관은 위의 규정에 의한 시책을 이행하도록 하고 있으며(법 제4조), 환경부장관이 건설폐기물을 친환경적으로 적정처리하고 재활용을 촉진하기 위하여 관계 중앙행정기관의 장 및 특별시장·광역시장 또는 도지사의 의견을 들어 재활용기본계획을 5년마다 수립하도록 하고 있고(법 제8조), 환경부장관과 건설교통부장관이 건설폐기물의 친환경적 적정처리 및 재활용 촉진을 위한 기술의 연구개발에 관련된 인력·자금·시험시설 및 기술정보의 효율적인 활용과 재활용기술의 해외진출 등을 촉진하기 위한 기술연구개발단을 구성하여 운영할 수 있도록 하고 있으며, 건설폐기물의 처리기술 및 순환경제 생산을 위한 연구개발을 위하여 필요한 장비는 정부 또는 정부기의 자가 출연금이나 그 밖에 기업의 기술개발비로 충당할 수 있도록 하고 있다(법 제9조). 또한 환경부장관 또는 건설교통부장관은 건설폐기물을 친환경적으로 적정처리하고 재활용을 촉진할 수 있도록 하기 위하여 건설폐기물처리시설을 설치하고자 하는 자에 대하여 필요하다고 인정되는 경우에는 그 소요되는 비용의 일부를 지원할 수 있도록 하고 있으며, 재정지원에 관하여 필요한 사항은 대통령령으로 정하도록 하고 있다(법 제59조).

3.4.2 폐기물관리법

폐기물관리법은 1986년 중전의 오물청소법의 내용과 환경보전법상의 산업폐기물 관리부분을 합하여 폐기물 전반을 다루는 하나의 독립된 폐기물 관리에 관한 법이다. 이 법의 주요 내용은 생활폐기물, 사업장폐기물, 지정폐기물 등에 대한 수집,
운반, 처리와 폐기물 처리시설의 주변 환경지역의 지원, 폐기물처리업자 등에 대한 지도, 감독 그리고 부칙 및 벌칙 등의 내용을 담고 있다.

영 제6조제1항제9호 단서의 규정에 의해 시설의 전부를 갖추지 아니한 매립시설에서 폐기물을 처리할 수 있는 경우는 건설폐토석의 경우 폐기물공정시험법에 의한 용출시험결과 별표1의 표 3.15에 나타낸 바와 같은 유해물질 함유기준 이내이고, 유기성분 등이 일반토양에 준하는 경우에 한한다고 규정하고 있다(시행규칙 제7조).

표 3.15 유해물질 판정 항목 및 기준치

<table>
<thead>
<tr>
<th>항목</th>
<th>기준치</th>
<th>항목</th>
<th>기준치</th>
</tr>
</thead>
<tbody>
<tr>
<td>납 및 그 화합물</td>
<td>3.0mg/ℓ이상</td>
<td>수은 및 그 화합물</td>
<td>0.005mg/ℓ이상</td>
</tr>
<tr>
<td>카드뮴 및 그 화합물</td>
<td>0.3mg/ℓ이상</td>
<td>비소 및 그 화합물</td>
<td>1.5mg/ℓ이상</td>
</tr>
<tr>
<td>6가크롬 및 그 화합물</td>
<td>1.5mg/ℓ이상</td>
<td>시안 및 그 화합물</td>
<td>1.0mg/ℓ이상</td>
</tr>
<tr>
<td>구리 및 그 화합물</td>
<td>3.0mg/ℓ이상</td>
<td>TCE</td>
<td>0.3mg/ℓ이상</td>
</tr>
<tr>
<td>PCE</td>
<td>0.1mg/ℓ이상</td>
<td>유기인</td>
<td>1.0mg/ℓ이상</td>
</tr>
</tbody>
</table>

자료: 폐기물관리법 시행규칙 별표1

건설폐기물 파쇄기준 및 방법의 경우 건설폐기물은 파쇄처리하기 전에 폐기물을 종류별로 최대한 분리·선별하여야 하며, 건설폐재류를 재활용하고자 하는 경우에
는 자원의 절약과 재활용 촉진에 관한 법률 제25조의 규정에 의한 재활용 목적에 적합하게 처리하도록 하고 있으며, 다만 건설폐재류를 성토재·보조기층재·도로기층 재 또는 복토재로 재활용하고자 하는 경우에는 그 최대직경이 100mm이하이고, 이물질 함유량이 부피기준으로 1%이하가 되도록 하고 있다.

건설폐기물 매립기준 및 방법의 경우 매립되는 건설폐기물로 인하여 매립층간에 공간이 생길 수 있는 건설폐재류는 매립공간이 최소화되도록 최대직경이 50cm이하의 크기에, 소각이 곤란한 폐합성수지 등은 최대직경이 15cm이하의 크기로 파쇄·절단 또는 용융한 후 매립하여야 하며, 오니의 경우에는 탈수·건조 등에 의하여
수분합량 85% 이하로 사전 처리를 한 후에 매립하도록 하고 있다(시행규칙 제8조).

3.4.3 토양환경보전법

건설발생토를 활용하려면 토양환경보전법에 규정한 표 3.16에 나타낸 바와 같은 토양오염공정시험법에 의한 토양오염도가 토양오염우려기준 이내이어야 하며, 특히 식재기반으로 활용하고자 하는 경우에는 이 중에서도 농경지 기준을 초과하지 않아야 한다.

표 3.16 토양오염우려기준

<table>
<thead>
<tr>
<th>물질</th>
<th>농경지</th>
<th>공장·산업지역</th>
</tr>
</thead>
<tbody>
<tr>
<td>카드뮴</td>
<td>1.5</td>
<td>12</td>
</tr>
<tr>
<td>구리</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>바소</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>수은</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>납</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>6가크롬</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>유기인화합물</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>PCB</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>시안</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>폐urname</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>유류(동·석물성 제외)</td>
<td>-</td>
<td>80</td>
</tr>
</tbody>
</table>

농경지 : 논, 밭, 과수원, 목장용지, 체육용지(수목·잔디 식생지에 한함)
공장·산업지역 : 공장용지, 잡종지
자료 : 토양환경보전법 제19조관련, 별표2

3.5 소결

본 장에서는 건설발생토의 개념 정의, 발생원, 건설폐토석 및 혼합건설폐기물의 중간처리, 건설발생토의 유해물질 함량 및 토양오염도 평가, 건설발생토의 물리·화학적 특성, 건설발생토 재활용 관련 법제도 검토 등을 통해 건설발생토의 발생현황 및 특성을 파악하고자 하였으며, 얻어진 결과를 정리하면 다음과 같다.

먼저 본 연구에서는 건설공사로 인하여 발생된 건설폐토석 또는 혼합건설폐기물
을 중간처리업체가 중간처리하는 과정에서 분리·선별한 토분을 건설발생토라는 용어로 정의하였으며, 따라서 본 연구의 공시토양인 건설발생토는 건설폐기물의 재활용촉진에 관한 법률에 따라 건설폐기물에 해당되었다.

다음으로 건설발생토를 발생시키는 건설폐토석 또는 혼합건설폐기물의 발생량은 현재 증가추세를 보이고 있으며, 또한 주된 발생원으로는 각종 건축물의 해체공사와 포장공사 등을 일으키고 있었다.

한편 건설발생토의 유해물질 함량은 분석항목 모두 지정폐기물에 함유된 유해물질 기준치 이내였고, 토양오염도 역시 토양오염 우려기준을 초과하지 않았다. 다만 카드뮴과 6가크롬의 경우 채취시기에 따라서는 우려기준에 근접하는 경우도 발생할 수 있으므로 감소방안을 강구할 필요가 있다고 판단되었다.

또한 유효토층의 식생토사로 활용하고자 하는 경우에는 강알칼리성인 토양산도, 과잉 치환성칼슘 및 치환성칼륨 함량, 양질사토인 토성, 높은 용적밀도 등이 식생 제한인자라 판단되었으며, 배수층으로 활용하고자 하는 경우에는 강알칼리성인 토양산도만이 제한인자가 될 것으로 판단되었다. 이와 같이 발효된 제한인자에 대한 개량방안 등에 관해서는 다음 장에서 상세히 다루도록 한다.

끝으로 앞서 언급한 바와 같이 본 연구의 공시토양인 건설발생토는 건설폐기물의 재활용촉진에 관한 법률에 따라 건설폐기물에 속하며, 이를 친환경적으로 적정처리하고, 재활용을 촉진하기 위한 사항에 있어서는 동법을 다른 법률에 우선하여 적용해야 하고, 동법에서 규정되지 아니한 사항은 관계 법률의 규정을 적용해야 한다고 규정되어 있으므로 관계 법률인 폐기물관리법과 토양환경보전법에 대해서도 적정 처리하였으며, 이들 법률에 규정된 기준과 건설발생토의 유해물질 함량 및 토양오염도 측정결과와 비교해 본 결과 현 단계에서 건설발생토를 재활용하는데 있어 문제점은 없는 것으로 확인되었다.
4. 건설발생토 개량방안

4.1 연구내용
본 장에서는 먼저 앞서 밝혀진 식생토사로 활용하는데 있어 문제가 되는 건설발생토의 특성을 개량하기 위해 활용 가능한 개량물질 및 개량방법에 대해 문헌연구 등을 통해 검토해 본다. 다음으로 검토된 개량물질 중 건설발생토 개량에 적합한 물질을 대상으로 개량 예비실험을 실시한다. 끝으로 개량물질 적용에 따른 식물생육실험을 실시하여 개량효과를 파악한다.

4.2 문헌연구
먼저 문헌연구를 통해 식생토사로 활용하는데 있어 문제가 되는 건설발생토의 특성을 개량하는데 활용 가능한 개량물질과 개량방법에 대해 정리해 본다.

4.2.1 개량물질
4.2.1.1 음식물쓰레기
음식물쓰레기의 특징으로는 유기물함량이 매우 높다는 것이다. 따라서 이에 대한 사용효과는 토양에 유기물시용 효과와 동일한 효과를 가진다고 볼 수 있다. 하지만 염분함량이 비료관리법에 1.0%이하로 규정하고 있는데 비해 음식물쓰레기의 경우 평균 1.1~1.2%로 다소 높으며, 또한 계절적으로 음식물 종류에 따라서 그 함량의 변동이 심하다. 염분합량이 높은 퇴비를 토양에 사용하게 되면 토양 중에 염분이 집적되어 토양의 입단구조를 분산시켜 토양의 통기성이나 투수성 등 토양의 물리성이 악화시키고, 과잉으로 집적된 염분은 식물에 유용한 성분의 식물체 흡수를 방해하여 토양의 물의 분산 형과 결핍을 초래할 수 있다. 더불어 음식물쓰레기는 분해되기 쉬운 탄수화물・단백질・지방 등이 주성분으로 쉽게 부패되어 악취가 발생할 수 있으며, 병원성 미생물이 서식하므로 위생상 문제를 일으킬 수도 있다. 현재 농업 분야를 중심으로 음식물쓰레기의 퇴비화가 활발히 진행되고 있으나 자원화 방법 등에 따라 화학적・물리적・생물적 등이 큰 차이를 보이고 있다(박백균 등, 2003).

4.2.1.2 하수오니
하수오니의 성분은 종류, 발생시기, 처리장의 임지조건 등에 따라 차이가 있다.
일반적으로 하수오너의 유기물은 토양 중의 미생물에 의해 분해되고, 이 때 무기성 질소가 발생하지만 C/N비가 30이상일 때에는 미생물이 질소를 흡수하여 증식하기 때문에 식물은 질소를 흡수하지 못하여 질소기아 상태에 이르게 된다. C/N비가 15 30일 때에는 유기물의 분해에 의하여 발생하는 질소와 미생물이 흡수하는 질소의 양이 거의 같아지며, C/N비가 15미만일 때에는 분해에서 생기는 질소가 미생물이 흡수하는 질소를 초과하게 된다.

탈수 하수오너, 건조 탈수오너 그리고 유기물을 혼합하지 않은 발효 하수오너는 C/N비가 작고, 다른 토양개량제에 비하여 다량의 질소를 함유하고 있다. 이러한 하수오니는 비료로서의 효과도 기대할 수 있으나 사용량이 많으면 식물은 질소과다 상태가 되기 쉽다. 또한 탈수 하수오니의 경우 분해되기 쉬운 유기물이 많이 함유되어 있기 때문에 사육 직후에는 급격한 분해가 일어나고, 식물에 악영향(지온의 상승, CO₂, NH₃, NO₂ 등의 발생)을 초래할 수 있다. 그러나 숙성한 발효 하수오너에는 그런 염려가 없다. 또한 톱밥 등을 혼합한 것은 비교적 분해가 곧속한 유기물이 많이 함유되어 있기 때문에 토양개량의 효과가 오래 지속될 수 있다.

권순익(2003)은 우리나라에서 발생되는 대부분의 하수오니가 현재 기준에서 퇴비 원료로 부적합하다고 하였으며, 채취지역별로도 중소도시 및 농촌지역에서도 90% 이상이 퇴비원료로 사용할 수 없다고 보고하였다. 따라서 하수오니가 퇴비의 원료로서 적합성이 확인되기 위해서는 하수처리 과정에서 유해성분인 중금속의 제거 노력 등이 필요하다고 판단되었다.

4.2.1.3 제지슬러지

제지슬러지의 경우 유기물함량이 매우 높은 편으로 토양에 사용하게 되면 토양 물리성 개선효과가 기대된다. 하지만 펄프 및 제지의 표백과정에서 사용되는 염소 및 염소계 유도체의 화학반응으로부터 생성되는 TCDD나 TCDF 등이 발암물질로 규정되어 있기 때문에 처리가 매우 어려운 설계임이며, 또한 알루미늄 함량이 매우 높아 토양내에서 활성화될 가능성이 있지만 이에 대한 연구가 현재 미흡한 실정이다(이인복 등, 2000).
4.2.1.4 가축분뇨

가축분뇨의 경우 유기물, 질소, 인산의 함량은 높으며, 상대적으로 칼리의 함량은 낮은 편이다. C/N율이 15정도로서 퇴비화를 거치지 않고도 직접 사용이 가능한 수준이다. 그러나 수거 및 운반이 불편할 뿐만 아니라 병원성 미생물의 감염 등이 우려된다. 또한 사료 등에 생장촉진을 위해 첨가되는 구리와 아연이 가축분뇨에서도 높게 나타나 토양에 사용시 토양오염이 우려된다(권순익, 2003).

표 4.1 유기성 폐자원의 이화학성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM g/kg</th>
<th>T-N</th>
<th>K2O</th>
<th>CaO</th>
<th>MgO</th>
<th>Na2O</th>
<th>P2O5</th>
<th>NaCl %</th>
</tr>
</thead>
<tbody>
<tr>
<td>퇴비화된 음식물쓰레기*1</td>
<td>7.7</td>
<td>33.0</td>
<td>610</td>
<td>17.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
</tr>
<tr>
<td>발효 하수오니*2</td>
<td>-</td>
<td>-</td>
<td>696</td>
<td>49.5</td>
<td>3.1</td>
<td>11.3</td>
<td>4.5</td>
<td>-</td>
<td>32.9</td>
<td>-</td>
</tr>
<tr>
<td>제지슬러지*3</td>
<td>6.7</td>
<td>5.8</td>
<td>392</td>
<td>8.5</td>
<td>2.6</td>
<td>2.0</td>
<td>7.0</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>돼분*2</td>
<td>7.2</td>
<td>-</td>
<td>807</td>
<td>36.8</td>
<td>7.7</td>
<td>31.5</td>
<td>11.9</td>
<td>10.5</td>
<td>59.9</td>
<td>-</td>
</tr>
</tbody>
</table>

자료*1 : 박백균 등, 2003, 음식물쓰레기를 이용한 고품질 퇴비화 연구, 농촌진흥청.

표 4.2 유기성 폐자원의 중금속 함량

<table>
<thead>
<tr>
<th>구분</th>
<th>As mg/kg</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Mn</th>
<th>Ni</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>퇴비화된 음식물쓰레기*1</td>
<td>-</td>
<td>0.5</td>
<td>7.2</td>
<td>66.2</td>
<td>-</td>
<td>10.6</td>
<td>4.7</td>
<td>204</td>
</tr>
<tr>
<td>발효 하수오니*2</td>
<td>4.9</td>
<td>9.0</td>
<td>249.2</td>
<td>811.9</td>
<td>1516.1</td>
<td>199.6</td>
<td>45.8</td>
<td>2005</td>
</tr>
<tr>
<td>제지슬러지*3</td>
<td>불검출</td>
<td>1.6</td>
<td>15.0</td>
<td>21.0</td>
<td>130.0</td>
<td>26.0</td>
<td>44.0</td>
<td>234</td>
</tr>
<tr>
<td>돼분*2</td>
<td>-</td>
<td>0.4</td>
<td>16.7</td>
<td>499.4</td>
<td>241.8</td>
<td>-</td>
<td>3.7</td>
<td>1069</td>
</tr>
</tbody>
</table>
4.2.1.5 유기질 토양개량재

1) 수피(bark) 퇴비

수피퇴비는 수피를 주원료로 한 퇴비로 녹화사업에서 사용실적이 높은 퇴비 중 하나이다. 수피는 목질자재이고, 분해되기 어려운 특성 때문에 발효촉진을 위해 질소질비료나 계분 등을 첨가해서 제조되는 것이 일반적이다. 일반적인 특징으로는 퇴비화가 진행되더라도 리그닌 등의 난분해성 성분이 많이 함유되어 있기 때문에 다른 퇴비에 비해 C/N비가 매우 높은 경향을 보인다. 토양 중에서 분해되기 어려운 특성 때문에 토양개량 효과의 지속성이 높은 퇴비라 할 수 있다. 또한 굵은 입자의 고형물을 포함하기 때문에 퇴비자체의 효과로서 통기성이나 투수성 등의 개량효과를 기대할 수 있다(이규석 등, 2003).

2) 피트모스

습지성 식물이 혼합된 조건에서 퇴적되어 일정 단계까지 분해된 유기물인 이탄(泥炭)을 일반적으로 피트모스라 한다. 이탄은 세척해서 진흙상태 부분을 제거한 섬유상의 부분이 일반적으로 토양개량재로서 사용된다. 이탄은 한랭한 습지에서 형성되기 때문에 대부분의 생산지는 캐나다, 러시아 및 북유럽 등이다.

피트모스는 섬유가 서로 얽혀 대공극을 형성하는 특성과 함께 섬유자체가 다공질로서 천수성이란 특성을 갖고 있다. 따라서 토양에 사용하게 되면 대공극 형성, 통기성 확보, 보수기능 향상 등의 물리성 개선효과를 기대할 수 있다. 또한 보수력의 지표인 양이온환용량이 10cmol・kg⁻¹정도로 퇴비에 비해 높아 보수력 향상에 도 기여한다. 이러한 효과와 더불어 유기질자재이므로 쉽게 분해되기 어려운 특성 때문에 지속성이 있으므로 광물질의 토양개량재와 유사한 효과를 발휘하는 자재라고 할 수 있다. 일반적으로 pH가 3.5~5.5전후이므로 알칼리토양의 중화개량에서 도 그 효과를 기대할 수 있다. 더불어 보수성, 보수력이 약한 사질토 또는 통기성, 투수성이 불량한 점토에서의 사용이 효과적이다(이규석 등, 2003).

3) 목탄

토양에 혼합한 경우에는 투수성을 목적으로 한 물리성 개선이 가능하다. 한편 목탄은 목탄의 형성과 원재료에 따라 다른 특성을 보이기도 하지만 보수성 향상 효
과를 기대할 수 있다. 토양산도는 알칼리성이며, 값이 비싼 점이 단점이라 할 수 있다(이규석 등, 2003).

4.2.1.6 비료
비료의 효과는 질소, 인산, 칼륨 등의 성분별 형태에 따라 달라지며, 같은 성분의 비료를 같은 양을 사용하더라도 그 중에 함유되어 있는 성분의 형태가 다르면 비료의 효과는 달라지므로 비료성분의 형태에 따른 성질의 차이를 알아 사 용해야 한다. 이 중 일반적으로 알칼리성토양에 대한 개량은 유안, 염안, 황산칼륨, 염화칼륨 및 과인산석화 등 생리적 산성비료가 사용된다.

4.2.2 개량방법
4.2.2.1 토성불량
일반적으로 역토, 사토, 양질사토가 되면 보수력과 보비력이 떨어지고, 미사질토나 석토가 되면 통기 투수성이 나빠진다. 토성의 개량은 무기질 토양개량제를 쓰는 것이 일반적이다. 다만 역토, 사토 또는 석토에서는 개량이 곤란한 경우도 있다.
개량할 수 있다고 하더라도 개량에 소요되는 금액보다도 객토를 하는 것이 경제적으로 유리한 경우 객토로서 처리하는 경우가 많다. 역토의 개량에는 최선책이 없는 실정이다. 따라서 큰 자갈을 골라내면서 객토 성토를 병행하여 식재기반을 조성하는 경우가 많다. 자갈의 형태나 크기, 양에 따라 다르지만 직경 15cm이상의 자갈(특히 동근 자갈)이 50%이상인 경우에는 자갈을 골라내기 어려우므로 아예 객토를 하는 것이 좋다. 또한 40%정도까지 되면 펄라이트나 유기물을 혼합함으로서 양호한 식재기반이 될 수도 있다.
또한 점성이 강한 흙의 개량에는 아직 이렇다 할 방법이 확립되어 있지 않아 식재기반조성에 있어 최대의 문제가 되고 있다. 이의 총합비도가 많아 토양개량제를 사용하는 경우에는 통상 보다 많은 혼합량을 필요로 하며, 개량비용이 높아져 오히려 구입 객토를 하는 방법이 경제적으로 유리한 경우가 많으므로 객토 성토에 의해 식재하고 있는 것이 오늘날의 현실이다.
4.2.2.2 통기·투수불량

통기불량과 투수불량은 점성이 강한 흙에 원인이 있는 경우와 절성토 조성으로 생긴 지반이 굳이진 토에서 그 원인이 있는 경우 두 가지가 있다. 통기·투수불량의 개량으로서 가장 간단한 방법으로는 흙을 경운함으로써 대공극을 많이 만드는 것이다. 경우에 따라서는 경운만으로도 큰 효과를 기대할 수도 있으나, 점성이 강한 토양의 개량에 있어서는 모래나 통기·투수성이 좋은 토양개량재를 혼합할 필요가 있다.

그러나 개량효과라는 점에서는 개량재의 혼합량이 용적비율의 30~40%이상일 것을 필요로 한다. 또한 비용을 비교한 후 구입 객토에 의한 성토를 할 경우도 있다. 한편 절성토 조성으로 지반이 굳이지서 불량하게 된 경우라면 경운만으로도 거의 문제가 해결된다.

4.2.2.3 유효수분 부족

유효수분의 부족은 토양이 사질 및 역질(자갈)인 경우나 유효토심이 얇은 지반에서 발생한다. 토양이 사질이나 역질인 경우에는 진주암펄라이트와 같은 보수성이 좋은 토양개량재를 혼합하여 보수성을 높이는 방법이 일반적으로 행해진다. 다만 자갈비율이 높아 개량하기 어려운 경우에는 보수력이 있는 흙을 객토할 필요가 있다. 또한 유효토심이 얇은 지반인 경우에는 유효토심의 두께를 성토하여 확보할 필요가 있다.

사토나 역토는 개량하기가 어려우나 얕직사토의 경우에는 진주암펄라이트를 15~25%정도와 수피퇴비를 15%정도 혼합하여 쓰는 경우가 많다.

수피퇴비의 경우 사용직후에는 보수력이 그다지 향상되지 않지만 분해되면서 입단구조 형성에 기여하므로 서서히 효과를 발휘하고, 가격도 그다지 비싸지 않아 그나름대로 효과가 있는 편이다. 그 밖에 유효수분 부족을 보완하는 수단으로서는 멀칭에 의한 수분 증발을 방지하는 방법이 있다. 멀칭의 소재로는 종이, 수피, 목재칩류, 부직포 등이 있는데 토양개량재와 함께 사용함으로서 커다란 효과를 기대할 수 있다.
4.2.2.4 양분부족
식물이 생육하기에 부족한 양분을 함유하고 있는 토양의 경우 일반적으로 시비를 통해 양분을 보충해 주어야 한다. 어떤 비료를 사용할 것인지에는 녹화의 목표에 따라 다르나 최근에는 비료에 의한 독성이 식물에 입는 피해현상도 적고, 관리에 도움이 되어가지 않는 환경성 고형 비료를 많이 사용하고 있다. 또한 보비력이 낮은 토양에는 수피퇴비나 피트모스 등의 유기물을 투입하여 보비력을 증가시키고 나서 시비를 하면 좋다. 유기물의 공급은 분해되면서 흙이 입단화 되기 때문에 보비력 향상에는 물론 보수성과 투수성 향상, 흙의 고결화를 방지하는 많은 이점이 있다.

4.2.2.5 토양산도의 부적합(강알칼리성)
원래 알칼리성을 나타내는 토양은 석회암지대 등으로 한정되어 있었으나 최근에는 석회암처리지반에서 강진도를 사용한 임해매립지나 재생골재를 사용한 주차장 지반에서도 볼 수 있게 되었다. 알칼리성의 원인이 되는 염류는 주로 나트륨과 칼슘이다. 알칼리성토양에 대한 개량은 유안, 염안, 황산칼슘 또는 염화칼슘 등 생리적 산성비료를 쓰는 방법, 황산제일철이나 유황화 등으로 중화하는 방법 등이 있다.

또한 알칼리성 상태의 알칼리화에 대해서는 석고 등으로 나트륨을 칼슘으로 치환시키는 방법이 있는데 그 어느 것도 안전하고 확실한 효과를 얻을 수 있는 방법은 현재까지 아닌 것 같다. 알칼리성 염류는 수분이 증발하면 토양의 상부에 집적하여 빗물에 의한 용탈의 촉진을 유도할 필요가 있다. pH9.0전후까지는 pH4.0전후의 피트모스나 양이온환용량이 큰 퇴비를 30%이상 혼합하는 방법 외에 배수성에 중점을 둔 정비와 우드칩 등 유기질 재료의 병용을 병용하여 건조방지를 의하는 것이 가장 안전한 대책이 될 것이다.

4.2.2.6 고염류농도의 탈염촉진
염류질적 토양의 탈염은 중성염의 경우 빗물에 의해 용이하게 이루어진다. 탈염촉진제의 경우 계면활성제를 포함한 세제로 염류를 세척하여 빠른 시간내 토양입자에 흡착되어 있는 염분을 세척할 수 있다. 하지만 탈염촉진제는 특히 내분비교란
작용에 대해 환경적 영향이 현재까지 확실하게 구명되지 않은 상태이므로 사용에 있어서 주의를 필요로 한다.

우리나라의 경우 연강우량이 1,300mm 이상이므로 칼슘에 의한 염류집적 현상은 빗물에 의해 자연 용탈되려 생각하며, 외부에 노출된 경우 탄산화작용에 의해서도 칼슘이 용이하게 감소하려라 예상된다.

4.2.2.7 유해물질의 존재

식재기반에 대한 유해물질로는 여러 가지가 있는데 그 대부분은 해저토사, 건설공사의 건설폐토석, 생활폐기물(쓰레기 등), 그 밖에 하수슬러지 등으로서 매립된 지반에 존재한다. 또한 고통도의 염류, 메탄가스, 오일, 도시의 재개발로 헐어낸 공장터의 화학약품과 중금속 등이 이에 해당한다. 정도의 차이는 있으나 현지토의 개량은 극히 곤란한 실정이다. 따라서 하층지반의 배수처리를 하고 나서 식재지 전체면적에 1.5m 이상 두겹게 객토를 하는 것이 좋다. 단, 메탄가스는 가스를 완전히 제거할 필요가 있다.

4.2.3 개량방안에 대한 사전검토

앞서 문헌연구를 통해 건설발생토를 개량하는데 있어서 활용 가능한 개량물질과 개량방법에 대해 정리해 보았다. 여기에서는 이 중 건설발생토에 적용 가능한 개량물질과 개량방법에 대해 살펴보도록 한다.

한편 표 4.3은 건설발생토를 식생토사로서 활용할 때의 제한인자, 식재상 문제점 및 가장 일반적인 개량방법에 대해 정리한 것이다.

<table>
<thead>
<tr>
<th>제한인자</th>
<th>식재상 문제점</th>
<th>개량방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>강알칼리성</td>
<td>생육장해</td>
<td>중화처리</td>
</tr>
<tr>
<td>양분부족</td>
<td>생육불량</td>
<td>유기질개량재 시용</td>
</tr>
<tr>
<td>토성불량</td>
<td>건조해</td>
<td>유기질개량재 시용</td>
</tr>
<tr>
<td>과잉 치환성칼슘 함량</td>
<td>생육장해</td>
<td>빗물로 자연용탈 유도</td>
</tr>
</tbody>
</table>

표 4.3 건설발생토의 제한인자, 식재상 문제점 및 개량방법
먼저 개량물질에 대해 살펴보면 음식물쓰레기, 하수오니, 제지쓰레기, 가축분뇨 등의 유기성 폐자원의 경우 공통적으로 유기물 함량이 높다는 것을 들 수 있다. 따라서 토양개량재로 사용할 경우 토양구조의 개선 등의 효과를 기대할 수 있으며, 앞에서 살펴본 바와 같이 건설발생토의 토양특성 중 유기물 함량이 매우 낮은 수준이므로 적용 가능성은 전혀 제한될 수는 없지만 현실에서의 유기성 폐자원에 대한 자원화 방법에 따라 화학적・물리적・생물적 등이 안정화되지 않은 관계로 안정된 토양개량재로 사용하기 위해서는 먼저 안정된 품질을 생산할 수 있는 자원의 관리 및 제조시설의 완비가 중요하다고 판단되며, 향후 품질 안정화가 이루어진다면 적극 고려해 볼 가치가 있다고 생각된다. 또한 유기성 폐자원의 경우 유해물질을 함유하고 있는 경우도 있으므로 이러한 유해물질을 줄일 수 있는 방법의 도입으로 문제점이 개선된 후에야 안심하고 토양개량재로서의 역할과 기능을 기대할 수 있을 것이라 판단된다.

다음으로 유기질 토양개량재 중 수피퇴비, 피트모스, 목탄 등의 경우 유기질 토양개량재가 지난 고유특성인 토양에 사용할 경우 토양구조의 개선 및 유기물 함량의 증대 효과를 기대할 수 있으나 본 연구 공시토양인 건설발생토의 경우 높은 토양산도를 개량하기 위해선 유기물 함량의 증대와 더불어 부수적으로 토양산도를 교정할 수 있는 재료가 요구되므로 이런 점에서 볼 때 수피퇴비나 목탄보다는 피트모스가 우수한 토양개량재라 판단된다.

다음으로 비료의 경우 건설발생토의 토양특성상 강알칼리를 띠고 있으므로 이를 교정하기 위해서는 얕안, 염안, 황산칼륨 또는 염화칼륨 등 생리적 산성비료를 쓰는 방법과 황산제일철이나 유황화 등으로 중화하는 방법을 생각할 수 있다.

한편 개량방법에 대해 살펴보면 앞서 언급한 식재기반 성립조건 중에서 식재기반 조성시 우선적으로 고려되어야 할 순위로 ① 유효토층에서 투수성이나 토양경도와 같은 토양물리성이 양호할 것과 토양산도가 적정범위일 것, 유해물질이 존재하지 않은 것, ② 양분이 적당할 것, ③ 적당한 보수성을 지닌 것 등과 건설발생토의 토양특성을 종합적으로 고려하여 개량의 우선순위를 정하였다. 따라서 가장 우선적으로 개선되어야 할 사항으로 pH의 부적합을 들어 개량방법에 있어서 강알칼리에 대한 개량방법을 적용토록 하겠다. 다음으로 유기물함량의 부족을 들여 양분 부족을 해결할 수 있는 개량방법을 적용토록 하겠다. 다음으로 과일 지칠성감습 함량의 경우 인위적인 개량방법을 강구하기보다 우리나라 기상특성을 최대한 활용하
여 강우에 의한 자연 염류용탈을 유도하는 것이 유효하리라 생각한다. 그 밖에 토성불량 및 유효수분 개량방법은 현재로서 단기간에 개량할 수 있는 최선책이 없는 설정이므로 유기물을 투여에 따른 개선효과를 시간을 두고 기대해야 할 것이다. 통기 투수불량은 본 건설발생토의 경우 그다지 문제가 되지 않는다고 판단되어 개량방법에 대해 고려하지 않았다. 결국 유효물질 존재는 건설발생토의 토양특성상 카드뮴과 6가크롬의 경우 체취시기에 따라서는 유기균이 근접하는 경우도 발생할 수 있으므로 좀더 면밀한 감소방안을 강구할 필요가 있다고 판단되었다.

4.3 개량 예비실험

 앞서 밝힌 바와 같이 건설발생토를 식생토사로 활용하는데 있어 도출된 식생 제한인자로는 강알칼리성, 양분부족, 토성불량, 과성 치환성칼슘 함량 등을 들 수 있다. 또한 이에 대한 적용 가능한 개량물질에 대해서도 문헌연구를 통해 정리해 보았다. 따라서 본 연구에서는 건설발생토의 강알칼리성 토양산도와 양분부족의 개량을 위해 몇 가지 개량물질을 대상으로 다음과 같은 개량 예비실험을 실시하였다.

4.3.1 과인산석회에 의한 토양산도 교정

 일반적으로 알칼리성토양에 대한 개량은 유안, 염안, 황산칼륨, 염화칼륨 및 과인산석회 등 생리적 산성비료를 쓰는 방법과 황산제일철이나 유황화 등으로 중화하는 방법 등이 있으나 여기에서는 먼저 생리적 산성비료인 과인산석회를 사용하여 건설발생토의 강알칼리성 토양산도를 중화 처리하였다.

과인산석회는 석회를 함유한 인광석을 소성한 후 황산으로 처리한 것이다. 기본적으로 인산비료로서 사용되지만 염기성토양의 중화처리에도 사용되므로 염기성토양이나 시멘트 중화제제로서 현재 광범위하게 사용되고 있는 물질이다.

4.3.1.1 실험방법

 먼저 건설발생토의 높은 토양산도를 개량하기 위해 중화목표치를 pH7.0으로 설정하고, 건설발생토 100g에 대해 과인산석회를 각각 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000mg씩 혼합한 후 각각의 토양산도를 측정하여 중화완충곡선을 구한다. 다음으로 중화완충곡선으로부터 중화처리에 소요된 과인산석회량을 산출한다.
4.3.1.2 실험결과

건설발생토의 토양산도 교정에 사용된 과인산석회(KG케미칼)의 성분함량은 표 4.4에 나타낸 바와 같이 인산 17%, 유황 14%, 석회 29%, 약간의 미량원소 등이었다.

<table>
<thead>
<tr>
<th>구분</th>
<th>인산(%)</th>
<th>유황(%)</th>
<th>석회(%)</th>
<th>미량원소</th>
</tr>
</thead>
<tbody>
<tr>
<td>과인산석회</td>
<td>17</td>
<td>14</td>
<td>29</td>
<td>약간</td>
</tr>
</tbody>
</table>

한편 중화목표치를 pH7.0으로 설정하고, 건설발생토 100g에 대해 과인산석회를 각각 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000mg씩 혼합한 후 토양산도를 측정하여 구한 중화완충곡선은 그림 4.1에 나타낸 바와 같다.

그림 4.1 중화반응에 사용된 과인산석회량

측정결과 건설발생토 100g에 대해 혼합 과인산석회량이 증가함수록 토양산도는 감소하였으며, 과인산석회 800mg을 반응시켰을 때 중화목표치인 pH7.0에 도달하였다. 따라서 건설발생토의 중화처리에 소요된 과인산석회량은 800mg으로 확인되었다.
4.3.2 유황분말에 의한 토양산도 교정
앞에 밝힌 바와 같이 일반적으로 알칼리성토양에 대한 개량은 유안, 염안, 황산
칼륨, 염화칼륨 및 과인산석회 등 생리적 산성비료를 쓰는 방법과 황산제일철이나
유황화 등으로 중화하는 방법 등이 있으나 여기에서는 유황분말을 사용하여 건설
발생토의 강알칼리성 토양산도를 중화 처리하였다.

4.3.2.1 실험방법
먼저 건설발생토의 높은 토양산도를 개량하기 위해 중화목표치를 pH7.0으로 설
정하고, 건설발생토 100g에 대해 유황분말을 각각 100, 200, 300, 400, 500mg씩 혼
합한 후 각각의 토양산도를 측정하여 중화완충곡선을 구한다. 다음으로 중화완충곡
선으로부터 중화처리에 소요된 유황분말량을 산출한다.

4.3.2.2 실험결과
건설발생토 중화처리에 사용된 유황분말(미원상사, MIDAS SP-325)은 325mesh
체를 통과한 순도 99.5% 제품이었다.
한편 중화목표치를 pH7.0으로 설정하고, 건설발생토 100g에 대해 유황분말은 각
각 100, 200, 300, 400, 500mg씩 혼합한 후 토양산도를 측정하여 구한 중화완충곡선
은 그림 4.2에 나타낸 바와 같다.

그림 4.2 중화반응에 사용된 유황분말량
측정결과 건설발생토 100g에 대해 혼합 유황분말량이 증가함수록 토양산도는 감소하였으며, 유황분말 450mg을 반응시켰을 때 중화목표치인 pH 7.0에 도달하였다. 따라서 건설발생토의 토양산도 교정에 소요된 유황분말량은 450mg으로 확인되었다.

4.3.3 피트모스에 의한 유기물 공급

일반적으로 피트모스는 섬유가 서로 엮혀 대공극을 형성하는 특성과 함께 섬유 자체가 다공질로서 전수성이란 특성을 갖고 있다. 따라서 토양에 사용하게 되면 대공극 형성, 통기성 확보, 보수기능 향상 등의 물리성 개선효과를 기대할 수 있다. 또한 보비력의 지표인 양이온치환용량이 10cmol·kg⁻¹정도로 퇴비에 비해 높아 보비력 향상에도 기여한다. 이러한 효과와 더불어 유기질자재이므로 쉽게 분해되기 어려운 특성 때문에 지속성이 있으므로 광물질의 토양개량자재와 유사한 효과를 발휘하는 자재라고 할 수 있다. 또한 pH가 3.5~5.5전후이므로 알칼리토양의 토양산도 교정에도 그 효과를 기대할 수 있다.

따라서 본 연구에서는 유기질 토양개량재인 피트모스를 사용하여 부족한 건설발생토의 유기물 함량을 증대하고자 하였으며, 더불어 부수적으로 토양산도도 개선하고자 하였다.

4.3.3.1 실험방법

피트모스의 화학적 특성, 건설발생토 1m³에 피트모스 10ℓ를 균일하게 혼합한 건설발생토 및 혼합 전 건설발생토의 화학적 특성을 각각 토양화학분석법(농촌진흥청, 1988)에 따라 측정한다.

4.3.3.2 실험결과

피트모스(캐나다산, Acadian peatmoss)의 화학적 특성은 표 4.5에 나타낸 바와 같이 토양산도가 3.7, 유기물 함량이 917g·kg⁻¹, 양이온치환용량이 10cmol·kg⁻¹를 나타내 건설발생토에 사용할 경우 유기물 함량 증대 및 토양산도 교정 효과를 기대할 수 있을 것으로 판단되었다.
표 4.5 피트모스의 화학적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>CEC (cmol/kg)</th>
<th>Ex. Cation (cmol/kg)</th>
<th>Av.P₂O₅ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>피트모스</td>
<td>3.7</td>
<td>0.04</td>
<td>917</td>
<td>10</td>
<td>0.06 3.53 0.13 0.01</td>
<td>16</td>
</tr>
</tbody>
</table>

한편 피트모스 혼합 전 후 건설발생토의 화학적 특성을 비교해 보면 피트모스의 특성을 반영하듯 혼합 전 건설발생토에 비해 혼합 후 건설발생토의 유기물 함량 및 양이온치환용량은 증가하였으며, 토양산도는 감소하였다. 이외 분석항목은 두드러진 특성변이를 보이지 않았다.

따라서 피트모스를 건설발생토에 시용할 경우 유기물 함량 증대 및 토양산도 개선에 효과가 인정되었다.

표 4.6 피트모스 혼합 전·후 건설발생토의 화학적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>CEC (cmol/kg)</th>
<th>Ex. Cation (cmol/kg)</th>
<th>Av.P₂O₅ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>혼합전</td>
<td>9.9</td>
<td>0.85</td>
<td>2</td>
<td>8.0</td>
<td>1.1 27.7 0.5 1.0</td>
<td>90</td>
</tr>
<tr>
<td>혼합후</td>
<td>9.4</td>
<td>0.83</td>
<td>8</td>
<td>8.8</td>
<td>1.0 27.5 0.4 0.9</td>
<td>88</td>
</tr>
</tbody>
</table>

4.3.4 수피퇴비에 의한 유기물 공급

수피퇴비는 수피를 주원료로 한 퇴비로 녹화사업에서 사용실적이 높은 퇴비 중 하나이다. 수피는 목질자재이고, 분해되기 어려운 특성 때문에 발효촉진을 위해 질소질료나 계분 등을 첨가해서 제조되는 것이 일반적이다. 일반적인 특징으로는 퇴비화가 진행되더라도 리그닌 등의 난분해성 성분이 많이 함유되어 있기 때문에 다른 퇴비에 비해 C/N비가 매우 높은 경향을 보인다. 토양 중에서 분해되기 어려운 특성 때문에 토양개량 효과의 지속성이 높은 퇴비라 할 수 있다. 또한 굵은 입자의 고형물을 포함하기 때문에 퇴비자체의 효과로서 통기성이나 투수성 등의 개량효과를 기대할 수 있다. 따라서 여기에서는 유기질 토양개량제인 수피퇴비를 사용하여 부족한 건설발생토의 유기물 함량을 개선하고자 하였다.
4.3.4.1 실험방법
수피퇴비의 화학적 특성, 건설발생토 1m3에 수피퇴비 10ℓ를 균일하게 혼합한 건설발생토 및 혼합 전 건설발생토의 화학적 특성을 각각 토양화학분석법(농촌진흥청, 1988)에 따라 측정한다.

4.3.4.2 실험결과
수피퇴비(HANTOBARK 101)의 화학적 특성은 표 4.7에 나타낸 바와 같이 토양 산도가 6.0, 유기물 함량이 720g・kg$^{-1}$, 양이온환용량이 6cmol・kg$^{-1}$를 나타내 건설발생토에 사용할 경우 유기물 함량 증대효과를 기대할 수 있을 것으로 판단되었다.

표 4.7 수피퇴비의 화학적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>CEC (cmol/kg)</th>
<th>Ex. Cation (cmol/kg)</th>
<th>Av.P$\text{$_2$}$O$_5$ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>수피퇴비</td>
<td>6.0</td>
<td>0.6</td>
<td>720</td>
<td>6</td>
<td>0.8</td>
<td>10.0</td>
</tr>
</tbody>
</table>

한편 수피퇴비 혼합 전·후 건설발생토의 화학적 특성을 비교해 보면 수피퇴비의 특성을 반영하듯 혼합 전 건설발생토에 비해 혼합 후 건설발생토의 유기물 함량은 증가하였으나 그 밖의 분석항목은 두드러진 특성변이를 보이지 않았다. 따라서 수피퇴비를 건설발생토에 사용할 경우 유기물 함량 증대효과가 인정되었다.

표 4.8 수피퇴비 혼합 전·후 건설발생토의 화학적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH (1:5)</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>CEC (cmol/kg)</th>
<th>Ex. Cation (cmol/kg)</th>
<th>Av.P$\text{$_2$}$O$_5$ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>혼합전</td>
<td>9.9</td>
<td>0.85</td>
<td>2</td>
<td>8.0</td>
<td>1.1</td>
<td>27.7</td>
</tr>
<tr>
<td>혼합후</td>
<td>9.8</td>
<td>0.88</td>
<td>6</td>
<td>8.2</td>
<td>1.0</td>
<td>28.0</td>
</tr>
</tbody>
</table>
4.3.5 개량 예비실험 결과 종합

식생토사로 활용하는데 있어 식생 제한인자가 되는 건설발생토의 특성은 크게 강알칼리성, 양분부족, 토성불량, 과잉 치환성칼슘 함량으로 구분되었다. 이 중 건설발생토의 강알칼리성인 토성산도와 양분부족을 개량하기 위해 몇 가지 개량물질을 대상으로 개량 예비실험을 실시한 결과 토성산도 개량에 있어서는 건설발생토 100g에 대해 과인산석회의 경우 800mg, 유황분말의 경우 450mg를 각각 혼합함으로써 중화목표치인 pH7.0에 도달할 수 있었다. 따라서 과인산석회 및 유황분말의 건설발생토 토성산도 개량효과가 확인되었다.

한편 유기물 함량 증대에 있어서는 건설발생토 1m³당 피트모스와 수피퇴비 각각 10ℓ를 혼합한 결과 2g·kg⁻¹이었던 혼합 전 건설발생토의 유기물 함량이 8g·kg⁻¹과 6g·kg⁻¹으로 각각 증가하였다. 따라서 피트모스와 수피퇴비의 건설발생토 유기물 함량 증대 효과가 확인되었다. 또한 피트모스의 경우 토양산도 개량효과도 부수적으로 기대할 수 있다는 점이 확인되었다.

이상의 결과를 토대로 건설발생토의 토양산도 개량물을 과인산석회, 유기물 함량 개량물을 피트모스를 선정하게 되었으며, 다음의 4.4 식물생육실험을 통해 이들 개량물질의 개량효과를 검증토록 한다.

4.4 식물생육실험

4.4.1 재료 및 실험방법

개량물질 적용에 따른 식생토사로서의 개량효과를 평가하기 위해 초본류를 이용한 식물생육실험을 실시하였다.

4.4.1.1 재료
1) 생리적 산성비료

개량 예비실험을 통해 건설발생토 100g에 생리적 산성비료인 과인산석회 800mg을 혼합하였다.

2) 유기질 토양개량재

개량 예비실험이에서 건설발생토 1m³에 대해 유기질 토양개량재인 피트모스 10ℓ를 혼합하여 유기물 함량 증대효과를 확인하였으나, 식물생육실험에 있어서는 부수적으로 토양산도 교정효과를 중대시키고자 15ℓ를 혼합하였다.
3) 공시식물

공시식물로는 씨앗의 발아일수, 발아율 등을 고려하여 한지형 잔디인 퍼레니얼 라이그레스(Perennial ryegrass Brightstar II)를 선택하였다.

4) 공시토양

식물발아 및 생장속도를 비교하기 위한 공시토양은 개량 전, 후 건설발생토와 대조구로 건국대학교 충주캠퍼스 내 부식질이 풍부한 야산의 표토(산흙)였다.

4.4.1.2 실험방법

개량 전, 후 건설발생토 및 산흙을 와그너포트(1/5000a)에 담고, 충분히 관수 후 한지형 잔디인 퍼레니얼 라이그레스를 포트당 각각 2g씩 파종하였다. 이후 유효은 실에서 관리하며, 표토가 마른 경우에 한해 관수를 실시하였다.

파종 후 5일부터 매일 1회에 걸쳐 초장 및 발아율을 조사하였다. 또한 파종 후 30일 포트당 50개체의 잔디를 무작위로 택하여 뿌리에 묻은 흙은 혼은 제거한 후 생체 중량을 측정하였다.

다음으로 개량 전, 후 건설발생토와 산흙의 물리, 화학적 특성을 파악하기 위한 토양시험의 조제 및 토양화학적 분석방법은 2. 수도권매립지 주변 식생성장 여건별 토양특성 파악에서 제시한 것과 동일한 방법으로 실시하였으며, 내용의 중복을 피하고자 요약해서 기술하며 다음과 같다. 토양시험의 조제는 토양화학분석법(농촌진흥청, 1988)과 토양 및 식물체 분석법(농업과학기술원, 2000)에 준하여 실시하였으며, 물리적 특성 중 입도분석은 비중계 및 체분석을 이용하고, 미국농무부의 입도조성에 의한 삼각분류법(농업과학기술원, 2000)에 따라 토성을 분류하였다. 또한 용적밀도, 변수위법으로 구한 포화투수계수, 흡검법으로 구한 흡착평균입도 (-1/3bar) 그리고 삼상분포는 토양 및 식물체 분석법(농업과학기술원, 2000)에 준하여 측정, 분석하였다. 또한 화학적 특성은 토양화학분석법(농촌진흥청, 1988)에 따라 토양산도는 토양과 H2O를 1:5로 하여 Horiba compact pH meter B-212로, 전기 전도도는 토양과 H2O를 1:5로 하여 Horiba conductivity meter ES-14로 측정하였으며, 유기물 함량은 Tyurin법, 양이온착용량은 Brown법, 치환성양이온은 1N-NH4OAc(pH7.0) 용액으로 추출 후 칼륨과 나트륨을 Atomic Absorption Spectrometer 측정법으로, 칼슘과 마그네슘을 ICP 측정법으로 분석하였고, 유효인
산은 Lancaster법으로 측정·분석하였다.

끝으로 생육시험 종료 후 건설발생토 개량 전·후 토양에 대해 토양오염공정시험법에 의한 용출시험을 실시하였다. 시험방법은 3. 건설발생토의 특성에서 실시한 토양오염공정시험법과 동일하였으나, 내용의 중복을 피하고자 시료조제 및 시험방법은 생략토록 한다.

4.4.2 실험결과 및 고찰
4.4.2.1 물리적 특성
공시토양의 물리적 특성을 표 4.9에 나타낸 바와 같다.

<table>
<thead>
<tr>
<th>구분</th>
<th>입도조성(%)</th>
<th>토성</th>
<th>용적밀도 (g/cm³)</th>
<th>포화투수계수 (cm/sec)</th>
<th>통기성 (%)</th>
<th>고성률 (%)</th>
<th>공극률 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>개량전</td>
<td>81 14 5</td>
<td>양질사토</td>
<td>1.29</td>
<td>1.8×10⁻³</td>
<td>27</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>개량후</td>
<td>78 18 4</td>
<td>양질사토</td>
<td>1.20</td>
<td>2.8×10⁻³</td>
<td>28</td>
<td>46</td>
<td>54</td>
</tr>
<tr>
<td>산 흙</td>
<td>55 28 17</td>
<td>사양토</td>
<td>1.08</td>
<td>4.3×10⁻⁴</td>
<td>29</td>
<td>46</td>
<td>54</td>
</tr>
</tbody>
</table>

1) 토성
공시토양별 토성은 개량 전·후 건설발생토가 양질사토, 대조구인 산흙이 사양토에 해당되었다. 한편 개량물질 혼합에도 불구하고 토성의 변화는 확인할 수 없었다.

2) 용적밀도
공시토양별 용적밀도는 산흙, 개량 전 건설발생토, 개량 후 건설발생토 순으로 낮게 나타났다. 한편 개량 전보다 개량 후 건설발생토의 용적밀도가 낮게 나타난 것은 유기질 토양개량제인 피트모스 효과라고 생각되나 우리나라 경기도 지역 산림토양의 B층 평균 1.05g·cm⁻³(정진현 등, 2002)보다 높았고, 과수의 적정기준인 1.13g·cm⁻³(藤原俊六郎 등, 1996)보다도 높았다.
3) 투수계수

공시토양별의 포화투수계수는 개량 후 건설발생토, 개량 전 건설발생토, 산흙 순으로 높게 나타났다. 한편 그림 4.4 막대그래프 안의 직선은 건설발생토의 개량목표치인 $10^{-4}\text{cm} \cdot \text{sec}^{-1}$를 나타낸 것인데 개량 전・후 건설발생토의 경우 모두 $10^{-3}\text{cm} \cdot \text{sec}^{-1}$이 상이므로 개량목표치보다 높아 양호한 수준임을 알 수 있었다.
4) 통기성
공시토양별 통기성은 개량 전 건설발생토, 개량 후 건설발생토, 산흙 순으로 높게 나타났으나 그 차이는 매우 적은 편이었다.

5) 고상률과 공극률
공시토양별 고상률은 개량 전보다 개량 후 건설발생토가 약간 낮게 나타났으나 늘 다 과수의 적정함량인 50%이하(藤原俊六郎 等, 1996)였다. 한편 공극률은 반대로 개량 전보다 개량 후 건설발생토가 약간 높게 나타났으나 역시 늘 다 개량목표치인 50%보다 높아 양호한 수준임을 알 수 있었다.

4.4.2.2. 화학적 특성
공시토양의 화학적 특성은 표 4.10에 나타낸 바와 같다.

표 4.10 개량 전・후 건설발생토 및 산흙의 화학적 특성

<table>
<thead>
<tr>
<th>구분</th>
<th>pH</th>
<th>EC (dS/m)</th>
<th>OM (g/kg)</th>
<th>CEC (cmol/kg)</th>
<th>Ex. Cation (cmol/kg)</th>
<th>BS (%)</th>
<th>Av.P2O5 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1:5)</td>
<td></td>
<td></td>
<td></td>
<td>K⁺ Ca²⁺ Mg²⁺ Na⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>개량전</td>
<td>9.9</td>
<td>0.85</td>
<td>2</td>
<td>8.0</td>
<td>1.1 27.7 0.5 1.0</td>
<td>379</td>
<td>90</td>
</tr>
<tr>
<td>개량후</td>
<td>6.5</td>
<td>0.88</td>
<td>8</td>
<td>9.1</td>
<td>1.0 30.3 0.4 0.8</td>
<td>357</td>
<td>132</td>
</tr>
<tr>
<td>산흙</td>
<td>5.3</td>
<td>0.23</td>
<td>25</td>
<td>10.3</td>
<td>0.2 0.9 1.3 0.1</td>
<td>24</td>
<td>29</td>
</tr>
</tbody>
</table>
1) 토양산도(pH)

문헌조사에 의하면 조경식재를 위한 토양산도는 pH 5.0 ~ 7.0(中島康博, 1992), 산림용 모목 및 관상수의 토양개량목표는 pH 5.5 ~ 6.0(藤原俊六郎, 1996)이라 보고되어 있으며, 본 연구에서도 토양산도의 개량목표치를 pH 6.0 ~ 6.5로 설정하였다.

공식토양별 토양산도는 개량 전 건설발생토, 개량 후 건설발생토, 산흙 순으로 낮게 나타났으나, 특히 개량 전 후 건설발생토의 경우 과인산석회와 피트모스의 영향으로 pH 9.9에서 pH 6.5까지 감소하여 개량목표치와 일치하였다.

![그래프](그림 4.6 공식토양별 토양산도)

2) 전기전도도(EC)

공식토양별 전기전도도의 경우 개량 후 건설발생토, 개량 전 건설발생토, 산흙 순으로 낮게 나타났으나 개량 전(0.85dS·m⁻¹) 후(0.88dS·m⁻¹) 건설발생토 모두 개량목표치인 1.0dS·m⁻¹보다 낮은 경향을 나타냈다.

3) 유기물 함량

공식토양별 유기물 함량은 산흙, 개량 후 건설발생토, 개량 전 건설발생토 순으로 높게 나타났다. 개량 전에 비해 개량 후 건설발생토의 유기물 함량 증가는 피트모스에 의한 효과라고 판단되나 증대된 개량 후(8g·kg⁻¹) 건설발생토의 유기물 함량 역시 개량목표치인 30g·kg⁻¹에 비해 매우 낮은 수준을 나타냈다.
4) 양이온치환용량

공시토양별 양이온치환용량은 산흙, 개량 후 건설발생토, 개량 전 건설발생토 순으로 높게 나타났으며, 개량 전・후 건설발생토 모두 개량목표치인 6cmol·kg⁻¹보다 모두 높은 수준을 나타냈다.

5) 치환성칼슘 함량

공시토양별 치환성칼슘 함량은 개량 전 건설발생토, 개량 후 건설발생토, 산흙
순으로 높게 나타났으나, 개량 전・후 건설발생토 모두 개량목표치인 0.6cmol·kg⁻¹보다 모두 높은 수준을 나타냈다.

6) 치환성칼슘 함량

공시토양별 치환성칼슘 함량은 개량 후 건설발생토, 개량 전 건설발생토, 산흙 순으로 높게 나타났다. 특히 개량 전에 비해 개량 후 치환성칼슘 함량이 증가한 것은 건설발생토의 토양산도 교정을 위해 사용한 과인산석회가 영향을 미친 결과라고 판단된다. 따라서 향후 중화처리제 선정에 있어서는 치환성칼슘 등을 포함한 치환성이온 함량을 증가시키지 않는 개량물질의 사용이 필요하다고 판단되었다.
7) 치환성나트륨 및 치환성마그네슘 함량

측정결과 공시토양별 치환성나트륨 및 치환성마그네슘 함량은 모두 낮은 수준을 나타내 현 단계에서 별다른 문제를 초래하지 않을 것으로 판단되었다.

8) 염기포화도 (BS: Base Saturation)

염기포화도는 양이온치환용량에 대한 치환성양이온 (cmol·kg⁻¹의 단위로 나타낸 Ca²⁺, Mg²⁺, K⁺, Na⁺의 합)의 비율이며, 산림용묘목의 토양양분 진단기준은 양이온 치환용량의 60%, 시설재배지 토양의 개량기준은 80~100%라 보고되어 있다 (藤原俊郎, 1996). 또한 염기포화도는 토양교질의 종류가 같은 때에는 토양 pH와 일정한 관계가 있으며, 염기포화도가 높을수록 토양산도도 높아진다. 우리나라 자연토양의 염기포화도는 50%보다 낮은 것이 일반적이다. 측정결과 공시토양별 염기포화도는 산흙, 개량 후 건설발생토, 개량 전 건설발생토 순으로 낮게 나타났다. 그러나 개량 전 후 건설발생토 모두 앞서 언급한 시설재배지 토양의 개량기준보다 높게 나타나 염기포화도가 수목생장에 나쁜 영향을 미칠 것이 예상되었다.

9) 유효인산 함량

공시토양별 유효인산 함량은 개량 후 건설발생토, 개량 전 건설발생토, 산흙 순으로 높게 나타났다. 특히 건설발생토 토양산도 교정을 목적으로 사용한 과인산석회의 영향으로 개량 전에 비해 개량 후 건설발생토의 유효인산 함량이 매우 높게 나타났다.

그림 4.11 공시토양별 유효인산 함량
이상의 같은 개량 전 후 건설발생토의 특성을 앞서 제시한 표 2.22 유 효토층의 식생토사로 활용시 건설발생토의 개량 목표치와 비교해 보면 그림 4.12에 나타낸 바와 같이 개량 전에 비해 개량 후 건설발생토의 경우 토양산도에 있어서는 개량목표치에 도달하였으나, 유기물 함량은 증가하였음에도 불구하고 개량목표치에는 미치지 못하였다.

한편 과잉 치환성칼슘의 경우 개량 전에 비해 개량 후 약간 증가하는 경향을 나타내는데 이것은 과인산석회 시용에 기인한 결과라고 판단되었다. 따라서 건설발생토의 토양산도 교정을 위해 시용할 개량물질에 있어서는 이점을 고려하여 치환성양이온 함량을 증대시키지 않는 개량물질의 시용이 요구되나, 앞에서도 언급한 바와 같이 강우 등에 의한 자연용탈을 유도함으로서 과잉 치환성갈슘 함량의 문제는 충분히 개량 가능하다고 생각된다. 또한 그림 4.12에는 표현하지 못했지만 토성의 경우 개량 전 후 모두 양질사토로 판정되어, 식생 제한인자로 판단되었으나 앞서 언급한 바와 같이 양질사토를 포함한 사토의 경우 현재 객토 이외에 최선책이 없는 관계로 유기물 토양개량재 등의 장기 연용에 의한 점진적 토성개량을 유도할 필요가 있다고 판단되었다.
다음으로 공시토양별 발아율은 측정결과 표 4.11에 나타낸 바와 같이 산흙의 경우 파종 후 7일 이내에 모두 발아하였으나 개량 전 후 건설발생토의 경우 파종 후 30일째 각각 70%와 90%의 발아율을 나타냈다. 그러나 발아속도가 어떠한 이유로 해서 14일이상 차이가 나는지에 대해서는 후속과제 등을 통해 좀더 면밀한 검토가 필요하다고 판단된다.

<table>
<thead>
<tr>
<th>구분</th>
<th>7일</th>
<th>14일</th>
<th>21일</th>
<th>28일</th>
<th>30일</th>
</tr>
</thead>
<tbody>
<tr>
<td>개량전</td>
<td>5</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>개량후</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>산 흙</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

다음으로 공시토양별 초장은 표 4.12에 나타낸 바와 같이 파종 후 30일째 산흙이 16.2cm로 가장 컸으며, 다음으로 개량후 15.0cm, 개량전 13.1cm 순이었다.

<table>
<thead>
<tr>
<th>구분</th>
<th>7일</th>
<th>14일</th>
<th>21일</th>
<th>28일</th>
<th>30일</th>
</tr>
</thead>
<tbody>
<tr>
<td>개량전</td>
<td>1.5</td>
<td>2.8</td>
<td>4.5</td>
<td>12.0</td>
<td>13.1</td>
</tr>
<tr>
<td>개량후</td>
<td>2.5</td>
<td>5.3</td>
<td>8.2</td>
<td>14.2</td>
<td>15.0</td>
</tr>
<tr>
<td>산 흙</td>
<td>4.7</td>
<td>6.9</td>
<td>9.4</td>
<td>15.3</td>
<td>16.2</td>
</tr>
</tbody>
</table>

다음으로 생육시험 종료 후 측정한 생체중량의 경우 산흙이 개체당 6.811g으로 가장 무거웠으며, 다음으로 개량 후 5.955g, 개량 전 5.616g 순이었다.

이상의 결과로부터 판단해 볼 때 개량 후 건설발생토의 경우 대조구인 산흙에 비해 발아율 및 초장 등은 다소 떨어졌지만 식생토사로서의 활용 가능성을 충분히 인정되었다고 판단된다. 그러나 산흙에 비해 발아속도가 지연된 원인에 대한 규명 및 목본류를 대상으로 한 생육실험 등이 후속과제로 진행되어야 한다는 점 역시 본 실험을 통해 확인되었다.
한편 생육실험 종료 후 개량 전·후 건설발생토를 대상으로 실시한 토양오염도 결과는 표 4.13에 나타낸 바와 같이 모든 시험항목에서 농경지 우려기준미만이었으며, 건설발생토의 토양특성에서 분석한 결과와도 유사한 경향을 나타냈으나, 이는 초본류를 대상으로 30일이란 짧은 기간 동안의 측정결과이므로 향후 목본류를 대상으로 할 경우 장기간에 걸친 모니터링 등이 필요할 것이라고 판단된다.

표 4.13 개량 전·후 건설발생토의 토양오염도

<table>
<thead>
<tr>
<th>구분</th>
<th>카드뮴 납 6가 크롬 비소 수은 구리 시안 유기인 PCB 폐늘</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mg/kg)</td>
</tr>
<tr>
<td>개량전</td>
<td>0.8 0.2 1.1 ND ND 0.4 ND ND ND ND</td>
</tr>
<tr>
<td>개량후</td>
<td>0.6 0.2 1.1 ND ND 0.3 ND ND ND ND</td>
</tr>
<tr>
<td>우려기준*</td>
<td>1.5 100 4 6 4 50 2 10 - 4</td>
</tr>
<tr>
<td>대책기준*</td>
<td>4.0 300 10 15 10 125 5 - - 10</td>
</tr>
</tbody>
</table>

* : 논, 밭, 과수원, 목장용지, 하천채육용지(수목, 잔디 식생지 포함) (환경부, 2001)
5. 건설발생토 활용방안 및 타당성 검토

5.1 연구내용
본 장에서는 먼저 건설발생토의 특성을 토대로 실시한 건설발생토의 개량정도를 비교・검토해 본다. 다음으로 현재 수도권매립지관리공사의 토사반입비와 식생대층별로 건설발생토 개량에 소요되는 비용을 산출하여 건설발생토 개량 및 적용에 대한 경제적 타당성을 비교・검토해 본다. 끝으로 이를 토대로 건설발생토의 활용방안에 대해 살펴보도록 한다.

5.2 건설발생토 개량방안에 대한 타당성 검토
5.2.1 건설발생토 개량정도 비교 검토
앞에서도 언급한 바와 같이 일반적으로 식재기반이란 식물을 식재하는 것을 목적으로 하는 토층으로서 식물의 뿌리가 지정없이 신장하고 수분과 양분을 흡수할수 있는 조건을 갖추고 있어야 한다. 또한 배수층이 있는 경우에는 이것을 포함한다. 따라서 식재기반은 유효토층과 하층지반인 배수층으로 구분할 수 있다.

한편 유효토층은 식재된 식물이 순조롭게 생육하기 위해 필요한 토층과 두께와 넓이를 말하며, 이것은 다시 상층과 하층으로 구분된다. 상층은 천사(細砂)이며, 양분과 부식을 충분히 포함하고, 부드러우며, 토수성이 우수한 토층을 말하며, 하층은 식재기반 조성시 우선적으로 고려되어야 할 순위를 정하자면 다음과 같다.

첫째, 유효토층에서 토수성이 우수한 토층으로서 유효토층 하부에 배수층이 있는 경우에는 이 부분에서 토수성이 우수한 토층이 아니거나 얕은 암기 등에 의한 토수성이 우수한 것과 더불어 토양토양은 적정범위가 된 것, 유효토층이 존재하지 않은 것 등이다.

둘째, 양분이 적당할 것으로 사토 등 특수토양을 제외하면 녹화식물에 있어서 양
분은 식재할 당시 반드시 필요로 하는 것은 아니다고, 활착 후 근재의 발달과 더불어 흡수되며, 또한 관리단계에서 보충할 수도 있으므로 최우선 조건으로 취급하지 않
는다.

셋째, 적당한 보수성을 지닐 것으로 식재 식물과 보수서의 관계는 학술적으로 충분히 검증되지 않는 부분도 많으며, 또한 특수한 경우를 제외하면 관리단계에서 관수시설 설치로 대응이 가능하므로 식재기반 조성시 우선순위로서는 하위로 취급될 수 있다.

위에 열거한 내용들을 고려한 조경설계기준(건설교통부, 1999) 제5장 식재기반 토양평가등급에 따르면 토양평가등급의 적용기준은 “식물의 생육환경이 열악한 범위나 인공지반 위에 조성되는 식재기반이나 담압의 피해가 우려되는 곳의 토양은 「중급」이상의 토양평가등급을 적용한다”라고 되어 있으므로 이들 근간으로 하여 조경설계기준에 제시되어 있는 않은 토양평가항목에 대해서는 평가기준을 종합적으로 고찰한 후 보완적으로 인용하여 유효토층 식생토사로 활용시 건설발생토의 개량목표치를 설정하였다.

한편 배수층으로 사용할 경우에 대해서는 현재까지 평가등급 등의 명확한 기준이 제시되지 않기 때문에 유효토층 식생토사로 활용시 건설발생토의 개량목표치 중 토양산도에 대해서만 배수층으로 활용시 건설발생토의 개량목표치로 하였다.

이와는 별도로 건설발생토의 특성을 파악한 결과 본 연구 공시토양인 건설발생토의 경우 식생성장의 제한인자는 크게 강알칼리성, 양분부족, 토성불량, 과잉 치환성칼슘 함량 등으로 구분되었으며, 이로 인해 발생할 수 있는 문제점으로는 강알칼리성으로 인한 식생의 생육장해, 양분부족으로 인한 식생의 생육불량 그리고 토성 불량으로 인한 건조해 등을 드 수 있다. 따라서 식생성장의 제한인자 중 강알칼리성의 경우 강알칼리성을 교정할 수 있는 화학적 산성비료인 과인산석회를 예비 실험을 통해 개량물질로 선정하게 되었으며, 양분부족의 경우 유기물 함량 증대 효과와 더불어 알칼리토양 개선효과도 부수적으로 기대할 수 있는 피트모스를 예비 실험을 통해 개량물질로 선정하게 되었다. 더불어 표 5.1에는 위에서 열거한 내용들을 정리하여 건설발생토의 개량목표치 및 개량 전후 건설발생토의 특성을 나타내었다.
표 5.1 건설발생토의 개량목표치 및 개량 전후 건설발생토 특성 비교

<table>
<thead>
<tr>
<th>항목 (단위)</th>
<th>개량목표치</th>
<th>건설발생토 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>유효토층</td>
<td>베수층</td>
</tr>
<tr>
<td>투수계수 (cm/sec)</td>
<td>(10^{-4})이상</td>
<td>(10^{-4})이상</td>
</tr>
<tr>
<td>공극률 (%)</td>
<td>50이상</td>
<td>-</td>
</tr>
<tr>
<td>토성</td>
<td>사양토 ~ 양토</td>
<td>-</td>
</tr>
<tr>
<td>토양산도</td>
<td>6.0 ~ 6.5</td>
<td>6.0 ~ 6.5</td>
</tr>
<tr>
<td>전기전도도 (dS/m)</td>
<td>1.0미만</td>
<td>-</td>
</tr>
<tr>
<td>양이온치환용량 (cmol/kg)</td>
<td>(6)이상</td>
<td>-</td>
</tr>
<tr>
<td>유효인산 (mg/kg)</td>
<td>(100)이상</td>
<td>-</td>
</tr>
<tr>
<td>토양유기물 (g/kg)</td>
<td>(30)이상</td>
<td>-</td>
</tr>
<tr>
<td>치환성칼륨 (cmol/kg)</td>
<td>(0.6)이상</td>
<td>-</td>
</tr>
<tr>
<td>치환성칼슘 (cmol/kg)</td>
<td>(2.5)이상</td>
<td>-</td>
</tr>
</tbody>
</table>

개량1 : 건설발생토 1m³당 과인산석회 10.4kg 혼합
개량2 : 건설발생토 1m³당 피트모스 10ℓ 혼합
개량3 : 건설발생토 1m³당 수피퇴비 10ℓ 혼합
개량4 : 건설발생토 1m³당 과인산석회 10.4kg 및 피트모스 15ℓ 혼합
개량1의 경우 건설발생토의 강알칼리성인 토양산도를 교정하기 위해 건설발생토 1m³당 과인산석회 10.4kg 혼합한 결과 토양산도를 pH7.0까지 감소시킬 수 있었다.
간량2의 경우 건설발생토의 유기물 함량 증대와 강알칼리성인 토양산도를 교정하기 위해 건설발생토 1m³당 피트모스 10ℓ 혼합한 결과 혼합 전 2g·kg⁻¹이었던 유기물 함량을 8g·kg⁻¹까지 증대시킬 수 있었으며, 토양산도 역시 pH9.9에서 pH9.4까지 감소시킬 수 있었다.
간량3의 경우 개량2와 마찬가지로 건설발생토의 유기물 함량 증대를 위해 건설발생토 1m³당 수피퇴비 10ℓ 혼합한 결과 혼합 전 2g·kg⁻¹이었던 유기물 함량을 6g·kg⁻¹까지 증대시킬 수 있었으나 토양산도 교정 효과는 인정되지 않았다.
간량4의 경우 건설발생토의 강알칼리성인 토양산도 교정과 더불어 유기물 함량 증대를 위해 건설발생토 1m³당 과인산석회 10.4kg 및 피트모스 15ℓ 혼합한 결과 토양산도를 유효토층 개량목표치인 pH6.5까지 감소시킬 수 있었으며, 유기물 함량의 경우 역시 증가시킬 수 있었으나 유기물 함량의 경우 유효토층 개량목표치인 30g·kg⁻¹에 비해 약 1/4수준이었다.

5.2.2 개량비용 검토
현재 수도권매립지관리공사의 토사반입비와 식생대층별로 건설발생토 개량에 드는 비용을 산출하여 건설발생토 개량 및 적용에 대한 경제적 타당성을 비교·검토해 보았다.
먼저 현재 수도권매립지관리공사에서 수급하는 유효토층 사용 일반토사의 반입비용은 1m³당 5,000원, 양질토사의 경우에는 1m³당 10,000원~15,000으로 조사되었으며, 여기에 반입토사 1m³당 퇴비 1포(20kg)를 시용할 경우 3,000원의 추가비용이 드는 것으로 파악되었다. 또한 배수층 사용 토사의 경우 관급토사를 무상으로 지원받고 있는 것으로 조사되었다.
한편 표 5.2와 표 5.3에 나타낸 바와 같이 건설발생토를 유효토층으로 활용하기 위해 소요되는 개량비용의 산출내역은 건설발생토 1m³당 토양산도를 개량하는데 소요된 과인산석회(4,700원/20kg포)가 10.4kg으로 2,444원, 여기에 유기질 토양개량재인 피트모스(캐나다산, Acadian peatmoss 20,000원/200ℓ)를 15ℓ 혼합하였으므로 1,500원, 따라서 개량에 소요된 총개량비용은 3,944원이었다. 한편 배수층으로
활용할 경우에는 토양산도의 개량만 실시하였으므로 건설발생토 1m³당 토양산도를 개량하는데 소요된 과인산석회(4,700원/20kg포)가 10.4kg으로 2,444원이 총개량비용으로 소요되었다.

표 5.2 유효토층 사용 토사의 반입비용과 건설발생토 개량비용과의 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>토사반입비용</th>
<th>건설발생토 개량비용</th>
</tr>
</thead>
<tbody>
<tr>
<td>재료비</td>
<td>과인산석회 5,000</td>
<td>2,444</td>
</tr>
<tr>
<td>피트모스</td>
<td>1,500</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>5,000</td>
<td>3,944</td>
</tr>
</tbody>
</table>

표 5.3 배수층 사용 토사의 반입비용과 건설발생토 개량비용과의 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>토사반입비용</th>
<th>건설발생토 개량비용</th>
</tr>
</thead>
<tbody>
<tr>
<td>재료비</td>
<td>과인산석회 0</td>
<td>2,444</td>
</tr>
<tr>
<td>계</td>
<td>0</td>
<td>2,444</td>
</tr>
</tbody>
</table>

이상의 결과만을 놓고 볼 때 현 시점에서 건설발생토 개량을 통한 유효토층으로의 활용시에는 토사반입에 비해 경제적 타당성이 인정되었으나, 배수층으로 활용시에는 토사반입에 비해 경제적 타당성이 인정되지 않았다.

그러나 여기에서 사용한 사적 경제성 평가 즉 비용과 편익이 경제행위를 하는 경제주체 입장에서 귀속되는 것이나 여기에 사회적 경제성 즉 사적비용과 편익에다가 외부비용과 외부편익 등이 고려된다면 또 다른 경제성 비교 평가가 이루어질 것이라고 판단된다.

예를 들자면, 첫째, 건설발생토의 사적비용으로 건설발생토의 생산원가에 해당한다. 이 생산원가에는 폐기물을 수집해 오는 운반비용이 포함되어 있지 않은데 이비용을 여기서는 고려하지 않았다. 그 이유는 대부분의 건설발생토를 생산해 내는 업체들이 주업종이 건설폐기물 중간처리업체로서 폐기물의 수수료를 받고 수집해
오기 때문에 건설발생토의 생산원가에는 재료비와 운반비가 제외되어 있고, 수집할 때 받는 수수료로 이 원가에서 제외되어 있다.

둘째, 건설발생토의 외부적 비용으로 이 항목은 건설발생토를 수집·분별 치러서 발생하는 환경오염 및 영향을 가리키는 데 이 부분에 대한 고려가 제외되어 있다.

셋째, 건설발생토의 사적 편익으로 건설발생토의 판매단가로 계산한다. 하지만 여기서 제기될 수 있는 문제점은 현재 건설발생토의 판매단가는 시장가격이 아직 제대로 형성되지 않아 시장에서 형성된 토사반입비와 비교하기가 어렵다는 것이다. 그동안 건설발생토는 하나의 생산품목으로 시장에서 거래되어 오지 않았기 때문에 제대로 된 시장가격의 자료가 없었으므로 이러한 문제점을 안고 계산할 수밖에 없었다.

넷째, 건설발생토의 외부적 편익으로 건설발생토를 사용하게 됨으로서 그 해당량 만큼의 배림비용이 절감되므로 이 부분은 편익에 속하게 된다.

이 밖에도 건설발생토의 재활용에 따른 주변 환경 개선에 대한 비용 역시 계산에 포함되지 않았다.

또한 개량방안에 사용된 개량물질과 개량방법을 개선함으로서 개량비용을 절감시킬 수 있을 것으로 판단된다.

예를 들어 앞서 밝힌 바와 같이 개량 예비실험 결과 과인산석회 대신 유황분말 (7,200원/20kg)을 사용할 경우 건설발생토 1m³당 그림 4.2에서 구한 중화 유황분말량 5.85kg, 금액으로 2,106원이 소요되므로 과인산석회 대비 338원의 비용절감으로 과인산석회와 동일한 토양산도 교정효과가 확인되었다. 하지만 이 결과는 개량 예비실험만을 실시한 것으로 추후 생육실험 등의 통해 과인산석회와 동일한 시용효과가 인정된다면 과인산석회를 대신할 수 있을 것으로 판단된다. 또한 피트모스를 대신할 수 있는 개량물질의 개발내지는 국산화 등도 비용을 절감시킬 수 있는 방법의 하나라 판단된다. 또한 배수층으로 활용시 토양산도에 대한 기준 등이 마련되어 있지 않은 관계로 개량목표치를 유효도중으로 활용시 개량목표치인 pH6.0~6.5를 그대로 적용하였으나 배수층의 경우 개량목표치의 범위를 표 2.3에 나타낸 바와 같이 pH8.0까지 완화할 수 있다면 토양산도 교정에 사용될 개량물질의 양을 줄일 수 있으므로 이에 상응하는 개량비용도 절감될 것이다.

한편 별도의 추가비용요소로서 건설발생토에 개량물질을 혼합하는데 드는 비용
을 들 수 있었다. 송파구(1998)의 경우 퇴적토 자원화 방안 연구에서 퇴적토 1m³당 개량물질 혼합비용 또는 뒤집기비용이 287원이라는 사례도 있으나 현재 적치되어 있는 건설발생토의 양을 고려해 볼 때 인력이나 장비를 사용해서 해결될 문제가 아니라 건설폐기물 처리공정 중 개량물질 혼합공정이 별도로 추가되어야 한다고 판단되므로 이에 대한 검토는 후속연구 등을 통해 처리공정 개선과 더불어 검토되어야 한다고 생각된다.

끝으로 표 5.4에는 위에서 열거된 내용을 건설발생토 활용시 예상되는 추가비용 요소와 비용절감요소로 구분하여 정리하여 보았다.

표 5.4 건설발생토 활용시 예상되는 추가비용요소 및 비용절감요소

<table>
<thead>
<tr>
<th>추가비용요소</th>
<th>비용절감요소</th>
</tr>
</thead>
<tbody>
<tr>
<td>생산원가</td>
<td>매립비용절감</td>
</tr>
<tr>
<td>재료비 운반비</td>
<td></td>
</tr>
<tr>
<td>판매단가</td>
<td>대체 개량물질 발굴</td>
</tr>
<tr>
<td>개량물질 혼합비</td>
<td>대체 개량방법 개발</td>
</tr>
<tr>
<td></td>
<td>주변 환경 개선비용</td>
</tr>
</tbody>
</table>

5.2.3 건설발생토의 활용방안
5.2.3.1 식생토사로 활용
1) 유효토층으로 활용
 유효토층으로 활용하고자 하는 경우 폐기물공정시험법 및 토양오염공정시험법에 준해 용출실험을 실시하여야 하며, 용출실험 결과 유해물질 함량 및 토양오염도가 관련근거 기준치 이내이어야 함은 물론이고 나아가 토양 물리적 - 화학적 특성이 식물생육에 적절한 수준으로 존재하여야 한다.
 본 연구의 공시토양인 건설발생토의 경우 용출실험 결과 유해물질 함량 및 토양 오염도에 있어서는 관련근거 기준치 이내였다. 그러나 토양 물리적 - 화학적 특성에 있어서는 식생 제한인자로 강알칼리성, 양분부족, 토성불량, 과잉 치환성칼슘 함량 등의 문제점이 확인되었다. 이에 과산산석회와 피트로스를 개량물질로 선정하여
개량한 결과 강알칼리성인 토양산도는 교정되었으나 유기물 함량은 크게 개선되지 않았다. 하지만 초본류를 대상으로 한 식물생육실험 결과 대조구인 산흙에 비해 14일간의 발아속도 등의 차이는 있었으나 실재기반 유효토층으로서의 활용 가능성은 인정되었다고 판단된다. 물론 일반적인 실재기반의 경우 주로 목본류를 대상으로 하고 있으므로 이에 대한 연구가 후속과제로 이어져야 한다고 판단된다.

한편 수도권매립지의 경우 현재 제1매립장 제방 및 이격구간과 야생초화원 등의 생태공원화를 위해 100만 그루 나무식기이 한창 진행 중이며, 또한 외곽경계지역(3, 4매립장)의 경우 매립예정부지가 공란으로 관리되고 있으므로 매립장에 대한 대내외적인 혐오감 가중의 원이 되고 있어 폐기물처리 시설촉진 및 주변지역 지원 등에 관한 법률 제23조(폭 20m 녹지대조성)에 의거 매립예정지인 3, 4매립장 경계지역에 미리 나무를 식재하여 향후 매립지 수림대 조성에 기여하고자 하고 있는 관계로 식생토사의 확보가 중요한 과제 중 하나라고 판단된다. 더불어 관급토사의 반입량이 2001년부터 점차 감소하는 추세를 보이고 있으며, 그 이유는 수도권 인근 지역에 실시되는 대형공사가 완료되고, 주택건설이 점차 줄어든 추세가 반영된 것으로 판단되고 있다. 2003년도 수도권매립지 자료에 따르면 '03년도 관급토사는 29개 발주처 공사현장에서 740,000m³가 반입되어 '02년도에 비해 약 65,000m³가 감소하였으며, 현재 반입추세로부터 볼 때 '04년도 관급토사 반입은 '03년도보다 적은 650,000m³가 될 것으로 예상되고 있으며, 또한 현재 수도권매립지관리공사가 계획 추진 중인 생태공원화사업 및 외곽경계지역 녹지대 조성 등에 소요될 식생토사만 약 280,000m³가 필요하므로 식생토사 확보를 위한 대책 마련이 시급하다고 볼 수 있다.

이와 같은 이유로 해서 건설발생토의 식생토사로서의 활용을 적극 검토하여야 하며, 더불어 중간처리업체내 적절로 인한 주변 환경 악화를 개선할 수 있다는 점 역시 건설발생토의 활용을 적극 검토해야할 이유라고 생각된다.

표 5.5 제1매립장 제방 및 이격구간 토사 예상소요량

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
<th>단위</th>
<th>수량</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>토공</td>
<td>식생토사</td>
<td>m³</td>
</tr>
</tbody>
</table>

표 5.6 야생초화원 토사 예상소요량

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
<th>단위</th>
<th>수량</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>토공</td>
<td>식생토사</td>
<td>m³</td>
<td>85,160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>재생골재</td>
<td>m³</td>
<td>50,880</td>
<td></td>
</tr>
<tr>
<td></td>
<td>일반토사</td>
<td></td>
<td>40,823</td>
<td>22,544m³</td>
</tr>
</tbody>
</table>

표 5.7 수도권매립지 외곽경계지역 토사 예상소요량

<table>
<thead>
<tr>
<th>구간</th>
<th>단위</th>
<th>식생토사</th>
<th>자급토사</th>
<th>지반토사</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>28066.50</td>
<td>14079.00</td>
<td>9712.00</td>
<td>51857.50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>26542.75</td>
<td>12721.95</td>
<td>9289.55</td>
<td>48557.25</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>17865.05</td>
<td>8673.35</td>
<td>6163.75</td>
<td>32702.15</td>
</tr>
<tr>
<td>4</td>
<td>m³</td>
<td>26633.00</td>
<td>11883.00</td>
<td>11624.00</td>
<td>50140</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>27782.00</td>
<td>13777.10</td>
<td>8039.40</td>
<td>49598.50</td>
</tr>
<tr>
<td>소계</td>
<td></td>
<td>126889.30</td>
<td>61134.40</td>
<td>44828.70</td>
<td>232852.40</td>
</tr>
<tr>
<td>성토량</td>
<td></td>
<td>152879.00</td>
<td>73656.00</td>
<td>44828.80</td>
<td>271363.80</td>
</tr>
</tbody>
</table>

자료: 수도권매립공사(2002)

2) 배수층으로 활용

배수층으로 활용하고자 하는 경우 역시 앞서 밝힌 용출실험 결과 유해물질 함량 및 토양오염도가 관련근거 기준치 이내이어야 함은 물론이고 나아가 토양 물리적・화학적 특성이 배수층으로서 적절한 수준으로 존재하여야 한다.

본 연구의 공시토양인 건설발생토의 경우 용출실험 결과 유해물질 함량 및 토양 오염도에 있어서는 관련근거 기준치 이내였다. 그러나 유효토층 하부의 배수층으로 활용할 때는 관련점수계수 등을 결과를 높고 별다른 문제점이 없는 듯 판단되었으나, 이에 대해서는 시공상의 토질역학적인 점토가 필요하다고 생각한다. 왜냐하면 토성의 경우 모래가 대부분을 차지하는 관계로 배수층 조성시 증기 등의 다점으로 인해 배수불량을 초래할 수 있다고 판단되기 때문이다. 한편 배수층
개량목표치로 설정한 토양산도의 경우 과인산석회 시용으로 개량목표치에 도달하였으므로 이에 대한 문제는 해결되었다고 판단된다.

5.2.3.2 토양개량재로 활용

우리나라와 같이 조림질 산성 모재인 화강암에서 발달된 토양에서는 알칼리염류의 함량이 높을 수 없으며, 규산(SiO$_2$) 함량이 높아 산성토양이 주로 생성된다. 더욱이 우리나라의 연강우량이 1,300mm내외로 이 중 2/3정도가 여름철에 집중적으로 내리고 있으므로 염류의 용탈이 심해 토양산성화가 빨리 진행된다. 또한 최근에는 인간 활동에 의한 화석연료 사용으로 인해 배출되는 황화합물(SO$_2$)과 질소화합물(NO$_2$)이 대기 중에서 화학반응하여 황산염 또는 질산염으로 전환되다가 산성비 등의 형태로 지상에 다시 내리기 때문에 토양을 산성화시키고 있는 실정이다. 따라서 파악된 건설발생토의 강알칼리성인 특성을 최대한 활용하여 우리나라의 현안 문제인 산성토양의 개량재로 활용하는 방안이 들 수 있다. 다만 품질향상을 위해 충분한 양의 퇴비를 섞어 사용한다면 영양분 및 양이온환용량 등이 보완되어 식생성장에 도움을 줄 것으로 예상된다. 장기적으로는 문헌연구에서 정리한 유기성 폐자원 등이 안정화되면 이를 퇴비화하여 활용하는 것도 적극 검토해 볼 가치가 있다고 생각된다.
6. 종합결론 및 후속과제

본 연구에서는 현재 수도권매립지 주변 건설폐기물 중간처리업체내에 적폐되어 있는 건설발생토를 식생토사로서 활용하기 위한 방안을 강구함으로서 수도권매립지내 조성되고 있는 식생대층 조성 및 매립지 사후관리에 필요한 식생토사의 안정적 환보방안뿐만 아니라 중간처리업체내 적폐·방치되어 제반 환경문제를 초래하고 있는 건설발생토의 활용방안을 모색하기 위해 수도권매립지 주변 식생성장 여건별 토양특성 파악, 건설발생토의 특성 조사, 건설발생토의 개량방안 검토, 건설발생토 활용방안 및 타당성 검토 등을 통해 다음과 같은 결론과 후속과제를 얻을 수 있었다.

6.1 종합결론

1) 건설발생토를 토양으로 활용할 수 있는지 아니면 지정폐기물로 처분 또는 매립지 복토재 등으로 활용할 것인지 여부를 확인하기 위해 폐기물공정시험법에 따라 유해물질 용출시험을 실시한 결과 본 연구의 공시토양인 건설발생토의 유해물질 함량은 분석항목 모두 지정폐기물에 함유된 유해물질 기준치 이내이었다.

2) 토양환경보전법에서는 토양오염도를 토양오염공정시험법으로 측정하도록 규정하고 있으므로 이에 준해 본 연구의 공시토양인 건설발생토의 오염도를 측정한 결과 건설발생토의 오염도는 분석항목 모두 농경지의 토양오염 우려기준을 초과하지 않았다.

3) 건설발생토의 토양특성 중 토성은 모래함량이 대단히 높은 양질사토였으며, 용적밀도는 1.07~1.33g·cm⁻³, 포화투수계수는 1.0×10⁻³~2.1×10⁻³cm·sec⁻¹, 통기성은 26~29%, 고상률은 41~50%, 공극률은 50~59%, 토양산도는 pH9.1~11.5, 전기전도도는 0.64~1.91dS·m⁻¹, 유기물 함량은 2~3g·kg⁻¹, 양이온치환용량은 6~19cmol·kg⁻¹, 치환성칼륨 함량은 0.6~1.3cmol·kg⁻¹, 치환성칼슘 함량은 19.3~35.0cmol·kg⁻¹, 치환성나트륨 함량은 0.6~1.0cmol·kg⁻¹, 치환성마그네슘 함량은 0.2~0.6cmol·kg⁻¹, 염기포화도는 194~465%, 유효인산 함량은 56~112mg·
4) 식생토사로서 활용하는데 있어 재활용을 개량하기 위한 개량물질로 과인산석회와 피트모스가 선정되었으며, 건설발생토 1m³당 과인산석회 10.4kg 및 피트모스 15ℓ을 혼합한 결과 토양산도를 유효토층 개량목표치인 pH6.5까지 감소시킬 수 있었으며, 유기물 함량의 경우 역시 증가시킬 수 있었으나 유기물 함량의 경우 유효토층 개량목표치인 30g·kg⁻¹에 비해 약 1/4수준이었다.

5) 개량 전·후 및 대조구로 산흙을 대상으로 실시한 초본류 생육실험 결과 공시토양별 발아율은 산흙의 경우 파종 후 7일 이내에 모두 발아하였으나 개량전·후 건설발생토의 경우 파종 후 30일째 각각 70%와 90%의 발아율을 나타냈다. 또한 산흙에 비해 개량 후 건설발생토의 경우 발아속도가 14일이상 차이가 인정되었다. 또한 공시토양별 초장은 파종 후 30일째 산흙이 16.2cm로 가장 컸으며, 다음으로 개량후 15.0cm, 개량전 13.1cm순이었다. 다음으로 생육시험 종료 후 측정한 생체중량의 경우 산흙이 개체당 6.811g으로 가장 무거웠으며, 개량후 5.955g, 개량전 5.616g순이었다.

6) 수도권매립지관리공사의 토사반입비 대비 식생배층별로 건설발생토 개량에 드는 비용을 산출하여 건설발생토 개량 및 적용에 대한 경제적 타당성을 비교해 본 결과 현재 수도권매립지관리공사에서 수급하는 유효토층 사용 토사의 반입비용은 1m³당 5,000원인데 비해 건설발생토를 유효토층으로 활용하기 위해 소요되는 개량비용은 총 3,944원으로 경제적 타당성이 인정되었다. 한편, 배수층으로 사용하기 위해 공급받는 토사의 경우 관급토사를 무상으로 지원받고 있는데 비해 배수층으로 활용하기 위해 소요되는 개량비용이 총 2,444원으로 경제적 타당성이 인정되지 않았다. 그러나 여기에 건설발생토 재활용에 따른 환경적 외부비용과 부담비용 등이 고려된다면 또 다른 경제성 비교 평가가 이루어지리라 판단된다. 이 밖에 비용을 절감할 수 있는 개량물질과 개량방법이 개발된다면
경제성은 크게 향상될 수 있다고 판단된다.

7) 이상의 결과를 놓고 볼 때 본 연구의 공시토양인 건설발생토의 경우 개량 등을 통해 충분히 식생토사로서 활용 가능하다고 생각되며, 또한 이러한 기초자료의 축적으로 수도권매립지 식생대층 조성 및 매립지 사후관리에 필요한 토사확보 및 중간처리업체내 적재·방치된 건설발생토로 인해 발생되는 비산분진 등의 환경문제가 해소될 것으로 판단된다.
6.2 후속과제

1) 본 연구는 수도권매립지 주변에 위치한 건설폐기물 중간처리업체인 C업체에서 분리・선별한 건설발생토를 대상으로 사례조사한 결과로서 본 연구에서 사용한 건설발생토가 국내에서 발생되고 있는 전체 건설발생토를 대표한다고 볼 수 없으므로 향후 사례지역을 확대하여 지역별 발생량과 토양특성 및 이에 적합한 개량방안이 모색되어야 한다고 생각된다.

2) 본 연구의 공시토양인 건설발생토의 경우 처리공정상 입도조성이 한 쪽에 편중된 경향을 보였다. 따라서 성토시 중기 등의 다짐으로 배수가 불량하게 될 수 있으므로 토양물리성・화학성 특성뿐만 아니라 토질역학적 접근도 함께 고려될 필요가 있다고 판단된다.

3) 본 연구에서는 개량물질로 외국에서 수입되고 있는 피트모스를 사용하였으나 개량비용의 절감측면에서 대체할 수 있는 국산 개량재의 발굴 등이 필요하다고 생각된다. 또한 토양산도를 교정을 위해 과인산석회를 사용하였으나 저가로 동일 효과를 낼 수 있는 대체물질의 발굴도 필요하다고 생각된다.

4) 본 연구에서는 초본류를 대상으로 생육시험을 실시하였으나 식생토사로서 활용하는데 있어서는 주로 목본류가 그 대상이 되므로 이에 대한 검토가 이루어져야 한다고 판단된다.
인용문헌

건설교통부, 1999, 조경설계기준.
구자웅, 최진규, 손재권, 1998, 우리나라 서해안 간척지 및 간석지 토양의 이화학적 특성, 한국토양비료학회지 21(2) : 120-127.
권순익, 2003, 유기성 폐기물의 장기연용에 따른 토양 오염의 영향 평가, 서울시립 대학원.
농업과학기술원, 2000, 토양 및 식물체 분석법, 농촌진흥청.
농촌진흥청, 1988, 토양화학분석법, 농업기술연구소.
박백균, 소규호, 박우균, 2003, 음식물쓰레기를 이용한 고품질 퇴비화 연구, 농촌진흥청.
성기석, 박백균, 소규호, 임동규, 2003, 음식물쓰레기 자원화 과정 중 발생하는 액상 물 활용연구, 농촌진흥청.
수도권매립지관리공사, 2002, 수도권매립지 외곽경제지역(제3, 4매립장) 식재공사 실시설계 보고서.
수도권매립지관리공사, 2003, 관급토사 반입 및 사용실적 보고서.
수도권매립지관리공사, 2004, 수도권매립지 100만그루 나무심기(3차년도) 100만그루 식재공사 실시설계 보고서.
유순호, 임선욱, 1994, 토양비료, 한국방송통신대학교 출판부.
이경준, 이승재, 2002, 조경수 식재관리기술, 서울대학교출판부.
정진현, 구교상, 이충화, 김춘식, 2002, 우리나라 산림토양의 지역별 이화학적 특성,
한국임학회지 91(6) : 694-700.
조성진, 박철서, 엄대익, 1990, 토양학, 황문사, pp.396.
조우, 2000, 인천시 해안매립지 녹지조성 기법개발 연구, 인천발전연구원.
한국자원재생공사, 1999, 건설폐기물 재활용 가이드라인 설정 및 재활용 촉진 방안.
한국자원재생공사, 2002, 2001 전국 폐기물중간처리업(재활용전문) 허가 및 재활용
신고 업체 현황.
한국환경정책평가연구원, 2004, 건설폐기물 분리배출 및 발생원단위 산정 등에
관한 연구.
환경부, 1999, 토양오염공정시험법.
환경부, 2000, 폐기물공정시험법.
환경부, 2005, 건설폐기물 재활용촉진에 관한 법률.

岡崎正規, 山根一郎, 小平哲夫, 1982, 浚渫埋立地土壌の理化学的性質, 日本土壌肥料
科学雑誌, 53(3) : 203-208.
小平哲夫, 青沼和夫, 佐野一男, 1984, 千葉市幕張地先の浚渫埋立地におけるクロマツ
人工林の生育形態と生育阻害因子の究明, 林業試験場研究報告, 4 : 63-69.
中島康博, 1992, 植栽の設計施工管理, 経済調査会.
日本造園学会, 2000, 綠化事業の植栽基盤整備マニュアル.
増田拓朗, 藤原賢一, 吉田重幸, 1983, ケヤキの生育及ぼす土壌物理性の影響, 香川大学
農学部学術報告, 34(2) : 157-162.

John Wiely & Sons.

부록 : 자문내용

1. 국립산림과학원 변재경 박사

1) 현 수도권매립지의 생육불량지는 복토미흡으로 인한 염분피해, 침출수피해, 염류장해, 매립지가스피해 등 여러 가지 식생성장 제한요인이 복합적으로 영향을 미치고 있으므로, 본 연구목적과는 상이하지만 기존의 수도권매립지 토양조사와 식생조사 자료를 참조하여 향후 조사계획에서 제의할 것.
2) 향후 추가적인 연구에서 기초적인 자료를 수집하지 않아도 될 정도로 우리나라 건설발생토의 현황, 지역별 발생량, 화학성 변이 등 조사자료 참가할 것.
3) 피트모스의 경우 전량 수입하고 있으므로 가격변화가 예상되므로 사용을 억제할 필요가 있음. 또한 피트모스는 중금속, 질소기아현상, 길항작용 등 또 다른 문제를 초래할 수 있음.
4) 건설발생토 개량물질 중
 - 유기성 폐자원은 별도의 활용방안에서 검토되어야 할 사항임.
 - 현재 건설발생토는 토성 pH개량, 치환성칼슘 등의 문제점을 해결하는데 중점을 두어야 함.
5) 질소개량에 관한 문제가 발생할 수 있음.
6) 향후 수도권매립지 초종 및 수목을 대상으로 현장실험을 할 수 있는 시험지 확보가 바람직함.

2. 국립환경연구원 서민환 연구관

1) 적절한 개량효과를 알기 위해서는 매립지관리공사 차원에서 목본과 실제 건설발생토를 이용하여 장기 모리터링이 필요함
2) 식물식재용에만 초점을 맞추지 말고, 실제로 식생토사로 사용할 수 있는지 혹은 불가능한지에 대한 좀 더 많은 정보를 제공해 주어야 실제 보고서 활용이 가능할 것으로 판단됨
3) 다양한 개량방법을 제시하는데 집중되어야 함.
4) 건설발생토의 생성과정을 명확하게 밝히는 일이 우선되어야 함. 이를 토대로 하
여 개량방안, 이용가능성 등을 판단할 수 있을 것임.

3. 서울시립대학교 건축도시조경학과 이경재 교수

1) 토분을 대상으로 피트모스를 사용하여 토양개량을 할 때 비용문제를 제시하여 행정판단의 자료로 이용할 수 있게 제시. 또한 피트모스는 외국에서 수입하므로 국내에서 생산할 수 있는 방안은 없는지 검토해야 할 것임.
아울러 과인산석회를 청가로 할 때 비용문제도 다루어야 할 것임.
2) 공시토양별 발아율 실험에서 라이그라스를 대상으로 하였는데 건설발생토는 주로 수목식재에 사용되므로 이에 대한 검토도 함께 이루어져야 함. 그러나 본 연구에서는 수용하기 곤란하다면 추후 연구할 것이라고도 제안해야 함.
3) 크롬 제거를 생각해 봐야 함.
4) 발아속도 14일 차이를 후속과제에서라도 개선방안 제시.

4. 서울시립대학교 환경공학부 이재영 교수

1) 개량물질 혼합 비율에 따른 현장에서 혼합방안 등을 제시되어야 함
2) 연구목적상 제목의 수정을 제안함. “수도권매립지 식생토사 확보를 위한 매립지 내 적재된 건설발생토 활용방안에 관한 연구” 또는 부재로서 “-매립지내 적재된 건설발생토 중심-”.
3) 건설발생토 또는 폐토사에 대한 법적·이론적 분류의 근거가 필요함.
4) 개량토양의 물리·화학적 기준이 매립지 식생대층 조성에 필요한 매립지 식생대층(최중복 토층 기준)에 적어도 일치되어야 함.
5) 향후 도양개량방법의 제시가 필요함.