한국 폐자원·바이오에너지 산업의 가치사슬 구조 분석 실습 연구 보고서

2015. 2

SL공사
이 보고서는 2014년도 환경에너지 대학원 인재양성 프로그램사업의 실습 연구결과로서 보고서 내용은 연구자의 견해이며, 환경부 및 수도권매립지관리공사의 공식입장과 다를 수 있습니다.
제출문

수도권매립지관리공사 사장 귀하

본 보고서는 환경부와 수도권매립지관리공사가 운영하는 환경
에너지 대학원 인재양성 프로그램의 일환으로 지원받아 2014년
에 수행 완료한 서울과학기술대학교의 실습연구인 『한국 폐자
원·바이오에너지산업의 가치사슬 구조 분석』 결과물로 제출합
니다.

2015. 2.

책임연구원 : 박 대 원 (서울과학기술대학교)
연구원 : 박 중 구 (서울과학기술대학교)
연구보조원 : 박 창 대 (서울과학기술대학교)
공동연구원 : 김 근 우 (서울과학기술대학교)

수행기관 서울과학기술대학교 산학협력단

단장 김 동 환
목차

요약 .. 1

제 1 장 서 론 ... 2

1. 연구배경 및 필요성 .. 2
2. 폐자원·바이오에너지 산업 ... 4

제 2 장 선행연구 ... 33

1. 부가가치사슬(value chain) ... 33
2. 폐자원·바이오에너지산업의 VC ... 36

제 3 장 분석방법론 ... 38

1. VC 분석방법과 가설설정 ... 38
2. 설문조사 개요 ... 40

제 4 장 분석결과 .. 47

1. 폐자원에너지 .. 47
2. 바이오에너지 ... 51

참고문헌 .. 57
표 목차

<표 1-1> 폐기물에너지의 기준 및 범위 ... 4
<표 1-2> 기술에 따른 폐차원에너지화 산업의 분류 ... 5
<표 1-3> 폐기물에너지화 분야의 연관산업(전·후방산업) 구조 6
<표 1-4> 폐차원에너지화 기술분야별 기술동향 및 기술수준 7
<표 1-5> 국내 가동 중이거나 건설 중인 RDF 제조 시설 8
<표 1-6> 국내 폐기물가스화 기술개발 현황 ... 10
<표 1-7> 국내 폐기물 소각열 이용현황(2011) .. 11
<표 1-8> 국내 대형소각로 처리용량 및 에너지 발생량(2010) 12
<표 1-9> 폐차원에너지 산업의 특징 및 중요성 .. 16
<표 1-10> 바이오에너지의 기준 및 범위 ... 17
<표 1-11> 국내 바이오디젤 업체 ... 24
<표 1-12> 매립가스 자원화시설 설치 운영 현황 ... 25
<표 1-13> 수송용 바이오연료에 대한 지원 정책 요약 .. 28
<표 2-1> 선행연구 정리 .. 35
<표 3-1> 폐차원에너지기업리스트 .. 40
<표 3-2> 바이오에너지기업리스트 ... 42
<표 4-1> 폐차원에너지화 세부분야별 빈도분석 결과 47
<표 4-2> 폐차원에너지 VC 설문문항별 빈도분석 결과 48
<표 4-3> 폐차원에너지 VC 분석결과 ... 49
<표 4-4> 바이오에너지산업 내 제품별 빈도분석 비율 51
<표 4-5> 바이오에너지산업 내 제품별 빈도분석 결과 52
<표 4-6> 바이오에너지산업 내 제품별 빈도분석 결과 53
그림 목차

<그림 1-1> 폐기물 관리정책의 변환 ... 13
<그림 1-2> 자원순환 개념도 .. 13
<그림 1-3> 2020년까지 폐기물에너지화에 대한 정부 목표 14
<그림 1-4> 폐기물 에너지 기술개발 전략 로드맵 15
<그림 1-5> 주요 바이오매스에너지의 종류 및 용도 18
<그림 1-6> 전 세계 에너지원별 보급 현황 및 전망 19
<그림 1-7> 부문별 바이오에너지 수요 현황 및 향후 전망 20
<그림 1-8> 수송용 바이오연료 시장 현황 ... 21
<그림 1-9> 에탄올 생산용 곡물 원료 소비 현황 21
<그림 1-10> 미국의 RFSⅡ 시행에 따른 바이오연료 시장 전망 22
<그림 1-11> 국내 바이오에탄올 시장 전망 ... 23
<그림 2-1> 가치사슬 ... 33
<그림 2-2> 바이오에너지 생산과정 .. 37
<그림 3-1> VC 분석모형 .. 39
<그림 4-1> 폐기물에너지 거래량 ... 50
<그림 4-2> 바이오에너지 발전량과 생산량 ... 54
요 약

본 연구는 한국 폐자원·바이오에너지기업을 대상으로 가치사슬(value chain : VC) 분석을 통해 기업 내 공정 간 부가가치창출구조가 선순환을 이루고 있는지 분석하였다. 연구 방법은 한국 폐자원·바이오에너지기업을 대상으로 설문조사를 통해 연구개발-생산-이익률 등 가치사슬 내 공정 간 인과관계에 대한 회귀분석을 활용하였다.

분석의 결과, 한국 폐자원에너지산업의 VC에서 정부 R&D지원이 관련 기업 R&D투자 증가로 이어지지 못하고, 기업 R&D투자 증가가 기업 R&D성과 증가에 기여하지 못하고 있는 것으로 분석되었다. 반면 R&D성과 증가는 폐자원에너지 제품 생산량 증가에 긍정적인 영향을 주는 것으로 분석되었다. 그러나 제품 생산량 증가가 제품 생산비용 감소에 영향을 주지 못하고, 제품 생산비용 감소가 기업의 매출액 대비 경상이익률 증가에 기여하지 못하고 있는 것으로 나타났다. 또한 매출액 대비 경상이익률 증가가 제품 생산량과 기업 R&D투자 증가에 기여하지 못하고 있는 것으로 나타나, 국내 폐자원에너지기업들이 선순환구조에 들어서 있지 못한 것으로 분석되었다. 이러한 분석결과로부터 한국 폐자원에너지기업의 VC 공정간 선순환 구조를 구축하기 위한 정책적 지원이 필요하다는 시사점을 얻을 수 있었다.

다음으로 한국 바이오에너지산업의 VC에서 기업의 연구개발 성과 증가는 기업의 생산량 증가에, 기업의 제품 생산비용 감소는 기업의 매출액 대비 경상이익률 증가에 긍정적인 영향을 미치고 있는 것으로 분석되었다. 그러나 정부의 연구개발 지원은 기업의 연구개발 투자 증가로 이어지지 못하고, 기업의 연구개발 성과 증가에 기여하지 못한 것으로 분석되었다. 또한 기업의 제품 생산량 증가는 기업의 제품 생산비용 감소에는 기여하지 못한 것으로 분석되었다. 한편, 경상이익률의 증가가 생산량의 증가와 기업의 연구개발투자 증가에 기여하지 못하고 있어 가치사슬의 선순환구조가 취약한 것으로 분석되었다. 이러한 실증분석의 결과로부터 국내 바이오에너지를 기업의 공정간 부가가치의 선순환 구조를 구축하기 위해서는 생산량의 증가와 규모의 경제효과를 달성할 위한 지원정책이 필요하다. 또한 경상이익률 증가가 생산량 증가와 연구개발투자 증가를 유발하는 정책을 추진할 필요가 있다.
제 1 장 서론

1. 연구배경 및 필요성

필요성

연구내용 및 목적

본 연구는 가치사슬(value chain, 이하 VC) 모형을 제시하고, 한국 폐자원·바이오에너지산업에 참여하고 있는 기업들에 대한 설문조사를 통해 부가가치창출 구조를 분석하고자 한다. 여기서 한국 폐자원·바이오에너지산업의 국제가치사슬과 기술적-공학적인 분석은 제외하며, 국내 폐자원·바이오에너지기업의 VC 간에 긍정적인 영향을 주는 선순환구조가 형성되어 있는지를 분석하고자 한다. 분석결과를 바탕으로 폐자원·바이오에너지산업에 대한 정책적 시사점을 도출하고 연구의 한계와 향후 연구 과제를 제시하기로 한다.

추진방법

- 폐자원·바이오에너지 산업에 대한 선행연구
- 연구방법론 연구
- 폐자원·바이오에너지기업 List조사
- 설문지 작성
- 전문가 자문을 통한 설문 보완 후 설문조사 실시
- 설문조사 결과 값을 분석 후 보고서 작성

기대성과 및 활용방안

폐자원·바이오에너지산업의 가치사슬 구조 분석의 결과를 바탕으로 폐자원·바이오에너지산업에 대한 이해관계당사자들에게 정책기반자료로 활용 가능한 것으로 예상한다.
2. 폐자원·바이오에너지 산업

가. 폐자원1)에너지

1) 기준 및 범위

폐기물에너지지는 사업장 또는 생활시설에서 발생되는 폐기물을 대상으로 고체 연료 제조기술, 가스화에 의한 가스 제조 및 이용기술, 열분해에 의한 오일화 기술 등의 방법을 적용하여 얻어지는 고체·액체·기체 형태의 연료와 이를 연소 또는 변환시켜서 발생되는 에너지를 의미한다.

<표 1-1> 폐기물에너지의 기준 및 범위

| 기준 및 범위 |
|---|---|
| 폐기물 에너지 기준 | 1. 각종 사업장 및 생활시설의 폐기물을 변환시켜 얻어지는 기체, 액체 또는 고체의 연료
2. 제1호의 연료를 연소 또는 변환시켜 얻어지는 에너지
※ 제1호로부터 제3호까지의 에너지가 신·재생에너지가 아닌 석유 제품 등과 혼합된 경우에는 각종 사업장 및 생활시설의 폐기물로부터 생산된 부분만을 폐기물에너지로 본다. |

*출처 : 법제처 2010 “신에너지 및 재생에너지 개발·이용·보급 촉진법(시행령) 별표1”

1) 폐자원은 폐기물 중에서 에너지 자원으로 활용될 수 있는 것을 말하며, 폐기물은 넓은 의미에서 버려지는 모든 것을 의미하므로 폐자원보다 더 큰 개념의 용어라고 볼 수 있다. 본 보고서에서 폐기물과 폐자원은 혼용하여 사용하기로 한다. 본 보고서에서 다루는 “폐기물”이란 에너지자원으로의 활용을 염두한 “폐자원” 만을 일컫기 때문이다.
2) 폐자원에너지화 산업의 정의 및 범위

현재 국내외적으로 폐자원에너지 산업을 규정한 사례는 구체적으로 알려져 있지 않다. 일반적으로 에너지화 할 수 있는 폐기물을 생활폐기물, 고분자화합물 등과 같은 가연성폐자원과 하수슬러지, 음식물쓰레기와 같은 유기성폐자원으로 구분한다. 본 연구에서 폐자원에너지화 산업은 “가연성 및 유기성폐자원을 물리적, 생화학적 또는 열화학적 방법에 의해 연료(고체, 액체, 기체), 열 및 전기를 생산하여 산업생산 활동 및 경제활동에 필요한 에너지로 전환하기 위한 제품 생산, 건설 또는 서비스를 제공하는 산업활동”으로 정의하였다.

<표 1-2> 기술에 따른 폐자원에너지화 산업의 분류

<table>
<thead>
<tr>
<th>대분류</th>
<th>중분류</th>
<th>소분류</th>
</tr>
</thead>
<tbody>
<tr>
<td>가연성폐자원 에너지화 산업</td>
<td>고형연료 제조 산업</td>
<td>- 전처리(파쇄, 선별) - RDF(비성형 포함), RPF, WCF, TDF - 정제, 전용보일러, 열병합발전</td>
</tr>
<tr>
<td></td>
<td>열분해 산업</td>
<td>- 전처리(탈염화수소), 열분해(탄화 포함) - 열분해가스 및 열분해유 정제, 디젤엔진 발전</td>
</tr>
<tr>
<td></td>
<td>가스화 산업</td>
<td>- 전처리(파쇄, 선별), 가스화 - 합성가스 분리 및 정제, 가스엔진(터빈) 발전</td>
</tr>
<tr>
<td>소각여열 회수 이용 산업</td>
<td>스팀제조, 스팀발전, 열병합발전</td>
<td></td>
</tr>
</tbody>
</table>

폐자원에너지화 산업의 범위는 기술에 따라 크게 가연성폐자원 산업과 유기성 폐자원 산업으로 대분류하고, 가연성폐자원 산업은 고형연료 제조 산업, 열분해 산업, 가스화 산업 및 소각여열회수 이용 산업으로 중분류 하였다.
3) 산업구조 및 관련 산업

폐자원에너지산업의 연관산업 구조를 살펴보면 우선 후방산업은 생활폐기물과 사업장배출시설폐기물을 발생시키는 석유화학 산업, 기계 가공/설비 산업, 소재 산업, 전기·전자 산업, 바이오 산업, 건설폐기물을 발생시키는 건설 산업, 지정폐기물을 발생시키는 폐기물처리 산업, 의료 산업, 축산분뇨폐기물, 농림수산폐기물 등을 발생시키는 농업, 임업, 수산업, 축산업 등과 같이 산업 분야의 거의 모든 부분을 포함하고 있다. 전방산업은 폐기물에너지화로 생산된 고체·액체·기체 연료를 산업용 연료, 발전용 연료, 냉·난방용 연료, 보조연료, 소성용 연료 등의 다양한 용도로 활용하는 폐기물처리 산업, 발전 산업, 농업/축산업, 시멘트 산업, 목재/제지 산업, 재생에너지 산업 등이 있다.

<표 1-3> 폐기물에너지화 분야의 연관산업(전·후방산업) 구조

<table>
<thead>
<tr>
<th>후방산업</th>
<th>폐기물에너지화</th>
<th>전방산업</th>
</tr>
</thead>
<tbody>
<tr>
<td>석유화학 산업</td>
<td>← 고형연료</td>
<td>폐기물처리 산업</td>
</tr>
<tr>
<td>기계 가공/설비 산업</td>
<td>열분해 연료</td>
<td>발전 산업</td>
</tr>
<tr>
<td>소재 산업</td>
<td>폐기물 합성가스</td>
<td>재생 에너지 산업</td>
</tr>
<tr>
<td>건설 산업</td>
<td>소각열 회수 이용</td>
<td>시멘트 산업</td>
</tr>
<tr>
<td>바이오 산업</td>
<td></td>
<td>목재/제지 산업</td>
</tr>
<tr>
<td>폐기물처리 산업</td>
<td></td>
<td>농업/축산업</td>
</tr>
<tr>
<td>의료 산업</td>
<td></td>
<td></td>
</tr>
<tr>
<td>농업/임업</td>
<td></td>
<td></td>
</tr>
<tr>
<td>수산업/축산업</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) 국내의 폐자원에너지 기술개발 및 보급 현황

<표 1-4> 폐자원에너지화 기술분야별 기술동향 및 기술수준

<table>
<thead>
<tr>
<th>분야</th>
<th>국내외 기술동향</th>
<th>기술수준</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDF</td>
<td>- RDF 제조시설은 현재 국내에서는 2006년에 준공된 원주시의 시설가동 이후 수도권매립지 및 부천에 건설, 추가설비 건설 중 제조시설의개선 지속 추진 중, RDF 전용발전소 건설 추진 중
 - 전용 또는 혼소 보일러 개발 등의 신기술 필요</td>
<td>62.1%</td>
</tr>
<tr>
<td>가스화</td>
<td>- 1990년대 후반부터 본격 추진
- Pilot 규모의 기술개발(중대형화는 국외기술에 의존, 제한적 추진)
- 현재 사용형 설전은 일부 외국기술에 의해 추진됨
- 응용기술에 의한 회분 재활용으로 zero-waste와 연계 정책 시 활용 확대</td>
<td>55.5%</td>
</tr>
<tr>
<td>열분해·유화</td>
<td>- 1990년대부터 폐플라스틱 유효사업에 30여개 이상의 업체가 활동한 것으로 알려져 있으나, 상용화에 성공하였다는 조사결과는 없음
- 검증되지 않은 기술을 무분별하게 도입함으로써 유효기술에 대한 기술적 신뢰도 저하
- 상용화는 제한적으로 수행됨</td>
<td>62.0%</td>
</tr>
<tr>
<td>소각여열회수</td>
<td>- 2008년 기준 지자체의 중·대형 생활폐기물 소각시설에서 발생하는 여열 중 93%를 회수하여 이용 중
- 2013년까지 미회수 여열의 85%(41만 Gcal/년)를 추가적으로 회수 이용 목표
- 생활폐기물 소각시설(48톤/일 이상)의 여열회수시설 보완(약 20개소)</td>
<td>73.0%</td>
</tr>
</tbody>
</table>

*출처: 산업연구원. (2012). “신재생에너지 대·중소기업 공생발전을 위한 산업생태계조성방안”

가) 고형연료(RDF) 제조 분야

국내에서 RDF 단위장치와 관련기술 중 개발이 가장 많이 시도된 설비는 성형기로서 가장 초보적 방식인 extruder방식에서부터 Ring-dies, Wheel Mill 방식 등이 개발되었다. extruder 및 Wheel Mill 성형기는 몇 개의 중소 RPF생산업체에서 사용하고 있다. 그리고 RDF 이용기술은 석탄화력 열병합발전소에서 RDF를 혼소하는 기술, 무한궤도 화격자식과 외부순환 유동층식 RDF 전용보일러가 연구되었으며, 그 결과 400kg/hr 무한궤도식 RDF 보일러가 원주시청에서 상시가동을 하고 있다. 외부순환 유동층식 RDF 전용발전소는 1MW 파일럿플랜트가 성공적으로 개발되었고 후속 연구로서 현재 10MW 실증플랜트 건설이 진행 중이다.
그 밖에 화력 200MW 석탄 유동층 발전소에서 원주 RDF 혼소기술을 개발하였고, BDIC에서 RPF 및 슬러지 혼소를 상용화하였다.

아래 <표 1-5>는 현재 국내에서 기동중이거나 건설 중인 RDF플랜트를 정리한 것이고, 이외에 대구시, 포항시, 대전시, 순천시 등 여러 지자체에서 RDF플랜트 건설을 추진하고 있으므로 향후 RDF보급이 크게 증가할 것으로 보인다. 폐플라스틱 고형연료(RPF)는 약 80여 곳의 중소업체에서 생산을 하고 있다. 연간 RDF와 RPF 생산량 합계는 약 93천toe정도이다.

<표 1-5> 국내 가동 중이거나 건설 중인 RDF 제조 시설

<table>
<thead>
<tr>
<th>시·도</th>
<th>시·군·구</th>
<th>시설용량 (톤/일)</th>
<th>연료형태</th>
<th>시공사</th>
<th>사업추진 현황</th>
</tr>
</thead>
<tbody>
<tr>
<td>수도권매립지</td>
<td></td>
<td>200 fluff</td>
<td></td>
<td>가동 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,200 fluff</td>
<td></td>
<td>계획 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td>경기</td>
<td>부천</td>
<td>90 fluff</td>
<td></td>
<td>보수 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>가평</td>
<td>80 fluff</td>
<td></td>
<td>시운전 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td>전북</td>
<td>부안</td>
<td>25 fluff</td>
<td></td>
<td>환공 단계(‘12.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>무주</td>
<td>80 fluff</td>
<td></td>
<td>실시설계 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td>강원</td>
<td>원주 1차</td>
<td>80 fluff</td>
<td></td>
<td>건설 중(‘12.10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>원주 2차</td>
<td>80 fluff</td>
<td></td>
<td>가동 중 (환경부 자원화사업 이전시설)</td>
<td></td>
</tr>
<tr>
<td>전남</td>
<td>나주</td>
<td>130 fluff</td>
<td></td>
<td>기본설계 완료(‘11.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>순천</td>
<td>220 fluff</td>
<td></td>
<td>공사 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>목포</td>
<td>230 fluff</td>
<td></td>
<td>공사 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td>부산</td>
<td></td>
<td>900 fluff</td>
<td></td>
<td>공사 중(‘12.1)</td>
<td></td>
</tr>
<tr>
<td>경북</td>
<td>포항</td>
<td>500 fluff</td>
<td></td>
<td>중앙민수식의 완료(‘11.4)</td>
<td></td>
</tr>
<tr>
<td>경남</td>
<td>남해</td>
<td>15 fluff</td>
<td></td>
<td>가동 중 (환경부 자원화사업 이전시설)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>남해</td>
<td>25 fluff</td>
<td></td>
<td>가동 중</td>
<td></td>
</tr>
<tr>
<td></td>
<td>김해</td>
<td>200 fluff</td>
<td></td>
<td>신규사업 확정</td>
<td></td>
</tr>
<tr>
<td>충남</td>
<td>서산</td>
<td>90 fluff</td>
<td></td>
<td>신규사업 확정</td>
<td></td>
</tr>
<tr>
<td>광주</td>
<td></td>
<td>600 fluff</td>
<td></td>
<td>신규사업 확정</td>
<td></td>
</tr>
<tr>
<td>대구</td>
<td></td>
<td>760 fluff</td>
<td></td>
<td>적격성 심사중(‘12.1)</td>
<td></td>
</tr>
</tbody>
</table>

나) 열분해 유화 분야

열분해 유화분야의 연구개발은 1990년대 후반에 산업자원부의 대체에너지 개발 사업으로 LG화학에서 Hamburg공정을 기반으로 한 유동층 열분해반응공정 개발을 토대로 시작되었다. 한국에너지기술연구원에서 폐유-폐플라스틱 복합열분해공정을 개발, D사에서는 회분식 로타리컬럼 반응기를 개발하였다. 또한 환경부 사업으로 고분자폐기물의 연속식 열분해 유화 기술개발이 이루어졌으며, 최근 신재생에너지 기술개발사업으로 6,000톤/년 규모의 스크류식 유화플랜트 개발이 시작되었다. 그 밖에 한국에너지기술연구원과 K사는 폐타이어를 열분해유화하는 기술을 개발하여 동남아에 실증플랜트를 건설한 적이 있다.

da) 가스화 분야

가스화 기술과 관련된 국내 연구개발은 주로 고등기술연구원과 한국에너지기술연구원에서 이루어졌다. 아래 <표 1-6>은 국내 기술개발현황을 요약한 것이 다.

폐기물가스화 분야에서 상용화된 사례는 양산시 생활폐기물가스화 용융로 100톤/일 2기, 양주시 100톤/일 2기, 고양시 150톤/일 2기 및 양양군 30톤/일 1기 등이 있다. 이 중에서 양양군 시설은 국내기술로 개발되어 상용화된 사례이다. 가스화 기술로 합성가스를 생산하고 다음으로 화학반응을 통하여 DME나 알코올 등 고분자화합물을 제조하는 기술은 아직 연구 중이다.
<table>
<thead>
<tr>
<th>연구기관</th>
<th>연구개발 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>고등기술연구원</td>
<td>- 3~5톤/일급 고정층 폐기물가스화 용융시스템 개발</td>
</tr>
<tr>
<td></td>
<td>(생활폐기물, 사업장폐기물, RDF, RPF, 자동차과폐기물 등)</td>
</tr>
<tr>
<td></td>
<td>- 50톤/일급 적응용 핵심장치 개발 및 성능 실증</td>
</tr>
<tr>
<td></td>
<td>- 액상폐기물 처리를 위한 5톤/일급 가연성폐기물 가스화용융 플랜트 개발</td>
</tr>
<tr>
<td></td>
<td>- 난분해성 액상폐기물 처리시스템 개발 참여</td>
</tr>
<tr>
<td></td>
<td>- 5톤/일급 하수슬러지 용융 시스템 개발(특허, 환경신기술지정)</td>
</tr>
<tr>
<td>한국에너지기술연구원</td>
<td>- 50kg/일급 이산화탄소를 이용한 DME 생산 pilot 플랜트 건설</td>
</tr>
<tr>
<td></td>
<td>- 가연성 폐기물의 가스화에 의한 합성가스 제조 및 원료물질 회수를 위한 5톤/일급 pilot 플랜트 건설</td>
</tr>
<tr>
<td></td>
<td>- 1995년부터 0.5톤/일급 석탄 가스화용융로 개발을 진행</td>
</tr>
<tr>
<td>에תח시스템(주)</td>
<td>- 24톤/일급 규모의 고칼로리 유해폐기물의 열분해용융차원화설비 실증 플랜트 개발(환경부 차세대 핵심환경기술개발 사업)</td>
</tr>
<tr>
<td>(주)에드플라택</td>
<td>- 10톤/일급 생활폐기물 플라즈마 가스화 용융시스템 개발</td>
</tr>
<tr>
<td></td>
<td>(반간독자 개발)</td>
</tr>
<tr>
<td></td>
<td>- 30kg/h 용량의 폐기물 플라즈마 열분해가스에 의한 수성가스 전환과 PSA를 통해 CO₂를 분리하여 수소 제조 기술 개발</td>
</tr>
<tr>
<td>(주)대우건설</td>
<td>- 열분해 용융시설의 배출가스 및 잔유물 활용기술 개발</td>
</tr>
<tr>
<td></td>
<td>(환경부 차세대 핵심환경기술개발 개발)</td>
</tr>
<tr>
<td></td>
<td>- 5톤/일급 Thermoselect 방식의 가스화용융시스템 국산화 기술 개발</td>
</tr>
<tr>
<td>(주)유성</td>
<td>- 3톤/일급 난분해성 액상폐기물 가스화 용융시스템 개발</td>
</tr>
</tbody>
</table>

라) 소각여열 회수 및 이용 분야

소각로 보급이 본격화됨에 따라서 정부는 기술국산화를 추진하였고 그 결과 2000년대 초반 경부터 수백kg/hr 규모의 하향통풍 가스화연소식 중형소각로와 50톤/일 스토크식 소각로 등이 국산기술로 상용화되었다. 민간기업에서 기포유동층방식 소각로를 개발하여 슬러지 및 사업장폐기물 처리분야에서 상업화를 하였다. 2000년대 후반에 신재생에너지 발전차액보전제도가 시행됨에 따라서 중소도시에 설치된 수십톤/일 규모의 중형소각로에서도 수 MW급 외국산 중기터빈을 설치하여 폐열발전을 하는 사례가 나타났다.
2010년 기준으로 국내의 소각시설은 약 670여 개이고, 이 중에서 생활폐기물을 소각하기 위해서 지방자치단체가 운영하는 소각시설은 176개소이며, 사업장에서 자체발생폐기물을 소각처리하는 소각로가 425개로가장 많다. 또한 사업장폐기물을 위탁처리하는 중간처리업체의 소각로는 71개로 나타났다.

아래 <표 1-7>는 2011년에 국내에서 보급한 소각폐열량을 나타낸다. 생활폐기물소각로에서 공급한 에너지의 93.5%는 대형 소각로에서 공급되었는데, 이것은 중소형소각로의 소각폐열은 대부분이 버려지고 있음을 알 수 있다.

<표 1-7> 국내 폐기물 소각열 이용현황(2011)

<table>
<thead>
<tr>
<th>구분</th>
<th>폐가스 소각열</th>
<th>산업폐기물 소각열</th>
<th>생활폐기물 소각열</th>
<th>대형도시 폐기물소각로</th>
<th>시멘트킬론 보조연료</th>
</tr>
</thead>
<tbody>
<tr>
<td>공급량 (천toe/년)</td>
<td>2175</td>
<td>873</td>
<td>184</td>
<td>753</td>
<td>681</td>
</tr>
</tbody>
</table>

*출처 : 에너지관리공단 신·재생에너지센터. (2012). "2012 신재생에너지 백서"
아래 <표 1-8>은 국내 대형소각로의 생활폐기물 처리규모와 연간 에너지 생산량을 나타낸다.

<표 1-8> 국내 대형소각로 처리용량 및 에너지 발생량(2010)

<table>
<thead>
<tr>
<th>시설명</th>
<th>처리용량 (톤/일)</th>
<th>에너지 발생량 (Gcal)</th>
<th>시설명</th>
<th>처리용량 (톤/일)</th>
<th>에너지 발생량 (Gcal)</th>
<th>시설명</th>
<th>처리용량 (톤/일)</th>
<th>에너지 발생량 (Gcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울 양천구</td>
<td>400</td>
<td>277,016</td>
<td>서울 노원구</td>
<td>800</td>
<td>271,737</td>
<td>서울 강남구</td>
<td>900</td>
<td>550,177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>서울 마포구</td>
<td>750</td>
<td>530,177</td>
<td>부산 해운대구</td>
<td>340</td>
<td>180,247</td>
<td>부산 강서구</td>
<td>340</td>
<td>256,271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>대구 달서구</td>
<td>480</td>
<td>282,481</td>
<td>대구 달서구</td>
<td>480</td>
<td>282,481</td>
<td>(송도)인천 경제청</td>
<td>500</td>
<td>282,481</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(청라)인천 경제청</td>
<td>420</td>
<td>336,550</td>
<td>광주 서구</td>
<td>400</td>
<td>294,461</td>
<td>양주 서구</td>
<td>400</td>
<td>294,461</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>대전 대덕구</td>
<td>400</td>
<td>160,199</td>
<td>대전 대덕구</td>
<td>400</td>
<td>160,199</td>
<td>옥산 남구</td>
<td>400</td>
<td>241,547</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>수원시</td>
<td>600</td>
<td>334,682</td>
<td>의정부시</td>
<td>200</td>
<td>107,824</td>
<td>제주시 회천동</td>
<td>200</td>
<td>102,007</td>
</tr>
</tbody>
</table>

출처: 에너자리관리공단 신재생에너지센터 (2012). "2012 신재생에너지 백서"
5) 국내 폐자원에너지화 분야의 정책기조

자원순환형 사회구현과 신에너지 이용 시스템 구축을 위해 정부는 폐자원에너지화 시장에 주목하고 있다. 정부의 폐자원 관리 정책은 단순 안전처리에서 자원순환 형태로 진화하고 있다.

<그림 1-1> 폐기물 관리정책의 변환

자원순환 산업이 폐기물의 수집분류, 3R(재활용, 재사용, 자원화), 소각여열화수, 처리, 생산을 아우르는 전 과정(Life Cycle)을 관리하는 폐기물 산업 전반이라고 지칭하였다.

<그림 1-2> 자원순환 개념도
폐자원에너지화에 대한 정부 목표는 아래 그림 1-3과 같으며, 거점별로 관련 시설 확충 노력 중이다.

<그림 1-3> 2020년까지 폐기물에너지화에 대한 정부 목표

2009년을 기준으로 하여, 폐자원에너지화 시설 확충과 관련하여 추진되고 있는 국고보조사업 예산현황을 보면, 총 35개 시설에 대하여 총사업비 규모는 9,782억 원이고 국고에서 4,441억 원이 투입되었다. 또한 전국 8대 권역별 총 14개의‘환경에너지타운’을 조성하여 지역 거점화를 통해 폐기물의 효율적인 에너지화를 추진하고 있다. 가연성 폐자원환경연료화(RDF)사업에 총사업비의 64.7% (6,331억 원), 국고의 72.9%(3,238억 원)가 투입될 예정이다. 또한 2013년까지 폐자원가용량의 33%를 에너지화하고 2020년까지 전량을 에너지화하는 것을 목표하고 있다. 가연 소각여열 및 매립가스 회수·활용을 최대화(2013년 41만 Gcal, 9,219만 m³/년)도 목표하고 있다.

최근 신재생에너지 생산을 활성화하기 위한 목적으로"폐기물 에너지 기술개발 전략로드맵"을 수립하여 체계적인 기술개발 및 사업화, 수출연계 전략을 수립하였다. 로드맵에서 제시한 폐기물에너지 산업의 전략 품목을 정부계획에 반영하고, 2030년 신재생에너지 비중 11% 중 7.12%를 달성할 계획이다. 로드맵에 따라 기술 분야별로 핵심설비 국산화, 공정시스템과 플랜트의 상용화에 집중지원하고 관련 예산도 지속적으로 증액해 나갈 예정이다. 주요 핵심 분야는‘복합
폐자원 고형연료 제조 및 이용‘, ‘사업장 고형폐자원 고품질 합성가스 생산‘, ‘고효율 폐자원 소각일체형 보일러‘, ‘폐자원 에너지화 공통 핵심설비‘, ‘폐자원 열분해 복합 에너지화 플랜트‘이며 국내 실증을 완료한 폐자원 에너지 플랜트 기술을 페키지(Package)화하는 것이 사업화 전략 추진 목표 중 하나이고, 대기업의 플랜트화 기술과 중소기업의 부품 기술을 이용하는 전략이 필요하다.

가장 빠르게 성장하고 있는 시장인 아태 지역과 전통적 폐자원 시장인 유럽지역에 대한 수출화 전략을 고려하여, 해당 시장에 적합한 기술을 도출할 필요가 있다. 해외 수출을 위해서는 유럽, 중국 및 동남아 등 고함수 생활 폐자원 처리를 위한 BT 결합형 RDF 제조 플랜트 기술개발이 필요하다.

<table>
<thead>
<tr>
<th>분류</th>
<th>전략품목</th>
<th>~2012</th>
<th>~2013</th>
<th>~2014</th>
<th>~2015</th>
<th>~2020</th>
<th>~2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>단기 품목</td>
<td>고형연료 고형폐기물 처리 기술 개발</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>고형연료 소각일체형 보일러 시스템</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>고형폐기물 에너지화 복합 설비 기술</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>고형연료 부품 및 혁신기술</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>복합 플랜트 에너지화 연구 및 개발</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>PT 열분해 기술</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>PT 공통 기술</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
</tbody>
</table>

<그림 1-4> 폐기물 에너지 기술개발 전략 로드맵
6) 폐자원에너지 산업의 중요성

폐자원에너지화 산업을 확대하기 위해서는 미활용(매립, 단순 소각) 대상 폐자원을 적극적으로 활용하여야 하고, 순환형 매립지 또는 기존 매립지로부터 가연성폐자원을 선별하여 이용할 필요가 있다. 또한 화석연료를 이용하는 에너지산업은 경제성을 높이기 위해 대용량 시설이 대부분을 차지하나, 폐자원은 전국에 분포되어 있고 한 지역에 대규모의 시설을 건설하기 어려우므로 경쟁력을 갖추기 위해서는 화석연료 가격이 증가하거나 정부의 일정한 지원이 요구된다고 할 수 있다. 폐자원에너지 산업의 특징 및 중요성을 <표 1-9>에 요약하여 정리하였다.

<표 1-9> 폐자원에너지 산업의 특징 및 중요성

<table>
<thead>
<tr>
<th>특징</th>
<th>중요성</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 폐자원의 발생량 및 처리량에 의존</td>
<td>- 국제기후변화에 동등적으로 대응</td>
</tr>
<tr>
<td>· 폐자원에너지화 산업은 가정 및 사업장에서 발생하는 폐자원에 바탕을 두는 산업이므로 발생 폐자원량에 따라 산업규모가 결정됨.</td>
<td>· 폐자원에너지화는 타 재생에너지에 비해 저비용으로 조기 양산체제 실현이 가능하므로 온실가스 감축의 유력한 수단이 될 수 있음</td>
</tr>
<tr>
<td>- 기존 폐기물처리 산업과 경쟁 및 협력이 필요</td>
<td>- 에너지안보에 기여</td>
</tr>
<tr>
<td>· 에너지화 대상 폐자원은 기존 시장에서 이미 활용되고 있어, 기존 시장과 경쟁이 불가피하며 과열 경쟁에 따른 폐자원 처리비 흑자와 구매비용 상승을 유발할 우려가 있음.</td>
<td>· 1차에너지 소비 비중 중 50% 이상이 석유에 의존하고 있어 유가변동, 국제정세 등의 영향에 국내의 에너지안보가 크게 좌우됨.</td>
</tr>
<tr>
<td>- 화석연료의 가격변동에 민감</td>
<td>- 매립지 수명연장에 기여</td>
</tr>
<tr>
<td>· 위 산업은 에너지를 얻는 것을 목적으로 하므로 그 비교 대상은 석탄, 석유, 천연가스와 같은 화석연료이며, 이들의 가격이 하락하게 되면 경쟁력이 떨어져 사업이 활성화 되지 못함.</td>
<td>· 기존에 매립되고 있는 폐자원을 에너지화에 활용함으로써 매립지의 수명을 연장함</td>
</tr>
<tr>
<td>- 기존 타산업과의 구분이 어려움</td>
<td></td>
</tr>
<tr>
<td>· 기존의 생산, 유통, 서비스업과 중복되는 부분이 많아 구분이 어렵고, 통계자료 수집도 어려움.</td>
<td></td>
</tr>
</tbody>
</table>

나. 바이오에너지

바이오에너지란 바이오매스(Biomass, 유기성 생물체를 총칭)를 직접 또는 생·화학적, 물리적 변환과정을 통해 액체, 가스, 고체연료나 전기·열에너지 형태로 이용하는 화학, 생물, 연소공학 등의 기술을 일컫는다. 다만 그 에너지가 신재생 에너지가 아닌 석유제품 등과 혼합된 경우에는 생물유기체로부터 생산된 부분만을 바이오에너지로 간주한다.

「신에너지 및 재생에너지 개발·이용·보급 촉진법」제2조는 신에너지 및 재생에너지란 기존의 화석연료를 변환시켜 이용하거나 햇빛·물·지열·생물유기체 등을 포함하는 재생 가능한 에너지를 변환시켜 이용하는 에너지라고 규정하고 있다. 「신에너지 및 재생에너지 개발·이용·보급 촉진법」은 11가지의 신에너지 및 재생에너지종의 하나로 바이오에너지를 규정하고 있다. 「신에너지 및 재생에너지 개발·이용·보급 촉진법」제2조 제1호 나목은 생물자원을 변환시켜 이용하는 바이오에너저로서 대통령령으로 정하는 기준 및 범위에 해당하는 에너지를 이 법의 규율을 받도록 규정하고 있다.

<표 1-10> 바이오에너지의 기준 및 범위

<table>
<thead>
<tr>
<th>기준 및 범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>바이오에너지</td>
</tr>
<tr>
<td>1. 생물유기체를 변환시켜 얻어지는 기체, 액체 또는 고체의 연료</td>
</tr>
<tr>
<td>2. 제1호의 연료를 연소 또는 변환시켜 얻어지는 에너지</td>
</tr>
<tr>
<td>※ 제1호 또는 제2호의 에너지가 신재생에너지가 아닌 석유제품 등과 혼합된 경우에는 생물유기체로부터 생산된 부분만을 바이오에너지로 본다.</td>
</tr>
<tr>
<td>범위</td>
</tr>
<tr>
<td>1. 생물유기체를 변환시킨 바이오가스, 바이오에탄올, 바이오액화유 및 합성가스</td>
</tr>
<tr>
<td>2. 쓰레기배출물의 유기성폐기물을 변환시킨 배출가스</td>
</tr>
<tr>
<td>3. 농림·식물의 유지(유지)로 변환시킨 바이오디젤</td>
</tr>
<tr>
<td>4. 생물유기체를 변환시킨 땔감, 목재침, 쟁반 및 목탄 등의 고체연료</td>
</tr>
</tbody>
</table>

출처: 신에너지 및 재생에너지 개발·이용·보급 촉진법(시행령) 별표1

2) 본보고서 제목에 나와 있는 바이오매스 기업은 바이오매스를 원료로 하는 바이오매스에너지기업을 의미함으로, 이후부터는 바이오매스를 바이오에너지로 총칭한다.

3) 에너지관리공단 신재생에너지관리, '바이오(목질계)', 북스힐, 2008, 3면; EU집행위원회는 바이오매스를 정의할 때 생물학적으로 분해 가능한 동물·야생·고형유기성폐기물 등으로 규정하고 있고, 일본도 바이오매스를 '유기성폐기물 등 생물에서 유래하는 유기성자원'으로 규정하고 있다. 식생촌, "제78호, GS&J 인스터뷰드, 2009. 5. 7면."
바이오에너지의 자원이 풍부하여 파급효과가 크고 환경 친화적 생산이 가능하며, <그림 1-5>과 같이 다양한 형태(연료, 전력, 열 등)의 에너지 생성이 가능하다. 에너지 전환과정에서 발생되는 CO₂는 생물의 생장과정에서 흡수한 것으로 대기 중에 CO₂의 양을 증가시키지 않는 “탄소중립(Carbon Neutral)” 즉, CO₂ zero emission의 특징을 지니며 지구 온난화의 주범인 화석연료에 의한 온실가스 양을 감소시킬 수 있다.

<table>
<thead>
<tr>
<th>주요 바이오매스</th>
<th>바이오 에너지</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>전분질계 및 섬유소계 바이오매스</td>
<td>총합, 황기탄</td>
<td>난방 연료</td>
</tr>
<tr>
<td>액체</td>
<td>바이오 에탄올</td>
<td>자동차 연료</td>
</tr>
<tr>
<td>가스화</td>
<td>혼합 가스</td>
<td>에탄올</td>
</tr>
<tr>
<td>직접 연소</td>
<td>보일러</td>
<td>열</td>
</tr>
<tr>
<td>발전기</td>
<td>전기</td>
<td></td>
</tr>
<tr>
<td>총합분노, 음식물생기, 유기성 폐수</td>
<td>현기 발효</td>
<td>하단</td>
</tr>
<tr>
<td>유치액, 대두, 해바라기 등</td>
<td>기름생산</td>
<td>바이오 디젤</td>
</tr>
<tr>
<td>수소생산</td>
<td>수소</td>
<td>연료</td>
</tr>
</tbody>
</table>

<그림 1-5> 주요 바이오매스에너지의 종류 및 용도

바이오에너지와 폐기물에너지의 구분에 있어서 문제점은 「신에너지 및 재생 에너지 개발·이용·보급 촉진법 시행령」제2조에 따른 바이오에너지 등의 기준 및 범위에 모호한 부분이 존재하여 법률 적용 대상에 혼란이 발생할 우려가 있다. 폐기물에너지의 경우 「폐기물관리법」 및 「자원의 절약과 재활용 촉진에 관한 법률」의 적용을 받게 된다는 점에서 구별 실익이 있다. 폐목재를 통하여 얻어진 연료는 현행법의 문의적 해석에 의하면 바이오에너지에 해당하는 동시에 폐기물에너지에도 해당하여 법률 적용 대상에 혼란이 발생되고 있다. 바이오에너지와 폐기물에너지의 구분을 생물기원여부에 따라 그 기준으로 구분을 명확히 하고 구체적인 에너지원은 하위법령에 위임함으로써 신규 신재생에너지지원의 적용에 탄력성을 제고할 필요가 있다.
바이오에너지는 자원이 풍부하여 파급효과가 크고 환경 친화적 생산이 가능하며, <그림 1-5>과 같이 다양한 형태(연료, 전력, 열 등)의 에너지 생성이 가능하다. 에너지 전환과정에서 발생되는 CO$_2$는 생물의 생장과정에서 흡수한 것으로 대기 중에 CO$_2$의 양을 증가시키지 않는 “탄소중립(Carbon Neutral)” 즉, CO$_2$ zero emission의 특징을 지녀 지구 온난화의 주범인 화석연료에 의한 온실가스 양을 감소시킬 수 있다.

1) 국외의 시장현황

가) 국외

2010년 기준 전 세계 바이오에너지 소비는 1차 에너지 소비의 약 10%로 재생 에너지 보급량 중 가장 높으며 이러한 경향은 향후 2030년까지 지속될 것으로 예측되었다(<그림 1-6>).

![그림 1-6] 전 세계 에너지원별 보급 현황 및 전망

이러한 바이오에너지의 보급은 열에너지 활용이 주요 목적인 주거 부문을 중심으로 시장이 형성되어 있으며 전기활용이 주목적인 산업 부문과 수송부문에서의 바이오에너지 시장은 상대적으로 매우 작은 것으로 나타났다. 하지만 열 또는 전기 시장에서 가격 경쟁력이 우수한 타 재생에너지의 보급이 확대됨에 따라 열
또는 전기시장에서 보다는 수송 부문에서 바이오에너지 시장이 가파르게 성장할 것으로 분석되었다. 즉 2030년까지 주거 부문에서 바이오에너지의 열활용은 거의 증가가 없을 것으로 나타났지만 전기 또는 수송용 바이오연료 시장은 각각 80% 및 200%가량 성장할 것으로 전망되었다(<<그림 1-7>>).

<그림 1-7> 부문별 바이오에너지 수요 현황 및 향후 전망
*출처: IEA. (2010). "Energy Technology Perspectives 2010"

앞에서 기술한 바와 같이 태 재생에너지 기술의 발전으로 열 또는 전기 시장에서 바이오에너지의 입지가 좁아지게 되므로 향후 바이오에너지 시장의 중심은 수송용 바이오연료가 될 것으로 예측되므로 수송용 바이오연료 중심으로 국내외 시장 동향에 기술하고자 한다.

낮은 경제성 때문에 외면 받던 수송용 바이오연료(바이오에탄올, 바이오디젤)는 기후 변화 문제가 본격적으로 국제사회에 의심사가 된 2000년대 중반 이후 시장이 가파르게 성장하고 있다(<<그림 1-8>>).
2011년 기준 연료 에탄올 생산은 약 8,700만 kL로 바이오디젤 2,100만 kL에 비해 4배 높았다. 바이오에탄올 시장은 가솔린 차량이 주요수송 수단인 미주 지역을 중심으로 형성되었으며 그 결과 전 세계 바이오에탄올생산의 80%를 미국과 브라질이 차지하고 있으며 모든 에탄올은 곡물을 원료로 생산되고 있다. 미국의 경우 2005년에는 전체옥수수 생산량의 12.5%가 에탄올 생산 원료로 사용되었지만 2011년에는 전체 옥수수생산량의 40%가 에탄올 생산에 소비되었다(<그림 1-9>).

<그림 1-8> 수송용 바이오연료 시장 현황

<그림 1-9> 에탄올 생산용 곡물 원료 소비 현황
이와 같은 곡물의 에탄올원료 사용은 곡물 가격 폭등의 문제를 야기하여 비식용원료로부터 에탄올을 생산하기 위한 기술개발이 활성화되고 있다. 특히 미국은 2007년부터 수송용 바이오연료의 의무 사용량을 규정한 RFS II의 시행으로 2009년 기준 약 4x10^7kL(260억 달러)의 에탄올 시장이 만들어졌다. 이러한 미국의 에탄올시장은 RFSII에 의한 규정으로 2022년까지 5.76x10^7kL로 증가하게 되며 곡물의 에탄올 생산 원료로 사용에 따른 문제를 해결하기 위해 2015년 이후 추가 생산되는 바이오연료는 전량 비식용원료로부터 생산할 계획이다(<그림 1-10>).

<그림 1-10> 미국의 RFS II 시행에 따른 바이오연료 시장 전망

현재의 곡물 원료를 활용하는 1세대 바이오연료는 향후 수송용 바이오연료 시장이 가파르게 성장함에 따라 비식용 바이오매스를 원료로 만들어지는 2세대 바이오연료로 대체될 것으로 예상된다. 또한 수송용 바이오연료시장의 주 제품은 가솔린 대체 연료인 에탄올에서 2035년 이후 연비가우수한 디젤 차량이 집중 보급됨에 따라 경유 대체연료인 바이오디젤 중심으로 변경될 것으로 나타나 이러한 변화에 대응하는 기술 개발 지원이 필요할 것으로 판단된다.
나) 국내

국내 바이오매스 부존자원은 연간 1,128만 toe 정도이며, 이용 가능한 보급 잠재량은 232만 toe 수준이다. 국내 바이오에너지의 열 또는 발전을 위한 목재연료와 수송용 연료인 바이오디젤을 중심으로 시장이 형성되어 있다. 국내의 시장동향에 대해서 각각의 기술별로 정리하였다.

(가) 바이오에탄올

국내에는 아직 바이오에탄올 시장이 형성되지 못하였으나 국내외에서 점차 높아지는 수송용 바이오연료의 중요성 때문에 바이오에탄올 시장은 곧 만들어질 것으로 판단된다. 정부에서 발표한 제 3차 신재생에너지보급 계획에 따르면 2020년 에탄올 시장 규모는 43만 toe(약 60만kL)에 이를 것으로 예상된다. 에탄올 1L당 판매 단가를 1천원으로 가정하면 에탄올 시장 규모는 약 6천억원에 이를 것으로 예상된다.

<그림 1-11> 국내 바이오에탄올 시장 전망
(나) 바이오디젤

2007년부터 바이오디젤은 전국 보급이 시작되었으며, 2012년 기준 바이오디젤의 보급 양은 40만kL(약 5천억원)이다. 국내에는 15곳의 바이오디젤 업체가 있으며 실제 가동되는 기업은 8개 업체이다(<표 1-11>).

<표 1-11> 국내 바이오디젤 업체

<table>
<thead>
<tr>
<th>업체명</th>
<th>시도</th>
<th>시군구</th>
<th>생산능력</th>
</tr>
</thead>
<tbody>
<tr>
<td>이맥바이오(㈜)</td>
<td>전남</td>
<td>순천시</td>
<td>50,000㎘/년</td>
</tr>
<tr>
<td>(㈜M에너지</td>
<td>경기도</td>
<td>평택시</td>
<td>100,000㎘/년</td>
</tr>
<tr>
<td>(㈜비디케이</td>
<td>전북</td>
<td>정읍시</td>
<td>32,400㎘/년</td>
</tr>
<tr>
<td>단석산업</td>
<td>경기도</td>
<td>시흥시</td>
<td>80,000㎘/년</td>
</tr>
<tr>
<td>GS바이오</td>
<td>전남</td>
<td>여주시</td>
<td>100,000㎘/년</td>
</tr>
<tr>
<td>(㈜넥센코</td>
<td>충북</td>
<td>제천시</td>
<td>48,000㎘/년</td>
</tr>
<tr>
<td>(㈜지엔오코퍼레이션</td>
<td>경기도</td>
<td>양주시</td>
<td>12,000㎘/년</td>
</tr>
<tr>
<td>(㈜넥스오일(㈜</td>
<td>전북</td>
<td>군산시</td>
<td>99,000㎘/년</td>
</tr>
<tr>
<td>(㈜에너지</td>
<td>경기도</td>
<td>평택시</td>
<td>80,000㎘/년</td>
</tr>
<tr>
<td>에스케이케미칼(㈜</td>
<td>울산시</td>
<td>남구</td>
<td>136,000㎘/년</td>
</tr>
<tr>
<td>에경유화(㈜</td>
<td>울산시</td>
<td>남구</td>
<td>130,000㎘/년</td>
</tr>
<tr>
<td>제이씨케미칼(㈜</td>
<td>울산시</td>
<td>울주군</td>
<td>120,000㎘/년</td>
</tr>
<tr>
<td>서강오씨아이(㈜</td>
<td>경남</td>
<td>밀양시</td>
<td>79,000㎘/년</td>
</tr>
<tr>
<td>(㈜한국씨에스씨</td>
<td>경남</td>
<td>양산시</td>
<td>32,000㎘/년</td>
</tr>
<tr>
<td>(㈜에스엠피오티</td>
<td>경기도</td>
<td>여주군</td>
<td>21,000㎘/년</td>
</tr>
</tbody>
</table>

바이오디젤의 유통은 현재 정유사를 통해 일반 소비자에게 공급되는 BD5(바이오디젤 5% 이하 혼합유)와 자가 주유 시설을 갖춘 운수사업자에게 판매되는 BD20(바이오디젤 20% 혼합 유)로 이원화 되어 있으나, 실제 바이오디젤 보급은 대부분은 BD5형태의 보급구조로 정유사를 통하여 이루어지고 있다.
바이오가스

2010년 현재 국내 바이오가스 발생량은 157,074천㎥/년, 석유환산톤으로 72,984 TOE이고, 국내 일일 발생하는 유기성폐자원인 168,138T을 전량 바이오가스화 한 경우 연간 756,807 TOE의 원유대체 효과(경제적 효과 약 8,500억원)가 있는 것으로 조사되고 있다(환경부).

하지만 생산되는 바이오가스는 93% 이상이 발전 및 자체이용 등의 이용효율이 낮은 활용방식을 벗어나지 못하고 있는 실정이다.

국내생활폐기물매립장(약 252개소) 가운데 매립용량이 큰 매립장은 대부분은 매립가스 자원화시설을 설치·운영 중에 있으며 시설 중 발전시설의 경우 전국에 13개 시설에 70.8MW의 시설용량을 갖추고 있고, 전국 4개의 시설에서 632N㎥/min의 가스를 공급하고 있다.

향후 정부의 폐기물 에너지화 정책에 따라 바이오가스 생산 시설은 점차 더 늘어날 것으로 전망된다.

<표 1-12> 매립가스 자원화시설 설치·운영 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>지역</th>
<th>시설 위치</th>
<th>시설규모 (MW, N㎥/분)</th>
<th>가동년도</th>
<th>가스 이용량 (N㎥/분)</th>
<th>총에너지 생산량 (MWh, N㎥/년)</th>
<th>에너지 판매액 (백만원)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>발전시설 (MW)</td>
<td>수도권</td>
<td>수도권 매립지</td>
<td>50</td>
<td>2006</td>
<td>385.8</td>
<td>397,862</td>
<td>43,403</td>
<td>스팀터빈</td>
</tr>
<tr>
<td></td>
<td>부산</td>
<td>부산 생곡</td>
<td>6</td>
<td>2001</td>
<td>29</td>
<td>21,309</td>
<td>2,800</td>
<td>가스엔진</td>
</tr>
<tr>
<td></td>
<td>대구</td>
<td>대구 방철리</td>
<td>1.5</td>
<td>2006</td>
<td>0.5</td>
<td>282</td>
<td>(자가이용)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>광주</td>
<td>광주 운정동</td>
<td>1</td>
<td>2003</td>
<td>8.5</td>
<td>7,700</td>
<td>976</td>
<td></td>
</tr>
<tr>
<td></td>
<td>대전</td>
<td>대전 금고동</td>
<td>3.46</td>
<td>2003</td>
<td>7.3</td>
<td>1,809</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>충북 정주</td>
<td>충북 정주 학전리</td>
<td>1.058</td>
<td>2004</td>
<td>7.2</td>
<td>5,675</td>
<td>736</td>
<td></td>
</tr>
<tr>
<td></td>
<td>전북 군산</td>
<td>전북 군산</td>
<td>1</td>
<td>2002</td>
<td>2,728</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>전남 순천</td>
<td>전남 순천 홍사면</td>
<td>1.85</td>
<td>2004</td>
<td>7.2</td>
<td>5,675</td>
<td>736</td>
<td></td>
</tr>
<tr>
<td></td>
<td>전남 순천 정촌</td>
<td>전남 순천 정촌</td>
<td>1.5</td>
<td>2005</td>
<td>3.7</td>
<td>2,103</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>전남 해남</td>
<td>전남 해남 운동</td>
<td>0.925</td>
<td>2005</td>
<td>5</td>
<td>3,403</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td></td>
<td>경북 포항</td>
<td>경북 포항 호동</td>
<td>2</td>
<td>2002</td>
<td>7</td>
<td>5,823</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td></td>
<td>경북 영천</td>
<td>경북 영천 희철</td>
<td>1</td>
<td>2003</td>
<td>3</td>
<td>2,218</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td></td>
<td>경남 무산</td>
<td>경남 무산</td>
<td>0.8</td>
<td>2009예정</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>경북 구미</td>
<td>경북 구미</td>
<td>0.3</td>
<td>2009예정</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>계</td>
<td>계</td>
<td>계</td>
<td>70,893</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연료공급 (N㎥/분)</td>
<td>서울</td>
<td>서울 난지도</td>
<td>460</td>
<td>2002</td>
<td>32.4</td>
<td>17,027</td>
<td>682</td>
<td>지역난방</td>
</tr>
<tr>
<td></td>
<td>대구</td>
<td>대구 방철리</td>
<td>130</td>
<td>2006</td>
<td>95</td>
<td>49,696</td>
<td>6,320</td>
<td>지역난방</td>
</tr>
<tr>
<td></td>
<td>부산</td>
<td>부산 성암동</td>
<td>42</td>
<td>2002</td>
<td>10.8</td>
<td>5,613</td>
<td>1,287</td>
<td>산업보일러</td>
</tr>
<tr>
<td></td>
<td>강원 원주</td>
<td>강원 원주</td>
<td>100</td>
<td>2004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>부방설비</td>
</tr>
<tr>
<td>계</td>
<td>계</td>
<td>계</td>
<td>632</td>
<td></td>
<td>138,2</td>
<td>72,336</td>
<td>8,289</td>
<td></td>
</tr>
</tbody>
</table>

현재 국내에서는 생산된 바이오가스를 간단한 정제공정을 거쳐 발전이나 난방 연료로 사용하고 있는 실정이며 고질화를 통한 바이오메탄으로의 활용은 거의 이루어지지 않고 있다. 국내에서 바이오가스 고질화는 2004년 대전광역시 금고 동매립지에서 매립가스를 이용한 자동차 연료화 실증시설이 설치되어 연구가 진행되었으나 상업화로 연결되지는 못하였다.

2009년 서울시 서남수처리장과 수도권매립지에서는 선진국의 바이오가스 고질화 기술을 도입하여 바이오가스를 차량용 연료로 사용하는 설비를 설치 및 운영하고 있다. 서남수처리장에서는 Flotech사(스웨덴)의 바이오가스 고질화 기술인 PWS(Pressurized Water Scrubbing)방식의 장치를 수입하여 하수솔리지 협기성소화조로부터 바이오가스를 정제하여 차량연료로 이용하는 사업을 실시, 2,940 ㎥/day의 바이오메탄 연료를 생산하고 있다. 수도권매립지에서는 Xebec사(캐나다)의 PSA 방식의 바이오가스 고질화 장치를 수입하여 CNG 생산 pilot 플랜트를 설치/운영 중이며 하루 약 14,000 ㎥의 바이오가스를 처리하고 있다.

(라) 바이오합성가스

RPS(신재생에너지의무사용제) 해당 기업의 경우 MWe급 이상 발전 가능한 바이오매스 가스화 시스템에 대한 수요가 높다. 발전용 리그노셀룰로오스 바이오매스 가스화기의 경우 MWe급 이상의 경우 경제성 있는 것으로 보고되고 있으며 RPS 의무 기업의 경우 중대형 가스화 발전 시스템에 관한 관심이 높다.

석유가격의 급등과 함께 정부에서는 RFS(신재생연료의무사용제) 시행을 준비 중에 있으며 이 경우 바이오매스 가스화를 통한 신재생연료 생산에 대한 시장 수요가 크게 증가할 것으로 예상된다. 바이오매스 유래 합성가스의 총매 전환을 통한 수송용 연료 생산기술을 통해 바이오 에탄올, 메탄올, DME, BTL(Biomass to Liquid) 디젤, SNG(합성천연가스), 수소 등의 생산이 가능하며 이들은 미래 신 재생연료로 현대 이용 시스템에 대한 기술개발이 활발히 이루어지고 있다.

정부에서는 온실가스 감축을 조기에 달성하고, 국내 일자리 창출 등을 위하여 신재생에너지 의무혼합제도(RPS)와 유사한 “신재생연료 의무공급제도정책(RFS)” 제도를 준비하고 있다. 이 제도는 선진국(영국, 미국, 일본, 독일 등)에서 이미 시행한 제도로 그 동안은 정유회사 및 발전소등에 의무를 가했으나, 최근에는 천연가스 공급회사에도 신재생연료 의무공급제도를 적용하고 있다.

지식경제부 전략기획단에서 추진 중인 K-MEG(Korea Micro Energy Grid)와 연계하여 분산형 발전 및 열공급 하드웨어, 건물형 연료전지의 수소 공급원으로 수요가 예상된다. 바이오매스산업은 K-MEG 사업과 연계하여 온실가스 감축과 고효율화, 제로 에너지화 빌딩 의무화 추진을 위하여, 바이오매스에서 발생되는 수소가스는 연소 시 오염물이 발생하지 않는 청정연료로 건물 내 청정공기의 유지와 연료로서의 우수한 성질을 가지고 있다.

2) 국내외 정책 동향

가) 국내 정책 동향

브라질을 제외한 모든 지역에서 수송용 바이오연료는 경제성이 없으므로 바이오연료 보급 선진국들은 바이오연료가 시장에 정착할 수 있도록 각각 다양한 정책을 시행하고 있지만 공통된 특성을 갖는다. 즉 보급초기에는 바이오연료에 대해 면세혜택을 부여하여 바이오연료가 시장이 진입할 수 있도록 지원하고 바이오연료 시장이 커지면 정부 재정 운용에 부담이 되므로 바이오연료의 의무제정부분을 수요자가 부담토록 하는 의무용제도(RFS)로 정책을 전환하고 있다. 즉 아래 <표 1-13>에 나타낸 바와 같이 RFS를 시행중인 미국, 독일, 우리나라 등은 바이오연료 면세혜택 부여에 따른 세수 결손액이 일정 수준에 도달하면 RFS로 전환하는 공통성을 보이고 있다. 일본은 2011년부터 에탄올에 대한 면세 정책을 시행하고 있으며 현재는 보급 초기이므로 당분간 바이오연료면세 정책을 유지하겠지만 향후 바이오연료 보급량이 증가하면 다른 나라들과 마찬가지로 의무사용 정책으로 전환할 것으로 예상된다.
표 1-13 수송용 바이오연료에 대한 지원 정책 요약

<table>
<thead>
<tr>
<th></th>
<th>세계 지원(면세)</th>
<th>RFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>미국</td>
<td>- 바이오에탄올 : 45센트/갤런</td>
<td>- 2008년 시행 (2012년 에탄올 면세 지원 종료)</td>
</tr>
<tr>
<td></td>
<td>- 비식용 바이오디젤 : $1/갤런 (세수 결손 : 6조8천억원)</td>
<td>- 2007년 시행 (4.4%)</td>
</tr>
<tr>
<td>독일</td>
<td>- 바이오디젤 면세 : 0.5유로/L</td>
<td>- 2012년 7.0%</td>
</tr>
<tr>
<td></td>
<td>2006년 240만kL 바이오디젤</td>
<td>- 8개 성에서 E10 보급</td>
</tr>
<tr>
<td>중국</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>- 바이오에탄올 : 52엔/L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011년 5만kL 에탄올</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(세수 결손 : 350억원/년)</td>
<td></td>
</tr>
<tr>
<td>국내</td>
<td>- 2012년 40만kL 바이오디젤</td>
<td>- 2014년 시행 검토 중</td>
</tr>
<tr>
<td></td>
<td>(세수 결손 : 2,100억원/년)</td>
<td></td>
</tr>
</tbody>
</table>

나) 국내 정책 동향

앞서 기술한 바와 같이 국내에서는 수송용 바이오연료보급 확대를 위해 RFS도입방안을 검토 중이며 전기 에너지 사용에 대해서는 일부 정책 지원이 시작되었다. 특히 2012년 1월부터 발효된 RPS는 바이오에너지의 발전시장에서의 점유율 확대에 크게 기여할 것으로 판단된다. 실제 국내 대규모 발전업체인 전력회사들은 목질 펠릿을 발전 연료로 활용하는 방안에 대해 적극 검토 중이다.

3) 바이오에너지의 중요성

가) 바이오에탄올

전 세계적으로 석유고갈 대응 에너지원의 다양화, 기후변화 협약 및 자국의 농업육성을 위해 바이오연료보급 장기 로드맵 설정 및 의무화 보급 등 보급 활성화를 위해 과감한 정부정책을 발표하고 있는 추세이다.
지속적인 석유매장량감소 및 원유의 중동의존도(86%) 증가로 인하여 최근 원유 가격은 100$/B을 넘어섰고 에너지의 96% 이상을 해외에서 수입하는 우리나라의 경우 2011년 석유 수입액은 전년대비 41.8% 증가한 1725억 달러로, 국내 총 수입액의 32.9%에 달하는 금액을 에너지 수입에 사용하였다. 따라서 원유 의존도가 가장 높은 수송용 연료 분야에 원유를 대체할 수 있는 에너지 기술 개발이 중요한 이슈로 떠오르고 있다.

바이오에탄올은 현존의 화석 연료대비 가격 경쟁력이 낮을에도 불구하고 미국을 비롯한 브라질, EU 다수의 국가에서는 사용 중에 있으며 최근에는 동남 및 중국과 같은 서남아시아 일부의 국가에서 사회, 공익적 편익을 감안하여 정책적으로 개발하여 사용하기 위한 계획을 수립하였다. 국내의 경우, 휘발유 중 바이오에탄올 5%를 전국 보급 시 약 105만 톨/년의 CO₂ 감축이 예상되며, 국가 신재생에너지 사용 비중이 약 0.11% 증가하고 2030년 약 45,323백만원의 사회적 편익이 발생한다.

옥수수 및 사탕수수와 같은 식량 자원을 이용한 바이오에탄올 생산은 식량 자원과의 충돌 및 원자재 가격 상승이라는 본질적인 취약점이 있기 때문에 목질 자원과 경합이 없는 목질계, 섬유질계 바이오매스를 이용한 바이오에탄올 생산 기술 개발이 주목 받고 있다.

미국 DOE는 6개의 프로젝트를 지원하고 있으며 2012년까지, 브라질의 Petrobras는 2015년까지 섬유질계 에탄올 산업화를 목표로 하고 있다. EU의 경우 대부분 바이오에탄올 기술 개발이 민간 투자에 의해 이루어지고 있으며, 대표적으로 Abengoa는 5천만 리터 규모의 목질계 바이오에탄올 산업화 시범 공장 건립하고 있다.

우리나라는 현재 일부 기업들에 의한 핵심기술연구와 개별 기술들을 조합한 Pilot 규모의 실증연구가 추진 중이다. 향후 시장형성 및 RFS 등과 같은 정책시행을 위해서 목질계 에탄올 분야에 대한 지속적이고 적극적인 투자가 필요하다.

나) 바이오디젤

바이오디젤은 국내에서 성공한 신재생에너지 중의 하나이다. 특히 바이오디젤은 경유와 물성이 유사하여, 경유와 혼합하여 사용하면 차량개조의 필요 없이 쉽게 보급이 가능하며, 보급률을 크게 올릴 수 있는 장점이 있다. 2008년 12월 지식경제부에서 발표한 제 3차 신재생 에너지 기술개발 및 이용·보급 기본계획
은 바이오디젤의 보급이 1,800,000 toe까지 지속적으로 높아질 것이라 예상하고 있다. 바이오디젤은 이미 산업화가 진행되고 있고, 정책개발과 기술개발이 산업의 확장에 미치는 영향이 높을 것으로 예상된다.

da) 바이오가스

국내 폐기물 유래 바이오매스 자원은 연간 7,600만톤 정도가 발생하고 있고 현재 집계되고 있는 통계상으로는 이들 발생량 중 5,600만톤이 재활용되는 것으로 집계되고 있으나 대부분이 재활용보다는 처리 관점에서 관리되고 있는 실정이며 이들을 이용한 바이오가스의 회수 등 에너지 이용 비율은 극히 미미한 실정이다.

또한 2013년까지 가축분뇨, 하·폐수슬러지, 음폐수 등의 해양 배출이 전면 금지되면서 유기성 폐기물의 에너지화(바이오가스 생산) 전환기술 및 생산되어진 바이오가스의 활용기술이 중요한 이슈로서 부각되고 있다.

바이오가스의 생산 및 활용분야는 부가가치가 높은 LNG 대체가 가능한 에너지라는 장점이 있음에도 불구하고 국내 자체의 상용화 기술이 없어 관련기술의 해외의존도가 매우 높은 기술 분야라 할 수 있어 국내 여건과 환경에 적합한 기술의 국산화가 필요한 실정이다. 바이오가스생산 및 활용기술은 음폐수 해양배출 금지 등 정부정책의 유기성폐기물 육상처리에 따른 자원화 증대 촉진 및 이를 통한 가치상향형 폐기물처리에 기여할 수 있으며, 바이오 가스를 LNG 대체 연료로 사용할 경우 LNG 수입 절감(전국적인 효과로 약 1.6억㎥의 LNG 대체량과 약 1,400억 원의 수입대체)효과를 볼 수 있다.
라) 바이오합성가스

국내의 경우 RPS, RFS 등의 정부 시책에 따라 바이오매스 가스화 및 이용 시스템에 대한 시장의 요구는 매우 극단 반하여 상용화 기술을 보유하지 못하고 국내의 사용화 실적을 확보 하지 못했다. 따라서 그 기술적 타당성과 상업적 운용 가능성을 보여줄 수 있는 실증 플랜트 운용을 요구하고 있으며, 기술적 위험성에 대한 걱정이 국내 시장의 확대에 걸림돌이 되고 있다.

현재 국내 기존 전력 시장은 포화상태에 있고, 태양광, 풍력, 조력 등의 에너지는 아직까지는 낮은 효율과 환경단체와의 마찰, 각종 규제의 미비로 인해 단기적으로 사업 진행에 어려움을 겪고 있는 상황이다. 이러한 상황에서 바이오매스를 이용한 전력생산에 대한 관심이 매우 높으며, 보일러 혼소와 함께 독립적인 발전설비 구성이 가능한 바이오매스 가스화 발전 설비에 대한 관심이 매우 높다. 따라서 상용화에 대한 기술적, 경제적 타당성이 검증 될 경우 해당 사업에 적극 참여하고자 하는 시장 주체가 다수 존재함. 관심 기업이 확신을 가지고 해당 사업을 시작 할 수 있도록 정부가 집중 지원하여 상용화 기술개발이 성공할 수 있도록 지원되어야 하며, 성공할 경우 즉각적인 상용화와 함께 정부 정책에 큰 도움을 줄 수 있다.

바이오매스 가스화 시장에 진입하기 위해 필요한 기술적 요소로서 일차적으로 Choren이나 Güssing 플랜트, MILÉNA 프로젝트의 사례에서 나타난 바와 같이 적극적인 연구개발을 통해 기존의 기술과 차별화되어 원천 특허의 확보가 가능한 새로운 가스화 기술이 요구된다. 국제적으로 온실가스 감축에 대한 구체적인 방안이 수립되고 실행을 위한 새로운 법규가 세계 각국에서 제정되고 있는 가운데 우리나라도 최근 그린에너지 전략 로드맵, 에너지기술개발 전략로드맵 등에서 바이오에너지, 바이오매스 에너지 분야에 대한 국가차원의 실행 로드맵을 수립하여 시행중에 있다. 수집 잠재량이 상대적으로 높은 바이오매스 자원의 실용화 사업은 더욱 용이하게 추진될 수 있다고 판단되며, 열화학적 에너지 전환기술을 통해 폐기물을 이용하는 경우 일반 소각에 비해 오염 발생 가능성이 상대적으로 낮기 때문에 이에 대한 실용화는 더욱 촉진될 것으로 판단된다.

바이오매스 가스화는 바이오매스의 에너지를 이용하기 위한 하나의 방법으로서 짧은 반응시간과 높은 단위 부피당 처리용량으로 인한 플랜트 크기 감소, 석탄 또는 폐기물과 달리 낮은 회분, 염소, 황 함량으로 인한 적은 공정 폐기물
발생 등의 장점을 가짐. 또한 가스화 기술의 특징인 추출된 에너지의 저장 및 수송의 용이성과 높은 에너지 회수율로 차세대 에너지 전환 기술로 기대되고 있다. 기존 바이오매스 가스화 설비는 홀소용 합성가스 생산이나 열병합 발전의 목적으로 건설되었으나, 최근 BTL 또는 SNG 등 고품질 합성가스를 이용하여 부가가치가 높은 연료를 생산하는 방향으로 전환하고 있다. 최근에는 이산화탄소 배출 감소 요구와 맞물려, 탄소배출 저감을 위한 바이오매스 가스화 효율 향상 및 수소 생산에 대한 많은 기초 연구가 진행되고 있다.

마) 산림바이오매스

재생 가능한 청정연료인 산림바이오매스 에너지는 화석연료대체에 효과적이며, 온실가스 감축과 에너지 절감을 위한 중요한 자원으로 인식되고 있다.
2012년 기준으로 세계 목재매립소비량은 연간 약 1,900만 톤으로, 2020년에는 4,500만 톤까지 증가하고, 시장가치는 2011년 4.3조 원에서 2020년에는 16조 원 시장으로 성장하는 동 연평균 15.7%의 성장률이 예측된다.
2012년부터 시행된 신·재생에너지 공급의무제도(RPS: Renewable Portfolio Standard)는 목재매립을 비롯한 국내산림바이오매스 연료 시장에 중대한 변화를 일으켰다.
국내에서 50만kW 이상의 발전설비를 보유한 발전사 13곳이 공급의무대상으로 선정되고, 연도별 의무공급비율이 2012년 2%, 2013년 2.5% 등 지속적으로 확대 실시되면서 공급의무대상 업체 및 기관의 어려움이 발생하고 있다.
실제적으로 신·재생에너지 공급의무대상자인 국내 발전업체에서는 2012년 공급의무를 충족하지 못함에 따른 과징금 부과로 발전사업자들이 상당한 규모의 경제적인 손실을 입은 것으로 보도되었다.
국내 발전의 상당 부분을 차지하고 있는 화력발전설비 측에서는 즉시 적용이 가능하고 초기 투자비용이 저렴한 반면 아니라, RPS 의무공급량을 충족할 수 있는 목질계 바이오매스 혼소 전손발전 추진을 다각적으로 검토하고 있다.
그러나 최근 후쿠시마 원전사고 발생 및 해외에서 수입된 목재매립 제품 일부에서 방사능물질의 잔존 한계가 미량 검출되면서 수입, 유통에 대한방사능 안전 기준이 요구되고 있으며, 산림청에서는 목재매립에 대한 방사능 예비 안전기준을 마련하였다.
제 2 장 선행연구

1. 부가가치사슬 (value chain)

VC는 마이클 포터 (M. Porter)가 기업의 전략적 단위 활동을 구분하여 자기의 장·단점을 파악하고, 경쟁 기업과 현재 혹은 잠재적으로 차별화가 가능한 가치 창출 원천을 분석하기 위해 정립한 경쟁우위평가에 관한 이론이다. VC는 광범위하게 활용되는 이론적 틀로서, R&D, 조달, 제조, 영업, 판매, 물류, A/S 등 일련의 활동에서 제품이나 서비스의 부가가치를 창출하는 과정으로도 설명된다. 넓은 의미에서는 원재료 생산자 또는 부품 공급자로부터 제품이 완성되어 최종 사용자에 이르기까지의 가치창출 단계에 기여하는 기업의 모든 내·외부 활동을 말한다. 주요 활동의 공정은 부가가치를 창출하는 고리로 연결되어 있고, 이는 가치사슬 내 연계는 한 활동의 변화가 다른 활동의 가치와 비용에 영향을 주는 상호작용 특성을 나타내고 있다.

![그림 2-1] 가치사슬

정 공정과 그 기업이 참여하고 있는 VC 전체를 이해해야 하며, 더불어 어떤 활동이 경쟁우위를 가지고 있는지 구분할 필요가 있다면서 수직적 연계 분석의 중요성을 강조하였다.

하지만 수직적 연계 분석도 기업들이 범위의 경제를 실현하면서 가치사슬의 전 분야 또는 일부 분야에 참여하는 다양성 때문에 분석에 어려움을 겪고 있다. 이러한 제약에 따라 현재까지 VC에 대한 연구는 거의 설문방식으로 진행되었다.

<table>
<thead>
<tr>
<th>저자/연도</th>
<th>분석대상</th>
<th>방법론</th>
<th>분석결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahy (2002)</td>
<td>Automotive components industry</td>
<td>Paired sample t-test</td>
<td>국제화 환경에서 지속가능한 경쟁 우위 확보를 위해서는 기업별 유형자산, 역량, 자원과 향상된 지역별 자원이 중요함을 분석</td>
</tr>
<tr>
<td>Baldwin et al. (2005)</td>
<td>Manufacturing organizations</td>
<td>Evolutionary systems model with equation given in Allen</td>
<td>제조업을 대상으로 지속가능한 기업의 구조를 생산 규모와 생산 시스템의 관점에서 분석하여 새로운 생산기술, 정책도입, 실행이 중요함을 분석</td>
</tr>
<tr>
<td>Zhu et al. (2005)</td>
<td>Managers in manufacturing & processing industries</td>
<td>Questionnaire t-test</td>
<td>VC에 환경요소를 포함하여 분석함. 중 국기업들은 Green Supply Chain Management(GSCM) 관점에서 아직 미흡한 것으로 분석</td>
</tr>
<tr>
<td>Watanabe et al. (2000)</td>
<td>Photovoltaic Power generation in Japan</td>
<td>Virtuous cycle model</td>
<td>일본 태양광산업에서 정부 R&D지원이 기업 R&D 증가, R&D성과 증가, 셀 생산 증가, 셀 비용 감소, 셀 생산량 제증가, R&D 재투자로의 선순환 구조가 있음을 분석</td>
</tr>
</tbody>
</table>
2. 폐자원·바이오에너지산업의 VC

가. 폐자원에너지산업

폐자원에너지산업 VC의 구성을 정부, 기업, 연구자들에 따라 조금씩 차이가 있지만, 일반적으로는 원료 공급 및 전처리, 시스템 설계 및 제작, 시스템 운전 (연료 제조), 생성물의 활용으로 구분한다. 이에 본 연구에서의 VC은 Watanabe et al (2000)의 방법론을 기반으로 폐자원에너지산업에 참여하고 있는 기업들에 대한 정부 R&D, 기업 R&D, R&D성과(특허출원 또는 등록), 제품 생산량, 제품 생산비용(규모의 경제), 경상이익률 등으로 구분한다.

나. 바이오에너지산업

바이오에너지는 다양한 바이오에너지원으로부터 다양한 유형으로 전환 가능하다. 각각의 바이오매스는 다른 물리·화학적 특성을 가지므로 원료 특성에 맞는 에너지 전환기술이 필요하며, 형태에 따라 혐기성소화, 가스화, 열분해, 효소분해, 당화, 중류 등의 공정을 거치게 된다. 이런 공정들의 특성은 한 기업에서 원료를 생산하거나 구입하고 바이오에너지까지 생산하는 수직계열(Vertical Integration)의 형태를 나타내게 한다.

바이오에너지산업을 도식화하는 VC의 구성은 정부, 기업, 연구자들에 따라 다르지만 크게 두 가지 시각으로 구분할 수 있다. 첫째는 VC 구성을 크게 보면 시각으로, 바이오에너지를 생산하는 VC를 “바이오매스(원료)조달 - 생산 공정 (투입활동) - 유통 및 보급 (마케팅)”으로 구분한다. 둘째는 VC 구성을 바이오에너지 원료별 생산과정에 한정하는 것이다(<그림 2-2> 참조). 목질계 고형연료는 ‘원료조달(생산·확보) - 에너지화(연소)’ 또는 ‘원료조달 - 고형연료생성형 - 에너지화(연소·열병합)’으로 구분하며, 수송용 바이오연료는 “원료조달(생산·확보) - 전처리 - 전환 - 에너지화(혼합)”으로 구분하며, 바이오가스는 “원료조달(생산·확보) - 혐기성소화 - 에너지화(발전)” 또는 “원료조달(매립) - 포집·정제 - 에너지화(발전·열병합)”으로 구분한다. 본 논문은 한국 바이오에너지산업에서 원료별 생산과정에 관여하는 기업의 VC를 분석하고자 한다. 이는 현재 국내 바이오에너지산업에 대한 정부 R&D투자와 바이오에너지기술을 대상으로 진행되어 왔으
며, 바이오에너지산업은 현재 제품 혁신이 중점적으로 이루어지는 도입 및 성장 초기 단계이기 때문이다.

<그림 2-2> 바이오에너지 생산과정
제 3 장 분석방법론

1. VC 분석방법과 가설설정

즉 <그림 3-1>에서와 같이 폐자원·바이오에너지산업의 VC에서 정부의 폐자원·바이오에너지산업 R&D투자가 폐자원·바이오에너지기업의 R&D투자 증가에 기여하는지, 폐자원·바이오에너지기업의 R&D투자 증가가 R&D성과(특허출원과 등록) 증가에 기여하는지, R&D성과 증가가 제품 생산량 증가에 기여하는지, 제품 생산비용 감소가 경상이익률 증가에 기여하는지, 경상이익률 증가가 제품 생산량 증가와 R&D투자 증가에 기여하여 전 공정에 걸쳐 선순환구조를 형성하고 있는가를 분석하고자 한다.

본 연구는 이러한 VC에 대한 분석방법론에 따라 각 공정단계별로 다음과 같이 7개 가설을 설정하였다.

가설 1 : 정부의 폐자원·바이오에너지산업 R&D지원 증가는 폐자원·바이오에너지기업의 R&D투자 증가에 긍정적인(+) 영향을 미친다.
가설 2 : 폐자원·바이오에너지기업의 R&D투자 증가는 폐자원·바이오에너지기업의 R&D투자 성과(특허) 증가에 긍정적인(+) 영향을 미친다.
가설 3 : 폐자원·바이오에너지기업의 R&D투자 성과(특허)는 폐자원·바이오에너지기업의 제품 생산량 증가에 긍정적인(+) 영향을 미친다.
가설 4 : 폐자원·바이오에너지기업의 제품 생산량 증가는 폐자원·바이오에너지기업의 제품 생산비용 감소(규모의 경제)에 긍정적인(+) 영향을 미친다.
가설 5 : 폐자원·바이오에너지기업의 제품 생산비용 감소(규모의 경제)는 폐자원·바이오에너지기업의 매출액 대비 경상이익률 증가에 긍정적인(+) 영향을 미친다.
가설 6 : 폐자원·바이오에너지기업의 매출액 대비 경상이익률 증가는 폐자원·바이오에너지기업의 제품 생산량 증가에 긍정적인 (+) 영향을 미친다.
가설 7 : 폐자원·바이오에너지기업의 매출액 대비 경상이익률 증가는 폐자원·바이오에너지기업의 R&D투자 증가에 긍정적인 (+) 영향을 미친다.

<그림 3-1> VC 분석모형
2. 설문조사 개요

가. 기업 리스트 조사

1) 폐자원에너지기업 (249개)

<table>
<thead>
<tr>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GS건설환경공사</td>
<td>22</td>
<td>슈레텍</td>
<td>43</td>
<td>코레코</td>
<td>64</td>
<td>한일시멘트(주)</td>
<td>85</td>
<td>롯코리아리사성시스템</td>
</tr>
<tr>
<td>2</td>
<td>Plasma Eco-Technology</td>
<td>23</td>
<td>쌍용건설</td>
<td>44</td>
<td>코레코</td>
<td>65</td>
<td>TSK water 연구개발부</td>
<td>86</td>
<td>롯코리아리사성시스템</td>
</tr>
<tr>
<td>3</td>
<td>기아야</td>
<td>24</td>
<td>에이치플러스</td>
<td>45</td>
<td>태경화학</td>
<td>66</td>
<td></td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>건민산업</td>
<td>25</td>
<td>에이치플러스</td>
<td>46</td>
<td>한양자교시공</td>
<td>67</td>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>금호산업</td>
<td>26</td>
<td>유니슨이앤씨</td>
<td>47</td>
<td>TSK water 연구개발부</td>
<td>68</td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>대림보일러</td>
<td>27</td>
<td></td>
<td>48</td>
<td></td>
<td>69</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>대법자문</td>
<td>28</td>
<td></td>
<td>49</td>
<td></td>
<td>70</td>
<td></td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>대법자문</td>
<td>29</td>
<td></td>
<td>50</td>
<td></td>
<td>71</td>
<td></td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>대영산업</td>
<td>30</td>
<td></td>
<td>51</td>
<td></td>
<td>72</td>
<td></td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>대원아이앤에프</td>
<td>31</td>
<td></td>
<td>52</td>
<td></td>
<td>73</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>동문아이알에스</td>
<td>32</td>
<td></td>
<td>53</td>
<td></td>
<td>74</td>
<td></td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>동부그린에너지</td>
<td>33</td>
<td></td>
<td>54</td>
<td></td>
<td>75</td>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>동원아이앤에스</td>
<td>34</td>
<td></td>
<td>55</td>
<td></td>
<td>76</td>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>동원아이앤에스</td>
<td>35</td>
<td></td>
<td>56</td>
<td></td>
<td>77</td>
<td></td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>동일농자문</td>
<td>36</td>
<td></td>
<td>57</td>
<td></td>
<td>78</td>
<td></td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>동일농자문</td>
<td>37</td>
<td></td>
<td>58</td>
<td></td>
<td>79</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>동일농자문</td>
<td>38</td>
<td></td>
<td>59</td>
<td></td>
<td>80</td>
<td></td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>동일농자문</td>
<td>39</td>
<td></td>
<td>60</td>
<td></td>
<td>81</td>
<td></td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>동일농자문</td>
<td>40</td>
<td></td>
<td>61</td>
<td></td>
<td>82</td>
<td></td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>동일농자문</td>
<td>41</td>
<td></td>
<td>62</td>
<td></td>
<td>83</td>
<td></td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>동일농자문</td>
<td>42</td>
<td></td>
<td>63</td>
<td></td>
<td>84</td>
<td></td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

표 3-1> 폐자원에너지기업리스트
<table>
<thead>
<tr>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>성렬이앤티㈜</td>
<td>136</td>
<td>(주)대청환경</td>
<td>166</td>
<td>(주)대장정원</td>
<td>196</td>
<td>(주)제씨홈</td>
</tr>
<tr>
<td>107</td>
<td>(주)현대자원</td>
<td>137</td>
<td>(주)현대이앤티 (유)</td>
<td>167</td>
<td>(주)대서울이앤티</td>
<td>197</td>
<td>(주)일산시스템</td>
</tr>
<tr>
<td>108</td>
<td>고려이앤티</td>
<td>138</td>
<td>영진환경(주)</td>
<td>168</td>
<td>삼호환경기술</td>
<td>198</td>
<td>정화산업(주)</td>
</tr>
<tr>
<td>109</td>
<td>(주)일산시스템 재처리시설</td>
<td>139</td>
<td>남도에너지(주)</td>
<td>169</td>
<td>(주)리뉴에코에너지</td>
<td>199</td>
<td>에린시스템</td>
</tr>
<tr>
<td>110</td>
<td>녹색자원(주)</td>
<td>140</td>
<td>한국피앤소(주)</td>
<td>170</td>
<td>비올리아, 에스앤에이 에코시스템(주)</td>
<td>200</td>
<td>(주)리동그리아</td>
</tr>
<tr>
<td>111</td>
<td>(주)강림이앤티</td>
<td>141</td>
<td>(주)정화</td>
<td>171</td>
<td>(주)한강환경개발 창원지점</td>
<td>201</td>
<td>(주)일일성</td>
</tr>
<tr>
<td>112</td>
<td>(주)한국특수산업</td>
<td>142</td>
<td>(주)화성</td>
<td>172</td>
<td>(주)부산이앤티</td>
<td>202</td>
<td>(주)피앤리치</td>
</tr>
<tr>
<td>113</td>
<td>(주)엔라이티</td>
<td>143</td>
<td>우성산업</td>
<td>173</td>
<td>(주)상수</td>
<td>203</td>
<td>한국타이어 중앙연구소</td>
</tr>
<tr>
<td>114</td>
<td>(주)에스앤미오</td>
<td>144</td>
<td>동부이앤티(주)</td>
<td>174</td>
<td>(주)두산이엔지</td>
<td>204</td>
<td>한국산업단지공단 창주도서사업단</td>
</tr>
<tr>
<td>115</td>
<td>(주)세계환경아이 환경개발</td>
<td>145</td>
<td>(주)평생환경산업</td>
<td>175</td>
<td>(주)에스앤미오 환경산업</td>
<td>205</td>
<td>대양테크놀로지</td>
</tr>
<tr>
<td>116</td>
<td>(주)강림이앤티</td>
<td>146</td>
<td>아노텍금산(주)</td>
<td>176</td>
<td>(주)대원제지</td>
<td>206</td>
<td>현영양화공업</td>
</tr>
<tr>
<td>117</td>
<td>(주)서대리아이앤디</td>
<td>147</td>
<td>(주)창글린</td>
<td>177</td>
<td>(주)해한산업개발</td>
<td>207</td>
<td>두레기술(주)</td>
</tr>
<tr>
<td>118</td>
<td>(주)스카이에너지</td>
<td>148</td>
<td>(주)보빈플라텍</td>
<td>178</td>
<td>(주)유진에코</td>
<td>208</td>
<td>코오롱환경서비스</td>
</tr>
<tr>
<td>119</td>
<td>수도원전처리사업</td>
<td>149</td>
<td>삼성플라텍</td>
<td>179</td>
<td>(주)정원환경개발</td>
<td>209</td>
<td>아트원제지(주)</td>
</tr>
<tr>
<td>120</td>
<td>(주)티앤글로벌 김천지점</td>
<td>150</td>
<td>(주)한강산업개발</td>
<td>180</td>
<td>부산광역시 자원제공센터</td>
<td>210</td>
<td>고도도시공사</td>
</tr>
<tr>
<td>121</td>
<td>(주)대신 신재생에너지</td>
<td>151</td>
<td>(주)부산군 환경재생사업소</td>
<td>181</td>
<td>(주)타이디자인산업</td>
<td>211</td>
<td>고도도시공사</td>
</tr>
<tr>
<td>122</td>
<td>한국비앤텍(주)</td>
<td>152</td>
<td>(주)부산광역시 자원재활용센터</td>
<td>182</td>
<td>(주)캐리티앤디자인그룹</td>
<td>212</td>
<td>방명양화공업</td>
</tr>
<tr>
<td>123</td>
<td>(주)달비엔터테인먼트</td>
<td>153</td>
<td>한국산소성 산업기자재</td>
<td>183</td>
<td>(주)도정협합 기술공사</td>
<td>213</td>
<td>두레기술(주)</td>
</tr>
<tr>
<td>124</td>
<td>(주)강원에너지</td>
<td>154</td>
<td>(주)상수</td>
<td>184</td>
<td>(주)대원제지(주)</td>
<td>214</td>
<td>코밍하지에코</td>
</tr>
<tr>
<td>125</td>
<td>부산시 폐기물 종합처리시설</td>
<td>155</td>
<td>(주)리뉴에코에너지</td>
<td>185</td>
<td>(주)가정아이앤에스</td>
<td>215</td>
<td>아트원제지(주)</td>
</tr>
<tr>
<td>126</td>
<td>(주)그린환경산업</td>
<td>156</td>
<td>한국그린에너지(주)</td>
<td>186</td>
<td>(주)가정아이앤에스</td>
<td>216</td>
<td>고도도시공사</td>
</tr>
<tr>
<td>127</td>
<td>성진산업</td>
<td>157</td>
<td>성화(유)</td>
<td>187</td>
<td>(주)이앤에코솔루션</td>
<td>217</td>
<td>삼성제지소</td>
</tr>
<tr>
<td>128</td>
<td>영보화학(주)</td>
<td>158</td>
<td>(주)아이알텍</td>
<td>188</td>
<td>(주)아이니미디어리미</td>
<td>218</td>
<td>GS플라텍</td>
</tr>
<tr>
<td>129</td>
<td>(주)동양환경</td>
<td>159</td>
<td>한국토지주택공사 재생사람복수</td>
<td>189</td>
<td>ET</td>
<td>219</td>
<td>기흥(주)</td>
</tr>
<tr>
<td>130</td>
<td>(주)에스科技成果</td>
<td>160</td>
<td>동화환경</td>
<td>190</td>
<td>(주)에드플라텍</td>
<td>220</td>
<td>대경에스코</td>
</tr>
<tr>
<td>131</td>
<td>(주)마산환경</td>
<td>161</td>
<td>두산에너지산업(주)</td>
<td>191</td>
<td>(주)RDF</td>
<td>221</td>
<td>대성산업가스</td>
</tr>
<tr>
<td>132</td>
<td>(주)대천산업 환경공사</td>
<td>162</td>
<td>(주)대천</td>
<td>192</td>
<td>(주)대화환경</td>
<td>222</td>
<td>(주)대우건설</td>
</tr>
<tr>
<td>133</td>
<td>(주)대천산업</td>
<td>163</td>
<td>(주)기장군 환경공사</td>
<td>193</td>
<td>(주)세산환경산업</td>
<td>223</td>
<td>도화엔지니어링</td>
</tr>
<tr>
<td>134</td>
<td>(주)부산상처</td>
<td>164</td>
<td>(주)계절에코소리야</td>
<td>194</td>
<td>(주)재원산업(주)</td>
<td>224</td>
<td>동호</td>
</tr>
<tr>
<td>135</td>
<td>(주)에비컨소시엄</td>
<td>165</td>
<td>(주)에스앤씨</td>
<td>195</td>
<td>(주)프로시스템 에너지테크놀로지</td>
<td>225</td>
<td>두산중공업</td>
</tr>
</tbody>
</table>
2) 바이오에너지기업 (234개)

<표 3-2> 바이오에너지기업리스트

<table>
<thead>
<tr>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>NGVI</td>
<td>151</td>
<td>산림조합중앙회</td>
<td>201</td>
<td>동강</td>
<td>251</td>
<td>(주)우림</td>
<td>301</td>
<td>기흥상공</td>
</tr>
<tr>
<td>102</td>
<td>OCI</td>
<td>152</td>
<td>삼보우드산업</td>
<td>202</td>
<td>동일우드</td>
<td>252</td>
<td>(주)위너스</td>
<td>302</td>
<td>대경에너지</td>
</tr>
<tr>
<td>103</td>
<td>SK 에너지</td>
<td>153</td>
<td>삼성종합기술원</td>
<td>203</td>
<td>명광</td>
<td>253</td>
<td>(주)이례산업</td>
<td>303</td>
<td>대성산업가스</td>
</tr>
<tr>
<td>104</td>
<td>SK이노베이션</td>
<td>154</td>
<td>삼양제넥스</td>
<td>204</td>
<td>미술환경산업</td>
<td>254</td>
<td>(주)아름지엔지</td>
<td>304</td>
<td>(주)태우건설</td>
</tr>
<tr>
<td>105</td>
<td>SK케미칼</td>
<td>155</td>
<td>삼홍제제소</td>
<td>205</td>
<td>(주)바이오스토로</td>
<td>255</td>
<td>(주)인도서양화정</td>
<td>305</td>
<td>(주)도화엔지니어링</td>
</tr>
<tr>
<td>106</td>
<td>S-OIL</td>
<td>156</td>
<td>서울기계공업</td>
<td>206</td>
<td>서영건재</td>
<td>256</td>
<td>(주)재우이앤씨</td>
<td>306</td>
<td>(주)동호</td>
</tr>
<tr>
<td>107</td>
<td>STX 중공업</td>
<td>157</td>
<td>삼보우드산업</td>
<td>207</td>
<td>성안기업</td>
<td>257</td>
<td>(주)지안우드</td>
<td>307</td>
<td>두산중공업</td>
</tr>
<tr>
<td>108</td>
<td>가람환경에너지(주)</td>
<td>158</td>
<td>삼성종합일렉트론스</td>
<td>208</td>
<td>성호보일러</td>
<td>258</td>
<td>(주)설안에너지</td>
<td>308</td>
<td>(주)두산산업개발</td>
</tr>
<tr>
<td>109</td>
<td>강무산업개발(주)</td>
<td>159</td>
<td>삼광우드</td>
<td>209</td>
<td>(주)이케이엔지</td>
<td>259</td>
<td>(주)장우진정</td>
<td>309</td>
<td>(주)리텍솔루션</td>
</tr>
<tr>
<td>110</td>
<td>개명임업</td>
<td>160</td>
<td>삼호폴리텍</td>
<td>210</td>
<td>주원</td>
<td>260</td>
<td>(주)케이지엔지</td>
<td>310</td>
<td>삼성장신자료</td>
</tr>
<tr>
<td>111</td>
<td>건조기술</td>
<td>161</td>
<td>세온엔텍</td>
<td>211</td>
<td>지구촌지브이</td>
<td>261</td>
<td>(주)태원산업</td>
<td>311</td>
<td>서희건설</td>
</tr>
<tr>
<td>112</td>
<td>경기아스콘산업</td>
<td>162</td>
<td>세월기계공업</td>
<td>212</td>
<td>지바이오텍</td>
<td>262</td>
<td>(주)태ዋ우드</td>
<td>312</td>
<td>(주)물리</td>
</tr>
<tr>
<td>113</td>
<td>경남자원(주)</td>
<td>163</td>
<td>세종특별자치권 환경보건부</td>
<td>213</td>
<td>광복중심지방</td>
<td>263</td>
<td>(주)포레스코</td>
<td>313</td>
<td>(주)이코솔루션</td>
</tr>
<tr>
<td>114</td>
<td>경원에너지(주)</td>
<td>164</td>
<td>신탁이앤에스</td>
<td>214</td>
<td>(주)렌즈센터</td>
<td>264</td>
<td>(주)포레소</td>
<td>314</td>
<td>(주)유니슨이테크</td>
</tr>
<tr>
<td>115</td>
<td>계룡우드(주)</td>
<td>165</td>
<td>진영유업</td>
<td>215</td>
<td>(주)태화우드</td>
<td>265</td>
<td>(주)한국바이오</td>
<td>315</td>
<td>(주)유성</td>
</tr>
<tr>
<td>116</td>
<td>고려아연(주)</td>
<td>166</td>
<td>쌍리타크</td>
<td>216</td>
<td>하성고주원</td>
<td>266</td>
<td>(주)배재우드</td>
<td>316</td>
<td>(주)이파워기술단</td>
</tr>
<tr>
<td>117</td>
<td>고려특장(주)</td>
<td>167</td>
<td>쌍리테크(주)</td>
<td>217</td>
<td>(주)현대환경</td>
<td>267</td>
<td>(주)일산산업</td>
<td>317</td>
<td>(주)일산에너지</td>
</tr>
<tr>
<td>118</td>
<td>고속에너지</td>
<td>168</td>
<td>안나바니테크</td>
<td>218</td>
<td>(주)GIMCO</td>
<td>268</td>
<td>(주)재우아이디</td>
<td>318</td>
<td>(주)전테크</td>
</tr>
<tr>
<td>119</td>
<td>군영원정식(원)</td>
<td>169</td>
<td>양평군산립원</td>
<td>219</td>
<td>(주)GR바이오</td>
<td>269</td>
<td>(주)씨이테크(주)</td>
<td>319</td>
<td>(주)강동</td>
</tr>
<tr>
<td>120</td>
<td>귀뚜라미(주)</td>
<td>170</td>
<td>에스케이유업</td>
<td>220</td>
<td>(주)거산플랜트</td>
<td>270</td>
<td>(주)로빛운</td>
<td>320</td>
<td>(주)포스코건설</td>
</tr>
<tr>
<td>121</td>
<td>그린엔텍(주)</td>
<td>171</td>
<td>에코에너지 무역회사</td>
<td>221</td>
<td>(주)경동개발</td>
<td>271</td>
<td>(주)진양우드</td>
<td>321</td>
<td>(주)고려자동화</td>
</tr>
<tr>
<td>122</td>
<td>그린아이씨 우석제목산</td>
<td>172</td>
<td>에코노바산업</td>
<td>222</td>
<td>(주)유라이언테크</td>
<td>272</td>
<td>(주)태원에너지</td>
<td>322</td>
<td>(주)내명자용</td>
</tr>
<tr>
<td>123</td>
<td>나오타스</td>
<td>173</td>
<td>에코에너지 환경공사</td>
<td>223</td>
<td>(주)그린바이오</td>
<td>273</td>
<td>(주)이파워기술단</td>
<td>323</td>
<td>(주)도울환경</td>
</tr>
<tr>
<td>124</td>
<td>대상산업(주)</td>
<td>174</td>
<td>엔진텍</td>
<td>224</td>
<td>(주)금광공사</td>
<td>274</td>
<td>(주)효성산업</td>
<td>324</td>
<td>(주)립코</td>
</tr>
<tr>
<td>125</td>
<td>냉동전략</td>
<td>175</td>
<td>영농지엔지</td>
<td>225</td>
<td>(주)기영미디스</td>
<td>275</td>
<td>(주)대명자동차</td>
<td>325</td>
<td>(주)삼솔</td>
</tr>
<tr>
<td>126</td>
<td>네오타스</td>
<td>176</td>
<td>영진이앤지</td>
<td>226</td>
<td>(주)네오타스</td>
<td>276</td>
<td>(주)제이비시스템</td>
<td>326</td>
<td>(주)에코아이엔지</td>
</tr>
</tbody>
</table>

2) 바이오에너지기업 (234개)
<table>
<thead>
<tr>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
<th>ID</th>
<th>회사명</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>넥스트에너지</td>
<td>177</td>
<td>오주산업</td>
<td>227</td>
<td>수영레코드</td>
<td>277</td>
<td>코오롱글로벌</td>
</tr>
<tr>
<td>128</td>
<td>능률회사명인</td>
<td>178</td>
<td>우진산업㈜</td>
<td>228</td>
<td>대원제약수석</td>
<td>278</td>
<td>태경텍스</td>
</tr>
<tr>
<td></td>
<td>주식회사주조필드</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>누리개발㈜</td>
<td>179</td>
<td>우진에스오씨</td>
<td>229</td>
<td>대진환경개발</td>
<td>279</td>
<td>토방토건㈜</td>
</tr>
<tr>
<td>130</td>
<td>다불산업</td>
<td>180</td>
<td>우주그린산업</td>
<td>230</td>
<td>동양</td>
<td>280</td>
<td>파이프코리아</td>
</tr>
<tr>
<td>131</td>
<td>단석산업</td>
<td>181</td>
<td>월드온한테크</td>
<td>231</td>
<td>로터스에이텍</td>
<td>281</td>
<td>괘스텔바이오</td>
</tr>
<tr>
<td>132</td>
<td>단양군산림조사협</td>
<td>182</td>
<td>유림이엔지</td>
<td>232</td>
<td>무지환경</td>
<td>282</td>
<td>페메텍</td>
</tr>
<tr>
<td>133</td>
<td>대동산업</td>
<td>183</td>
<td>이건에너지㈜</td>
<td>233</td>
<td>부산테크</td>
<td>283</td>
<td>포스코에너지</td>
</tr>
<tr>
<td>134</td>
<td>대상</td>
<td>184</td>
<td>이윤산업</td>
<td>234</td>
<td>모지가당환경산업</td>
<td>284</td>
<td>포항산업조합</td>
</tr>
<tr>
<td>135</td>
<td>대성에코텍㈜</td>
<td>185</td>
<td>인선ENT㈜</td>
<td>235</td>
<td>참현산업개발</td>
<td>285</td>
<td>펄림</td>
</tr>
<tr>
<td>136</td>
<td>대성연료</td>
<td>186</td>
<td>인터바이오</td>
<td>236</td>
<td>서태구에너지</td>
<td>286</td>
<td>한국비앤텍㈜</td>
</tr>
<tr>
<td>137</td>
<td>대웅자원㈜</td>
<td>187</td>
<td>일도바이오텍</td>
<td>237</td>
<td>상운프랜드</td>
<td>287</td>
<td>한국에너지</td>
</tr>
<tr>
<td>138</td>
<td>대원GSI</td>
<td>188</td>
<td>일산산업</td>
<td>238</td>
<td>세신정경</td>
<td>288</td>
<td>한국자원㈜</td>
</tr>
<tr>
<td>139</td>
<td>대현우드</td>
<td>189</td>
<td>자연산업㈜</td>
<td>239</td>
<td>수국</td>
<td>289</td>
<td>한솔-산텍</td>
</tr>
<tr>
<td>140</td>
<td>동서화학공업</td>
<td>190</td>
<td>자원산업</td>
<td>240</td>
<td>무석회사</td>
<td>290</td>
<td>한솔재생산업㈜</td>
</tr>
<tr>
<td>141</td>
<td>동변성장에너지</td>
<td>191</td>
<td>전진환경㈜</td>
<td>241</td>
<td>신성E&I</td>
<td>291</td>
<td>한일기계공업㈜</td>
</tr>
<tr>
<td>142</td>
<td>디어치앤</td>
<td>192</td>
<td>정명산업환경</td>
<td>242</td>
<td>신주예코</td>
<td>292</td>
<td>세종유화에너지</td>
</tr>
<tr>
<td>143</td>
<td>마크로젠</td>
<td>193</td>
<td>제노포커스</td>
<td>243</td>
<td>신화</td>
<td>293</td>
<td>해표산업</td>
</tr>
<tr>
<td>144</td>
<td>미래자원㈜</td>
<td>194</td>
<td>제이씨케미칼</td>
<td>244</td>
<td>신흥잡관</td>
<td>294</td>
<td>현대오일뱅크</td>
</tr>
<tr>
<td>145</td>
<td>미주산업㈜</td>
<td>195</td>
<td>조선우드</td>
<td>245</td>
<td>봉마기계</td>
<td>295</td>
<td>현대중공업</td>
</tr>
<tr>
<td>146</td>
<td>바이오니아</td>
<td>196</td>
<td>종합에너지</td>
<td>246</td>
<td>안동알씨오일</td>
<td>296</td>
<td>혜성산업㈜</td>
</tr>
<tr>
<td>147</td>
<td>바이오폴리</td>
<td>197</td>
<td>종합환경산업</td>
<td>247</td>
<td>무ائه스바이오에너지</td>
<td>297</td>
<td>홍인산업</td>
</tr>
<tr>
<td>148</td>
<td>비케이</td>
<td>198</td>
<td>주식상생산업㈜</td>
<td>248</td>
<td>에코에너지</td>
<td>298</td>
<td>화신산업㈜</td>
</tr>
<tr>
<td>149</td>
<td>빛나메카코㈜</td>
<td>199</td>
<td>대성리싸이클</td>
<td>249</td>
<td>에코프론트</td>
<td>299</td>
<td>화인이텍</td>
</tr>
<tr>
<td>150</td>
<td>산</td>
<td>200</td>
<td>덕산자원</td>
<td>250</td>
<td>오성개발</td>
<td>300</td>
<td>GS플라텍</td>
</tr>
</tbody>
</table>
나. 설문지 작성

위 VC에서 설정한 가설 검증을 위해 정부와 기업들의 실질통계를 구하려 했으나 제약이 있었다. 정부의 관련통계에서는 현 상황을 설명할 최근 통계가 부족하였고, 폐자원·바이오에너지기업들에서는 관련 통계의 축적이 이루어지고 있지 않았기 때문이다. 이러한 한계를 극복하기 위해 본 연구는 한국 폐자원·바이오에너지산업에 참여하고 있는 기업들을 대상으로 설문조사를 시행하였다. 이것은 선행 연구에서 살펴본 다수의 연구들이 설문방식을 채택하고 있는 이유와 동일하다.

1) 변수의 선택

한국 폐자원·바이오에너지기업의 VC 분석을 위해 가설설정에 사용된 변수들은 다음과 같은 대리변수들로 설문을 설정하였다.
① 정부의 폐자원·바이오에너지산업에 대한 R&D투자는 “귀사의 총 R&D투자액 중에서 정부지원금은 몇 % 정도 됩니까?”라는 설문에 대한 응답을 대리변수로 간주하였다.
② 폐자원·바이오에너지기업의 R&D투자는 “귀사의 매출액 대비 R&D투자액(정부지원금 포함)은 몇 % 정도 됩니까?”라는 설문에 대한 응답을 대리변수로 간주하였다.
③ 폐자원·바이오에너지기업의 R&D성과는 “정부 R&D지원과 자체 R&D투자에 따라 귀사의 특허출원 및 등록건수는 최근 3년간 어떻게 변화하였습니까?”라는 설문에 대한 응답을 대리변수로 간주하였다.
④ 폐자원·바이오에너지기업의 제품생산량은 “R&D투자 이후 귀사의 제품생산 규모는 어떻게 변화하였습니까?”라는 설문에 대한 응답을 대리변수로 간주하였다.
⑤ 폐자원·바이오에너지기업의 제품생산비용은 “귀사가 생산하는 주력제품은 어느 정도 규모의 경제를 누리고 있습니까?”라는 설문에 대한 응답을 대리변수로 간주하였다.
⑥ 폐자원·바이오에너지기업의 매출액 대비 경상이익률은 “귀사 폐자원·바이
오에너지 주력제품의 매출액 대비 경상이익률은 타제조업(평균 4.7%)에 비해 어느 정도입니까?"라는 설문에 대한 응답을 대리변수로 간주하였다.

⑦ 폐자원·바이오에너지기업의 매출액 대비 경상이익률에 따른 제품생산량은 "귀사는 매출액 대비 경상이익률을 고려하여 향후 3년간 생산규모를 늘리실 의향을 가지고 계십니까?"라는 설문에 대한 응답을 대리변수로 간주하였다.

⑧ 폐자원·바이오에너지기업의 매출액 대비 경상이익률에 따른 R&D투자는 "귀사는 생산규모의 확대를 반영하여 향후 3년간 R&D투자를 늘리실 의향을 가지고 계십니까?"라는 설문에 대한 응답을 대리변수로 간주하였다.

2) 설문구성

 설문내용은 Kotabe(1992)가 'Global Sourcing Strategy'에서 활용한 설문과 분석방법을 참고하고 서울과학기술대학교 에너지환경대학원 에너지정책학과, 신재생에너지협회, 한국에너지기술평가원의 예비검토를 거쳐 Likert-type scale로 평가하여 정량화하였다. 설문은 3~7점 척도로 하여 오름차순으로 구성하였다.
설문대상 기업은 「신에너지 및 재생에너지 개발·이용·보급 촉진법 시행령 제 2조」 관련 별표 1의 “바이오에너지 등의 기준 및 범위”를 기준으로 조사하였 다. 특히 한국에너지관리공단 신재생에너지센터와 환경산업기술원의 등록기업, 한국환경공단의 고형연료제품 인증업체와 한국에너지기술평가원의 발전전략보고서에 포함된 기업들을 1차적으로 조사하였다. 이어 금융감독원 전자공시시스템 (DART)과 중소기업청, 대한상공회의소 기업 데이터베이스(DB)를 통해 매출액, 종업원 수, 현재 사업영위 등을 2차적으로 검증하여 총 249개 기업을 모집단으 로 선정하였다.
3) 설문조사 방법

구체적인 설문조사는 한국에너지관리공단 신재생에너지에너지 코리아의 등록 기업과 신재생에너지협회 회원기업, 폐자원·바이오에너지 관련협회 기업, 에너지기술평가원 발전전략 보고서에 포함된 기업 등을 통해 조사된 업체들 중에서 금융감독원 전자공시시스템(DART)과 중소기업청, 대한상공회의소 기업 데이터베이스(DB)를 통해 매출액, 종업원 수, 현재 사업영위 등이 검증된 폐자원 249개와 바이오 234개 기업을 모집단으로 하였다.

조사방법은 검증된 폐자원 249개와 바이오 234개 기업에 전화를 이용해 최적의 응답자를 사전 접촉한 후 이메일을 보내어 설문을 회수하는 방식을 사용하였다.

4) 설문 데이터 분석

한편, 모든 통계 데이터는 변수 간 척도의 차이에 따라 유발되는 문제점을 제거하기 위하여 척도를 표준화(normalize)하는 Z값으로 전환하였다. 기본 통계적 방법으로는 SPSS(Statistical Package for the Social Science) 20.0을 사용하였다. 여기서 사용한 방법은 자료가 지수 평가에 의하기 때문에 분석목적에 맞추어 공정 간 영향에 대하여 단순회귀분석(simple regression)을 이용하였다.
제 4 장 분석결과

1. 폐자원에너지

가. 설문조사 결과

설문조사의 결과, 설문응답을 한 폐자원에너지기업은 249개 중 45개로, 18.07% 회수율을 나타냈다. 한국 폐자원에너지산업은 적용기술에 따라 고형연료 제조, 열분해 유화, 폐기물 가스화, 소각여열 회수 및 이용의 4가지 분야로 분류한다. 산업 내 세부 분야별 설문응답 비중을 살펴보면(표 4-1 참조), 고형연료 제조에 특화하고 있는 기업이 64%(31개), 폐기물 가스화에 특화하고 있는 기업이 13.3%(6개), 소각여열 회수 및 이용에 특화하고 있는 기업이 13.3%(6개), 기타 4.4%(2개)이며, 열분해 유화에 특화하고 있는 기업은 없는 것으로 조사되었다.

<표 4-1> 폐자원에너지화 세부분야별 빈도분석 결과

<table>
<thead>
<tr>
<th>세부 분야</th>
<th>고형연료 제조</th>
<th>폐기물 가스화</th>
<th>소각여열 회수 및 이용</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>비율 (답변 수)</td>
<td>64% (31개)</td>
<td>13.3% (6개)</td>
<td>13.3% (6개)</td>
<td>4.4% (2개)</td>
</tr>
</tbody>
</table>
가설설정에 사용된 설문별 빈도분석 결과는 <표 4-2>와 같다.

<표 4-2> 폐자원에너지 VC 설문문항별 빈도분석 결과

<table>
<thead>
<tr>
<th>항목</th>
<th>보기</th>
<th>전체 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>정부 폐자원에너지산업 R&D지원 (총 R&D투자액 중 정부지원금 비율)</td>
<td>0%, 없음</td>
<td>68.9</td>
</tr>
<tr>
<td></td>
<td>20% 미만</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>20~40% 미만</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>40~60% 미만</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>60~80% 미만</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>80~100% 미만</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>폐자원에너지기업 R&D투자 (매출액 대비 R&D투자액 비율)</td>
<td>1% 미만</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>1~3% 미만</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>3~5% 미만</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>5~7% 미만</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>7~9% 미만</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>9~11% 미만</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>11% 이상</td>
<td>8.9</td>
</tr>
<tr>
<td>폐자원에너지기업 R&D성과 (최근 3년간 특허출원 및 등록건수 변화)</td>
<td>매우 저조</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>다소 저조</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>46.7</td>
</tr>
<tr>
<td></td>
<td>다소 높음</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>매우 높음</td>
<td>4.4</td>
</tr>
<tr>
<td>폐자원에너지기업 제품 생산량 (제품생산 규모 변화)</td>
<td>매우 감소</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>다소 감소</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>57.8</td>
</tr>
<tr>
<td></td>
<td>다소 증가</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>매우 증가</td>
<td>2.2</td>
</tr>
<tr>
<td>폐자원에너지기업 제품 생산비용 (주력제품의 규모의 경제 달성 수준)</td>
<td>규모경제 달성을 위해 생산이 크게 늘어야 함</td>
<td>62.2</td>
</tr>
<tr>
<td></td>
<td>규모경제 달성을 위해 생산이 다소 늘여야 함</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>현재 규모경제 달성</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>0% 미만</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>0~2% 미만</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>2~4% 미만</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>4~6% 미만</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>6~8% 미만</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>8~10% 미만</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>10% 이상</td>
<td>17.8</td>
</tr>
<tr>
<td>폐자원에너지기업 이익률 (매출액 대비 응답이익률)</td>
<td>전혀 의향 없음</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>다소 의향 있음</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>다소의향 있음</td>
<td>55.6</td>
</tr>
<tr>
<td></td>
<td>매우의향 있음</td>
<td>33.3</td>
</tr>
<tr>
<td>폐자원에너지기업 향후 제품 생산량 (향후 3년간 생산규모 확대 의향)</td>
<td>전혀 의향 없음</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>다소 의향 있음</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>다소의향 있음</td>
<td>48.9</td>
</tr>
<tr>
<td></td>
<td>매우의향 있음</td>
<td>20.0</td>
</tr>
</tbody>
</table>
나. VC 분석결과

설문응답을 바탕으로 한국 폐자원에너지기업의 VC 분석결과는 <표 4-3>과 같다.

<표 4-3> 폐자원에너지 VC 분석결과

<table>
<thead>
<tr>
<th>분석내용</th>
<th>예상부호</th>
<th>추정치</th>
</tr>
</thead>
<tbody>
<tr>
<td>정부 R&D지원 효과</td>
<td>+</td>
<td>0.086</td>
</tr>
<tr>
<td>기업 R&D투자 효과</td>
<td>+</td>
<td>0.179</td>
</tr>
<tr>
<td>기업 R&D성과 효과</td>
<td>+</td>
<td>0.431***</td>
</tr>
<tr>
<td>제품 생산량 효과</td>
<td>+</td>
<td>0.058</td>
</tr>
<tr>
<td>제품 생산비용 효과</td>
<td>+</td>
<td>-0.008</td>
</tr>
<tr>
<td>경상이익률 효과1</td>
<td>+</td>
<td>-0.113</td>
</tr>
<tr>
<td>경상이익률 효과2</td>
<td>+</td>
<td>-0.160</td>
</tr>
</tbody>
</table>

*, **, and *** imply statistical significance 10%, 5% and 1% levels, respectively

① 정부의 폐자원에너지산업 R&D지원 증가는 폐자원에너지기업의 R&D투자 증가에 긍정적인 (+) 영향을 미치지만, 통계적으로 유의미하지 않는 것으로 분석되었다. 따라서 가설 1은 채택되지 않았다.

② 폐자원에너지기업의 R&D투자 증가는 폐자원에너지기업의 R&D성과 증가에 긍정적인 (+) 영향을 미치지만, 통계적으로 유의미하지 않는 것으로 분석되었다. 이로써 가설 2는 채택되지 않았다.

③ 폐자원에너지기업의 R&D성과(특허출원 및 등록) 증가는 폐자원에너지기업의 제품 생산량 증가에 긍정적인 (+) 영향을 미치면서 통계적으로 1%의 유의수준에서 유의미한 것으로 분석되었다. 이로써 가설 3은 채택되었다. 설문결과에서도 R&D투자 이후 제품생산량이 증가했다고 답한 기업은 28.9%로서, 제품생산량이 감소했다고 응답한 13.3%에 비해 2배 이상 높은 비중을 차지하고 있다. 또한 설문조사가 이루어진 기간 동안 폐기물에너지를 통한 거래량은 752,546 MWh이다. 이는 2012년과 2013년 월간 폐기물에너지 거래량 평균(479,217 MWh과 532,566 MWh)보다 높은 것으로, 2012년 이후 폐기물에너지 거래량이 증가하는 추세에 있는 것으로 증명된다.(<그림 4-1> 참조)
<그림 4-1> 폐기물에너지 거래량

④ 폐자원에너지기업의 제품 생산량 증가는 폐자원에너지기업의 제품 생산비용 감소에 긍정적인 (+) 영향을 미치고 있지만, 통계적으로 유의미하지 않은 것으로 분석되었다. 따라서 가설 4는 채택되지 않았다.

⑤ 폐자원에너지기업의 제품 생산비용 감소는 폐자원에너지기업의 매출액 대비 경상이익률 증가에 부정적인 (−) 영향을 미치면서 통계적으로도 유의미하지 않은 것으로 분석되었다. 이로써 가설 5는 채택되지 않았다.

⑥ 폐자원에너지기업의 매출액 대비 경상이익률 증가는 폐자원에너지기업의 제품 생산량 증가에 부정적인 (−) 영향을 미치면서 통계적으로도 유의미하지 않은 것으로 분석되었다. 이로써 가설 6은 채택되지 않았다.

⑦ 폐자원에너지기업의 매출액 대비 경상이익률 증가는 폐자원에너지기업의 R&D 투자 증가에 부정적인 (−) 영향을 미치고 있으며, 통계적으로 유의미하지 않은 것으로 분석되었다. 이로써 가설 7은 채택되지 않았다.

특히 폐자원에너지기업의 매출액 대비 경상이익률이 폐자원에너지기업의 생산량과 R&D 투자 증가에 영향을 미치지 못하는 결과는 한국의 폐자원에너지기업들이 VC 상 선순환구조에 들어서 있지 못하다는 것을 반증하고 있다.
2. 바이오에너지

가. 설문조사 결과

설문조사의 결과, 설문응답을 한 바이오에너지업체는 233개 중 47개로, 20.2% 회수율을 나타냈다.

우선, 한국 바이오에너지기업의 산업 내 제품별 비중을 살펴보면(표 4-4 참조), 목질계 고형연료4)를 생산하고 있는 기업이 72.4%(34개), 수송용 액체연료5)를 생산하고 있는 기업이 10.6%(5개), 바이오가스6)를 생산하고 있는 기업이 17%(8개)로 조사되었다.

<표 4-4> 바이오에너지산업 내 제품별 빈도분석 비율

<table>
<thead>
<tr>
<th>제품별</th>
<th>목질계 고형연료</th>
<th>수송용 액체연료</th>
<th>바이오가스</th>
</tr>
</thead>
<tbody>
<tr>
<td>비율(답변 수)</td>
<td>72.4% (34개)</td>
<td>10.6% (5개)</td>
<td>17% (8개)</td>
</tr>
</tbody>
</table>

다음으로, 가설설정에 사용된 설문별 빈도분석 결과는 <표 4-5>와 같다.

4) 목질계 고형연료에 속하는 제품들은 고형 연료(우드칩, 팅릿 등), 팅릿 보일러, 목분, SRF 등이 있다.
5) 수송용 액체연료에 속하는 제품들은 바이오 에탄올, 바이오 부탄올, 바이오 디젤, BTL 디젤 등이 있다.
6) 바이오가스에 속하는 제품들은 바이오 가스화 설비, 정연배 가스화 (합성가스) 설비, 매립지포집가스 등이 있다.
<표 4-5> 바이오에너지산업 내 제품별 빈도분석 결과

<table>
<thead>
<tr>
<th>Classification</th>
<th>Contents</th>
<th>전체</th>
<th>목질계 고형연료</th>
<th>수송용 액체연료</th>
<th>바이오 가스</th>
</tr>
</thead>
<tbody>
<tr>
<td>정부 바이오에너지 산업 R&D지원 (총 R&D투자액 중 정부지원금 비율)</td>
<td>0% 미만</td>
<td>68.1</td>
<td>76.5</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>20% 미만</td>
<td>14.9</td>
<td>8.8</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20~40% 미만</td>
<td>4.3</td>
<td>2.9</td>
<td>0</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>60~80% 미만</td>
<td>4.3</td>
<td>2.9</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>80~100% 미만</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>바이오에너지 기업 R&D투자 (정부 R&D지원에 따른 R&D투자 변동)</td>
<td>매우 감소</td>
<td>4.3</td>
<td>2.9</td>
<td>0</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>다소 감소</td>
<td>6.4</td>
<td>8.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>68.1</td>
<td>73.5</td>
<td>20</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>다소 증가</td>
<td>17.0</td>
<td>8.8</td>
<td>80</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>매우 증가</td>
<td>2.1</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>바이오에너지 기업 R&D성과 (최근 3년간 특허출원 및 등록건수 변화)</td>
<td>매우 저조</td>
<td>19.1</td>
<td>20.6</td>
<td>20</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>다소 저조</td>
<td>6.4</td>
<td>8.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>48.9</td>
<td>52.9</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>다소 증가</td>
<td>23.4</td>
<td>17.6</td>
<td>40</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>매우 증가</td>
<td>2.1</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>바이오에너지 기업 제품생산량 (제품생산 규모변화)</td>
<td>매우 감소</td>
<td>2.1</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>다소 감소</td>
<td>4.3</td>
<td>5.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>68.1</td>
<td>67.6</td>
<td>80</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>다소 증가</td>
<td>25.5</td>
<td>23.5</td>
<td>20</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>매우 증가</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>바이오에너지 기업 제품생산비용 (주력제품의 규모의 경제 달성 수준)</td>
<td>규모경제 달성을 위해 생산이 크게 늘어야 함</td>
<td>61.7</td>
<td>58.8</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>규모경제 달성을 위해 생산이 다소 늘어야 함</td>
<td>27.7</td>
<td>29.4</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>현재 규모경제 달성</td>
<td>10.6</td>
<td>11.8</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>바이오에너지 기업 담당자 (매출액 대비 경상이익률)</td>
<td>0% 미만</td>
<td>21.3</td>
<td>20.6</td>
<td>40</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>0~2% 미만</td>
<td>12.8</td>
<td>14.7</td>
<td>0</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>2~4% 미만</td>
<td>17.0</td>
<td>17.6</td>
<td>20</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>4~6% 미만</td>
<td>21.3</td>
<td>20.6</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6~8% 미만</td>
<td>6.4</td>
<td>5.9</td>
<td>0</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>8~10% 미만</td>
<td>14.9</td>
<td>17.6</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10% 이상</td>
<td>4.3</td>
<td>2.9</td>
<td>0</td>
<td>12.5</td>
</tr>
<tr>
<td>바이오에너지 기업 고려 항후 3년간 생산규모 확대여부</td>
<td>전혀 의향 없음</td>
<td>4.3</td>
<td>5.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>다소 의향 없음</td>
<td>6.4</td>
<td>5.9</td>
<td>60</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>14.9</td>
<td>14.7</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>다소 의향 있음</td>
<td>53.2</td>
<td>58.8</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>매우 의향 있음</td>
<td>19.1</td>
<td>14.7</td>
<td>20</td>
<td>37.5</td>
</tr>
<tr>
<td>바이오에너지 기업 고려 항후 3년간 R&D 확대여부</td>
<td>전혀 의향 없음</td>
<td>4.3</td>
<td>5.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>다소 의향 없음</td>
<td>10.6</td>
<td>11.8</td>
<td>0</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>변화 없음</td>
<td>23.4</td>
<td>23.5</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>다소 의향 있음</td>
<td>51.1</td>
<td>52.9</td>
<td>60</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>매우 의향 있음</td>
<td>10.6</td>
<td>5.9</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>
나. VC 분석결과

설문응답을 바탕으로 한국 바이오에너지기업의 VC를 분석한 결과는 Table 4.6과 같다.

<표 4-6> 바이오에너지 VC 분석결과

<table>
<thead>
<tr>
<th>분석내용</th>
<th>예상부호</th>
<th>추정치</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 정부 R&D지원 효과</td>
<td>+</td>
<td>0.075</td>
</tr>
<tr>
<td>2 기업 R&D투자 효과</td>
<td>+</td>
<td>0.157</td>
</tr>
<tr>
<td>3 기업 R&D성과 효과 (특허출원 및 등록건수)</td>
<td>+</td>
<td>0.197**</td>
</tr>
<tr>
<td>4 제품 생산량 효과</td>
<td>+</td>
<td>0.185</td>
</tr>
<tr>
<td>5 제품 생산비용 효과</td>
<td>+</td>
<td>0.814**</td>
</tr>
<tr>
<td>6 경상이익률 효과1</td>
<td>+</td>
<td>0.109</td>
</tr>
<tr>
<td>7 경상이익률 효과2</td>
<td>+</td>
<td>0.082</td>
</tr>
</tbody>
</table>

주: *, **, ***은 각각 10%, 5%, 1%의 통계적 유의수준에서 유의한 통계량임을 의미함.

① 정부의 바이오에너지산업 R&D지원 증가는 바이오에너지기업의 R&D투자 증가에 긍정적인(+) 영향을 미치지만, 통계적으로 유의미하지 않은 것으로 분석되었다. 이로써 가설 1은 채택되지 않았다.

② 바이오에너지기업의 R&D투자 증가는 바이오에너지원의 R&D성과(특허출원 및 등록) 증가에 긍정적인(+) 영향을 미치지만, 통계적으로 유의미하지 않은 것으로 분석되었다. 이로써 가설 2도 채택되지 않았다.

③ 바이오에너지기업의 R&D성과(특허출원 및 등록)는 바이오에너지기업의 제품 생산량 증가에 긍정적인(+) 영향을 미치면서 통계적으로도 5%의 유의수준에서 유의미한 것으로 분석되었다. 이로써 가설 3은 채택되었다. 이러한 결과는 바이오에너지체계를 통하여 발전된 전력량이 2001년부터 2012년까지 지속적인 상승 추세를 보이고 있는 것으로 증명된다(<그림 4-2> 참조). 또한 설문조사기간 동안 바이오에너지 중 바이오가스와 메립지포잡가스의 거래량이 증가추세를 보이고 있어 바이오에너지 실적이 개선되고 있는 것으로 나타났다.
바이오에너지 발전량과 생산량

바이오에너지기업의 제품 생산량 증가는 바이오에너지기업의 제품 생산비용 감소에 긍정적인 (+) 영향을 미치고 있지만, 통계적으로 유의미하지 않은 것으로 분석되었다. 따라서 가설 4는 채택되지 않았다.

바이오에너지기업의 제품 생산비용 감소는 바이오에너지기업의 매출액 대비 경상이익률 증가에 긍정적인 (+) 영향을 미치면서 통계적으로도 5%의 유의수준에서 유의미한 것으로 분석되었다. 이로써 가설 5는 채택되었다. 이러한 결과는 2004년부터 2012년까지 바이오에너지의 생산량과 매출액이 증가추세를 보이고 있는 것으로 반증할 수 있다. 이는 제조업부문 경상이익률의 2012년 평균 4.8%를 고려하였을 때, 설문 응답기업의 49%가 경상이익률이 4% 이상이라고 응답하고 있는 것과 유사하다.
⑥ 바이오에너지기업의 매출액 대비 경상이익률 증가는 바이오에너지기업의
제품 생산량 증가에는 긍정적인(+) 영향을 미치지만, 통계적으로 유의미하지 않
은 것으로 분석되었다. 이로써 가설 6은 채택되지 않았다.

⑦ 바이오에너지기업의 매출액 대비 경상이익률 증가는 바이오에너지기업의
R&D투자 증가에는 긍정적인(+) 영향을 미치지만, 통계적으로 유의미하지 않은
것으로 분석되었다. 이로써 가설 7도 채택되지 않았다.

이와 같은 분석의 결과로 보아 한국 바이오에너지기업들은 아직 VC 상 선순환
구조에 들어서 있지 못한 것으로 분석된다. 특히 바이오에너지기업의 매출액 대
비 경상이익률이 추가적인 생산량 증가와 R&D투자의 증가에 영향을 미치지 못
하는 것은 심각한 장애요인이 될 수 있는 것으로 추정된다.
참 고 문 헌

[31] 박순철 : 바이오에너지 현황 및 투자여건 조사분석 보고서 (캄보디아, 라오스, 미얀마), 한국에너지기술연구원 (2009)

[34] 안두현 : 바이오에너지 연구개발 동향과 시사점, 과학기술정책연구원 (2007)

[38] 에너지관리공단 신재생에너지센터 : 신재생에너지 보급통계 - 에너지발전량 (2014)

[41] 윤영만 : 국내 바이오매스 이용 실태와 활성화 방안, 세계농업, 제162호 (2014)