하수슬러지 연료화장치 실험실
 공동연구 보고서

2011. 1

수도권매립지관리공사
건민산업주식회사
요 약 문

하수슬러지의 해양투기가 2012년부터 전면금지되고, 유가상승 및 지구온난화가 가속화됨에 따라 하수슬러지의 육상처리 및 에너지화를 위해 직간접기류건조, 건조기류 건조, 금속 유증중발 건조, 진공유증건조 등 하수슬러지를 건조하여 연료로 활용하기 위한 다양한 기술이 제안, 개발되고 있다.

본 연구에서는 하수슬러지를 건조하여 연료로 활용하는 상용화기술로서 10톤/일(8시간 가동기준)의 실증연구시설을 이용하여 진공유증건조기술에 대한 기술을 검토하였으며 그 결과는 다음과 같다.

진공유증건조기술은 슬러지와 기름(매체유)을 혼합한 후 진공저온상태에서 물과 기름의 비점차를 이용하여 슬러지를 건조하는 기술로서 적합한 매체유선정이 필요하므로 폐식용유, 분리C유, 이온정제유를 매체유로 적용한 결과, 건조슬러지 중 함수율이 대체 1.9%로 매체유별 건조능력에는 큰 차이가 나타나지 않았으나, 폐식용유는 구입가가 높고, 분리C유는 상온에서 고체로 존재하여 예열장치를 필요로 하므로, 수급에 문제가 없으며 가격도 비교적 저렴한 이온정제유를 최적매체유로 선정하였다.

매체유의 종류에 상관없이 함수율 2% 이하까지 슬러지 건조가 가능하였으며, 매체유화수기를 적용하면 함수율이 더 낮아져 0.2% 이하로 건조되며, 이때 함유율은 3% 이내로 확인되었다.

물질수지 평가 결과, 투입슬러지 함수율 80%, 건조슬러지 함수율 1%, 함유율 5%로 가정하여 30톤/일(24시간 가동기준) 실증시설에 대한 물질수지를 수립한 결과,시간당 1,250kg의 하수슬러지 건조시 266kg의 건조슬러지가 생산되었고 이때 응축수 발생량은 997kg이며, 매체유는 13kg 보충해야 하는 것으로 나타났다.

에너지수지 평가 결과, 함수율 80%의 하수슬러지 29.27톤을 투입하여 함수율 1% 발생량 4,151 kcal/kg의 건조슬러지 6.39톤을 생산하는데 소요에너지량 17,377,248 kcal(593,688kcal/톤), 생산에너지량 26,524,890 kcal(906,214kcal/톤)으로 총 재생에너지 생산 가능한 것으로 산정되었다.

실증연구시설(30톤/일)에 대한 경제성 분석 결과, 토목, 건축 공사비를 포함
합한 시설설치비는 시설용량 1톤당 약 1억원으로 산정되었다. 운영비 대비 편익분석을 한 결과, 현재 하수슬러지 반입수수료(23,328원/톤)을 기준으로 할 경우, 편익보다 운영비가 높아 경제성이 확보되지 않는 것으로 나타났다. IRR 분석을 통해 상용화시설 규모로 하였을 때 시설투자비 회수가 가능하고 경제성이 확보되는 최소반입수수료를 산정한 결과, 시설용량 200톤/일 진공 유증건조시설의 시설설치비는 토목, 건축공사를 포함하여 1억원/톤, 운영비는 GR 하수슬러지 연료탄을 연료로 사용할 경우 44,688원/톤, LNG를 연료로 사용할 경우 70,518원/톤으로 산정되었으며, 하수슬러지 반입수수료가 58,000원/톤이상일 때 적정투자수익률을 만족시키는 것으로 나타났다. 또한 200톤/일 규모의 설비에서 기존의 3단 건조공정을 4단 건조공정으로 하여 폐열회수설비를 추가할 경우 하수슬러지 반입수수료가 49,000원/톤 이상일 경우 적정투자수익률을 만족시키며 80,000원/톤일 경우 시설투자비 회수기간은 5년으로 분석되어 사업성이 확보될 것으로 기대되었다. 진공유증건조기술은 밀폐된 상태로 운전되므로 악취의 외부확산이 적으며, 악취 포집량이 적어 소각처리가 용이한 것으로 판단되었다. 본 연구의 실험연구시설에서 배출된 응축수는 유수분리설비 및 응집가압부상법으로 전처리 후 연계처리가 필요하였다.

본 실험연구를 통하여 30톤/일(24시간 가동기준) 규모의 진공유증건조기술을 이용한 하수슬러지 건조연료화 가능성을 확인할 수 있었다. 향후 상용화시설에 적용하기 위해서는 규모확대를 위한 scale-up 인자를 면밀히 검토할 필요가 있으며, 건조공정에서 발생하는 응축수의 연계처리가 어려운 경우 배출허용기준 이내로 처리할 수 있는 수처리공정을 갖추어야 할 것으로 사료된다.
요 약 문

제1장 서론 ... 1
 1.1 연구배경 및 필요성 ... 1
 1.2 추진경위 ... 2
 1.3 실험 연구 목적 ... 3

제2장 진공유중건조기술 ... 5
 2.1 진공유중건조기술의 원리 .. 5
 2.1.1 진공건조 기술 .. 5
 2.1.2 유중건조기술 .. 6
 2.1.3 슬러지의 수분 분포 .. 6
 2.1.4 건조 과정 ... 7
 2.1.5 슬러지 건조방법별 건조특성 비교 .. 8
 2.1.6 슬러지 건조재료별 건조물의 연료특성 .. 9

제3장 연구 방법 ... 11
 3.1 실험연구시설 개요 ... 11
 3.1.1 실험연구시설 ... 11
 3.1.2 연구시설 공정도 .. 11
 3.2 실험연구시설 주요 공정별 기능 .. 13
 3.2.1 혼합예열 전처리 공정 ... 13
 3.2.2 다단건조단계 ... 15
 3.2.3 매체유화 수 공정 .. 17
 3.2.4 열원공급과 환경오염물질 배출 방지시설과 배열회수 시설 18
 3.3 실험재료 .. 21
 3.3.1 매체유 ... 21
 3.3.2 슬러지 ... 21
 3.3.3 매체유와 슬러지 혼합비율 ... 21
 3.4 평가방법 및 분석항목 ... 21
 3.4.1 최적매체유 선정 ... 21
 3.4.2 건조성능 평가 ... 22
 표 차례

표 2-1 진공의 종류 .. 6
表 3-1 연속 다단 진공증발건조공정의 증발기별 건조조건 .. 16
表 3-2 건조 전후 슬러지 성상 분석 항목 및 분석방법 ... 22
表 3-3 유두관 설치에 건조능력 평가 방법 ... 23
表 3-4 에너지수지 평가방법 .. 24
表 3-5 진공유중건조기술의 경제성평가 항목 .. 25
表 3-6 환경성 평가 .. 25
表 4-1 대상 매체유의 특성과 가격 .. 27
表 4-2 진공유중건조 설증실험의 슬러지 건조 조건 ... 30
表 4-3 각 조건별 건조시 하수슬러지 성분분석 (Case1,2,3) ... 31
表 4-4 분석한 슬러지의 종류(Case4) .. 32
表 4-5 투입슬러지와 건조슬러지의 성분분석 결과(Case4) ... 33
表 4-6 하수슬러지 건조공법별 에너지 비용 비교 .. 40
表 4-7 매체유화수기의 운전조건 .. 42
表 4-8 건조과정중 슬러지별 함유물의 차이 ... 42
表 4-9 목포시, 충주시, 수도권매립지 반입슬러지의 황 함량 .. 44
表 4-10 진공유중건조 과정에서의 황 함량(슬러지 1 톤 기준) .. 45
表 4-11 하수슬러지 연료탄의 성분 .. 48
表 4-12 하수슬러지 연료탄 연소시 대기배출물질 분석 ... 49
表 4-13 하수슬러지 연료탄과 연소잔재물의 성분분석결과 .. 51
表 4-14 하수슬러지 건조시 에너지 소모량 ... 53
表 4-15 진공유중건조시설의 설치비 세부내역 (30톤/일) ... 55
表 4-16 진공유중건조시설의 설치비 세부내역 (200톤/일) ... 55
表 4-17 하수슬러지 처리공법별 시설 설치비 ... 56
表 4-18 진공유중건조기술의 시설 운영비(고정비)(30톤/일) ... 57
表 4-19 진공유중건조기술의 시설 운영비(변동비)(30톤/일) ... 57
表 4-20 하수슬러지 처리기술별 운영비(변동비) 비교 ... 58
表 4-21 하수슬러지 처리비용편익분석(30톤/일) .. 59
表 4-22 진공유중건조기술의 시설 운영비(고정비)(200톤/일) 60
표 4-23 진공유중건조기술의 시설 운영비(변동비)(200톤/일) 60
표 4-24 하수슬러지 진공유중건조시설(200톤/일, 3단건조) IRR분석 결과 61
표 4-25 200톤/일 하수슬러지 처리설비사업 IRR 분석 (4단 건조설비) 62
표 4-26 포집가스 중 대기오염물질 분석 결과 ... 63
표 4-27 포집가스의 복합악취 분석 결과 ... 64
표 4-28 응집부하법에 의한 응축수 중 유분처리 결과 .. 65
표 4-29 응축수 성분 분석 ... 67
표 4-30 주변환경오염도 측정결과 ... 68
표 4-31 주변악취측정 결과 ... 68
표 4-32 탄소배출권 가능 획득량 (100톤/일 하수슬러지 처리기준) 70
<그림 차례>

<그림 2-1> 물의 삼태 곡선 ... 5
<그림 2-2> 슬러지 부착 수분의 결합형태 ... 7
<그림 2-3> 슬러지 함수율 그래프 ... 8
<그림 2-4> 건조시 함수율과 건조속도의 관계 9
<그림 2-5> 함수율과 저위발열량, 보일러 온도, 에너지 손실과의 관계 ... 10
<그림 3-1> 하수슬러지 진공유중건조 실증연구시설 11
<그림 3-2> 진공유중건조 공정도 ... 11
<그림 3-3> 부지경계선(주변액취, 비산먼지, 소음 측정위치) 26
<그림 4-1> 매체유(병커C유) 동정도 변화 .. 28
<그림 4-2> 유중건조시 사용되는 매체유의 회석속도 28
<그림 4-3> 교반날개의 형상과 다단 유도관의 구조 34
<그림 4-4> 교반날개와 다단 유도관이 함께 설치된 모습 34
<그림 4-5> 유도관식 교반기 설치 후 증발기내의 혼합방식 변화 35
<그림 4-6> 원반형 전열관과 증발기 내에 설치된 모습 36
<그림 4-7> 투브 buc들타입(좌)과 원반형전열관(우) 설치시 fouling 현상 비교 ... 37
<그림 4-8> 원반형전열관 적용시 내마모성 확인 37
<그림 4-9> 폐열 회수장치 ... 38
<그림 4-10> 열로수기 사용 전 후 슬러지 생산량, 스팀사용량, 전기 사용량 비교 ... 39
<그림 4-11> 매체유화수기의 구조 ... 41
<그림 4-12> 각 지역별 하수슬러지의 환함량 43
<그림 4-13> 투입슬러지와 건조슬러지 고형물내의 건기준 환함량 비교 ... 44
<그림 4-14> 기류건조와 진공유중건조로 건조한 건조슬러지의 연소곡선 47
<그림 4-15> 하수슬러지 연료탄 펠렛 성형 과정 49
<그림 4-16> 하수슬러지 연료탄 연소실험 ... 50
<그림 4-17> 진공유중건조기술 물질수지도(30톤/일, 24시간 가동 기준) 52
<그림 4-18> 각 증발기별 평균 운전 온도 ... 54
<그림 4-19> 진공유중건조시 에너지 투입량과 양여에너지 생산량 54
<그림 4-20> 증발 응축수 전처리 전, 후 유분 함유량 비교 66
<그림 4-21> 건조기술별 건조슬러지의 환대사전(동일 비율) 69
제1장 서론

1.1 연구배경 및 필요성

슬러지는 수중의 부유물이 침전하여 진흙상으로 된 것으로서 이는 하수 또는 각종 산업폐수 등에서 주로 발생되고 있다. 이들은 대부분 미생물에 의해 분해 가능한 유기물질을 많이 포함하고 있어 유기성폐기물로 분류되고 있다(1). 이와 같은 유기성슬러지는 수분함량 및 부패성 유기물의 함량이 높아 악취발생 및 병원성 미생물의 서식 가능성이 높아 적절한 처리 대책이 필요하다. 그동안 많은 양의 유기성슬러지가 해양투기로 처리되었으나 1996년 런던협약 의정서에 의해 폐기물의 해양투기 금지가 제안됨에 따라, 우리나라의 하수슬러지와 가축분뇨는 2012년부터, 음식물쓰레기는 2013년부터 해양투기를 전면 금지하기로 하였다(2).

이에 따라 하수 슬러지의 육상처리를 위하여 다양한 기술이 제안·이용되고 있다. 현재 운영중이거나 건설중인 하수슬러지 처리시설 현황을 보면, 전용소각 또는 혼소각이 36개소(35.3%)로 가장 많이 채택되고 있고, 최근에는 소각 위주에서 연료화 및 자원화 정책 유도에 따라 건조 및 탄화기술도 증가하여 건조 후 자원화, 탄화, 고화, 부속화 등의 기술이 비슷한 비율로 채택되고 있는 것으로 보고되고 있다(10). 다양한 하수슬러지 육상처리기술 중 건조기술은 탄화에 비해 최종산물 생산에 필요한 에너지 소요량이 적어 경제성이 우수하고, 건조시 최종건조물의 저위발열량이 높으므로 고화공법과 달리 최종산물을 대체연료로 활용할 수 있다(3-5). 이러한 슬러지 건조기술은 단순히 오염물질 처리에 따른 환경문제해결의 차원을 넘어 신재생에너지 생산이라는 점에서 긍정적인 파급효과를 가져올 수 있다(6).

일반적인 슬러지 건조방식은 기류건조방식으로, 직접건조방식과 간접건조방식으로 구분할 수 있다. 직접건조방식은 고온가스와 슬러지가 건조기 내에서 직접 접촉하여 연소가스의 대류에 의해 슬러지를 건조하는 방식으로 회전(드럼), 밴드, 기류, 유통상 등이 있다. 직접건조방식은 열전달 효율이 높고 건조속도가 빠르며 유지를보수가 용이한 장점이 있는 반면, 건조배가스량이 많아 후처리의 부담이 있고, 화재나 분진폭발의 위험이 있으며, 건조 슬러지의 고위발열량이 감소하는 단점이 있다. 간접기류건조방식은 고온가스의 열 교환에 의하여 생성된 열매체(스팀)이 슬러지와의 간접접촉에 의한 열교환으로
슬러지를 건조하는 방식으로 디스크, 패들, 원반, 박막 등이 있다. 간접건조방식은 건조배가스량이 적어 후처리 부담이 적고, 화재나 분진폭발의 위험이 낮으며, 건조과정에서 발생량의 손실이 적고, 유지 보수가 비교적 용이한 장점이 있는 반면, 열전달 효율이 낮고 건조속도가 느린 단점이 있다(11).

기류건조방식 외에 새로운 건조기술로서 2개의 기류건조공법을 복합화한 하이브리드 건조기술, 급속 유중증발 건조기술, 건조/열분해를 통한 폐열 및 합성가스 에너지화, 진공유중 건조기술, 전자기파를 이용한 건조기술 등 다양한 기술이 제안되고 있다(12).

따라서 본 연구에서는 하수슬러지를 건조하여 연료로 활용하는 상용화기술 개발을 위하여 다양한 건조기술 중 진공유중건조기술에 대한 실증실험을 통하여 기술을 검토하고자 하였다.

1.2 추진경위

본 연구는 2007년 5월 건민산업(주)로부터 연구 제안을 받아 수도권매립지관리공사와 건민산업(주)가 공동으로 실증연구를 추진하였으며, 총 3차 년도에 걸쳐 공동연구를 추진하였다. 세부 추진경위는 다음과 같다.

○ ‘07.5.4 공동연구 제안(건민산업(주)→공사)
○ ‘07.7.3 실증시설설치 심의
 (조건부 승인 : 시설용량, 실험기간 등 수정제안서 수령 후 승인)
○ ‘07.8.17 협약 체결(협약기간 : ‘07.8.17 ~ ‘08.8.16)
○ ‘07.9.21 시험·연구목적 폐기물처리시설 설치·운영계획 승인
 (승인기관 : 한강유역환경청, 사업기간 : ‘07.9.28~08.9.28, 실험기간 : ‘07.12.1~’08.8.30, 시험연구목적에 한함, 처리대상폐기물량 : 10톤/일)
○ ‘07.11.6 인천시 공작물 축조 신고
○ ‘08.7.28 공동연구 협약기간 연장 요청(건민산업(주)→공사)
○ ‘08.8.12 실증실험 중간보고
○ ‘08.8.18 2차년도 변경협약 체결(협약기간 : ‘08.8.18~’09.8.17)
○ ‘08.8.22 시험·연구목적 폐기물처리시설 설치·운영계획 승인
승인기관 : 한강유역환경청, 실험기간 : ‘08.9.1~’09.8.30, 실험연구목적에 한함, 처리대상폐기물량 : 10톤/일)
○ ‘09.8. 6 협약기간 1년 연장 요청(건민산업(주)->공사)
○ ‘09.9. 8 협약기간 1년 연장 심의
(조건부 승인 : 협약 연장불가, 철거 등 협약서 개정)
○ ‘09.9.30 3차년도 협약 체결(협약기간 : ’09.9.30~’10.9.29)

1.3 실증 연구 목적
본 연구에서는 하수슬러지를 연료화하기 위해 실증실험 시설 설치 및 운 영을 통해 새로운 건조기술인 진공유중건조기술을 개발하고자 하였다.
 이를 위해 1차년도에는 진공유중건조기술을 하수슬러지 처리에 적용하여 새로운 폐기물 처리기술을 획득하고 이를 재생에너지의 원료로 활용가능성을 타진하며 진공유중건조기술을 이용한 재생에너지 생산으로 향후 CDM사 업 연계 가능성을 분석하고자 하였다.
2차년도에는 실증설비 운전의 문제점을 보완하고 공정 최적화를 통해 하 수슬러지 처리효율을 극대화하고자 하였다. 또한 에너지회수공정의 적용으로 건조에너지 효율을 최적화하고자 하였다.
3차년도에는 1,2,3차년도 연구결과를 종합하여 최적매체유를 선정하고 매체유 회수율을 극대화하여 건조효율을 최적화하고자 하였다.
제2장 진공유증건조기술

2.1 진공유증건조기술의 원리

2.1.1 진공건조 기술

진공이란 원래 아무런 입자도 존재하지 않는 공간을 말하나 실험적으로 아무런 입자도 존재하지 않는 공간을 만들 수는 없기 때문에, 대기압보다 낮은 압력을 가지는 것을 전부 진공이라고 부른다. 진공은 대기압보다 낮은 공기압력, 즉 1기압 (760 mmHg 또는 760 torr) 이하의 압력을 말하는 것으로 압력의 단위인 mmHg 또는 torr를 사용하여 표시하며 절대압이 아닌 대기압과의 차압으로 표시하기도 한다. 진공을 만들려면 용기를 밀폐시킨 후 내부의 공기를 진공펌프로 제거한다.

건조기술에서 진공을 사용하는 이유는 다음과 같다. 그림 2-1에 나타난 물의 삼태곡선을 보면 1기압에서 물의 비점(끓는점)은 100℃이다. 그러나 대기의 압력을 진공 즉 1기압 이하로 낮추게 되면 물의 비점이 곡선을 따라 점점 낮아지게 되는데 비점이 낮아지면 끓은에서도 물의 증발이 쉬워져 건조가 빠르게 되는 것으로 이를 이용한 기술이 진공 건조기술이다.

![물의 삼태곡선](그림 2-1)

<그림 2-1> 물의 삼태곡선
동 연구에서 개발중인 진공유중건조기술에서 사용하는 진공은
-460mmHg, 즉 300Torr로 대기압인 760mmHg보다 460mmHg 낮은
300mmHg를 의미한다. 진공을 강도별로 살펴보면 표 2-1과 같으며 진공유
중건조기술에서 사용하는 -460mmHg (300Torr)는 저진공에 속한다(7).

<table>
<thead>
<tr>
<th>구분</th>
<th>Pressure (Torr)</th>
<th>Pressure (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>저진공</td>
<td>760 to 25</td>
<td>100kPa to 3kPa</td>
</tr>
<tr>
<td>중진공</td>
<td>25 to 1x10⁻³</td>
<td>3kPa to 100mPa</td>
</tr>
<tr>
<td>고진공</td>
<td>1x10⁻³ to 1x10⁻⁹</td>
<td>100mPa to 100nPa</td>
</tr>
<tr>
<td>극고진공</td>
<td>1x10⁻⁹ to 1x10⁻¹²</td>
<td>100nPa to 100pPa</td>
</tr>
<tr>
<td>초공진공</td>
<td>< 1x10⁻¹²</td>
<td><100pPa</td>
</tr>
<tr>
<td>우주공간</td>
<td>1x10⁻⁶ to <3x10⁻¹⁷</td>
<td>100Pa to <3fPa</td>
</tr>
<tr>
<td>완전진공</td>
<td>0</td>
<td>0Pa</td>
</tr>
</tbody>
</table>

표 2-1 진공의 종류

2.1.2 유중건조기술
유중건조의 대표적인 예로는 튀김이라는 요리 방법을 들 수 있다. 일반적
으로 기름의 비점은 물보다 높기 때문에 기름을 물의 비점 이상으로 가열하
여 뜨겁게 가열된 기름에 수분이 포함된 슬러지가 투입되면 슬러지는 갑싸
고 있는 기름으로부터 빠르게 열을 전달 받아 수분만이 증발된다(8-9). 유중
건조기술에서 기름의 역할은 열에너지를 전열판에서 슬러지에 전달하는 것
이다. 슬러지가 매체유와 혼합되면 유동성이 증가되고 이에 따라 열전달 면
적이 넓어져 열전달이 빠르게 일어나며, 슬러지 세포 내부의 온도가 빠르
게 증가함에 따라 내부 압력이 증가되고, 결국 세포막이 터져 내부 수분이 빠르
게 증발함으로써 슬러지 건조가 가능하다.

2.1.3 슬러지의 수분 분포
슬러지에 포함되어 있는 수분은 크게 슬러지 외부에 존재하는 자유수, 고
형물의 미세한 틈 등에 모세관현상에 의해 부착되어 있는 간극수, 세포의 표
면에 결합되어 있는 표면수, 슬러지 입자를 형성하는 세포의 세포액으로 존재
하는 결합수 4가지로 나뉘며 그 분포는 그림 2-2와 같다.
2.1.4 건조 과정
슬러지의 물성은 유기물의 조성이나 슬러지 처리를 위해 적용하는 소화 등의 물리적, 화학적 처리여부에 따라 크게 달라지며, 이러한 물성의 변화에 따라 건조 특성이 크게 변화된다.
슬러지의 건조특성에 가장 큰 영향을 미치는 인자는 탈수성 개선을 위해 투입하는 응집제의 종류 및 투입량으로, 최근 하수슬러지 탈수에 주로 사용하고 있는 고분자 응집제는 건조기의 열교환 접촉면을 막히게 하거나, 슬러지를 덩어리화시키는 데 일조하여 건조를 어렵게 하는 것으로 알려지고 있다.
일반기류건조의 슬러지의 건조과정은 그림 2-3에 나타낸 바와 같이 유동성 단계, 점착성 단계, 입자화 단계의 3단계를 거치면서 건조가 진행된다. 유동성 단계는 함수율 80~65%의 곤죽(paste) 상태에 있으며, 점착성 단계는 함수율 65~55%의 점성이 강한 반고체 상태로서 이 과정에서는 일부 입자가 슬러지 덩어리에 점착하여 고형화되는 상태이고, 입자화 단계는 함수율 55~50%로서 점성이 약해지면서 작은 덩어리로 조개지면서 함수율 50% 이하에서 알갱이 또는 입자상태로 변화되어 건조가 진행된다.
2.1.5 슬러지 건조방법별 건조특성 비교

슬러지 건조 진행시 점착성단계에 이르면 슬러지가 덩어리를 이루며 덩어리 내부까지 열전달이 어려워 건조효율이 급격히 감소하게 된다. 그림 2-4는 슬러지 건조시 건조속도와 함수율의 관계를 나타낸 것으로 슬러지의 함수율이 65%에 근접의 점착성 단계에 다다르면 건조속도가 급격히 늦어짐을 알 수 있다. 그러나 진공유중건조의 경우, 건조진행 전 슬러지와 매체유를 혼합하여 건조시 슬러지의 물질현상이 없으므로 건조속도가 일정하게 유지되어 총 건조시간이 기류건조에 비해 줄어들게 되며 목표 함수율까지 건조하기 위한 소모에너지는 적게 소모된다.

기류건조에 의한 슬러지 건조시 유동성단계에서는 주로 슬러지 외부에 존재하는 자유수가 증발하게 되며 간극수나 표면수는 점착성 단계이후에 증발되나 결합수의 경우는 체포액으로 존재하기 때문에 기류건조시 완전 증발이 어려운 것으로 알려져 있다.
2.1.6 슬러지 건조정도별 건조물의 연료특성

그림 2-5는 연료의 함수율과 저위발열량, 함수율과 보일러의 온도, 함수율과 에너지손실의 관계를 나타내고 있다. 건조물의 함수율이 높을수록 저위발열량이 낮아지고 건조물을 연료로 사용시 보일러 연소실 온도가 낮아지게 되며 이에 따라 에너지 손실이 발생하게 된다.

진공유중건조기술은 기류건조에 비해 하수슬러지를 낮은 함수율까지 건조하기 때문에 건조물의 저위발열량이 증가하며 연소시 보일러 연소실 온도가 증가하고 이에 따라 에너지의 낭비를 현저히 저감할 수 있어 진공유중건조로 건조한 건조슬러지는 타기술로 건조한 슬러지에 비해 연료로 활용하기에 유리하다.
함수율 (%)
저위발열량 (kcal)
보일러 연소실 온도 (℃)
Energy Loss (%)
비 고

<table>
<thead>
<tr>
<th>함수율 (%)</th>
<th>저위발열량 (kcal)</th>
<th>보일러 연소실 온도 (℃)</th>
<th>Energy Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>4,164</td>
<td>1,205</td>
<td>16.50</td>
</tr>
<tr>
<td>1.1</td>
<td>4,112</td>
<td>1,194</td>
<td>16.75</td>
</tr>
<tr>
<td>50.</td>
<td>3,927</td>
<td>1,159</td>
<td>17.26</td>
</tr>
<tr>
<td>10.0</td>
<td>3,709</td>
<td>1,114</td>
<td>17.95</td>
</tr>
<tr>
<td>15.0</td>
<td>3,370</td>
<td>1,046</td>
<td>19.12</td>
</tr>
<tr>
<td>20.0</td>
<td>3,167</td>
<td>1,001</td>
<td>19.98</td>
</tr>
<tr>
<td>25.0</td>
<td>2,989</td>
<td>957</td>
<td>20.90</td>
</tr>
<tr>
<td>30.0</td>
<td>2,735</td>
<td>912</td>
<td>21.93</td>
</tr>
</tbody>
</table>

HL = HHxS% - 600xW%
HL : 저위발열량 (kcal/kg)
HH : 고위발열량 (kcal/kg)
S% : 투입슬러지의 고형물함량
W% : 투입슬러지의 함수율

<그림 2-5> 함수율과 저위발열량, 보일러 온도, 에너지 손실과의 관계
제3장 연구 방법

3.1 실험연구시설 개요

3.1.1 실험연구시설

동 연구에서는 하수슬러지의 진공유중건조기술 개발을 위해 일일 8시간 가동기준으로 10톤 처리용량의 실험연구시설을 수도권매립지 구조화처리장 인근에 설치하여 운영하였다(그림 3-1). 실험연구시설 주요설비는 슬러지 건조 설비, 에너지회수설비, 대기방지시설로 구성하였다.

<그림 3-1> 하수슬러지 진공유중건조 실험연구시설

3.1.2 연구시설 공정도

진공유중건조 실험연구시설의 슬러지 건조과정을 그림 3-2에 도시하였다. 본 실험연구시설에서는 슬러지와 매체유의 혼합단계, 다단 건조단계, 매체유 회수단계의 3단계에 걸쳐 슬러지 건조를 진행하였으며, 생산된 슬러지 건조 물 활용성을 높이기 위한 과정으로 4단계에서는 연료단 제조 단계를 추가하였다. 각 단계별 세부 내용은 다음과 같다.
단계 슬러지와 매체유의 혼합단계

“혼합예열탱크”에서 슬러지와 매체유를 혼합하는 단계로, 슬러지의 유동성을 확보하고 슬러지를 분산시켜 여기에 포함된 수분의 분리를 촉진시키고 불순물을 제거하기 위한 단계

다단 건조단계의 “연속전공다단건조기”에서 일어나는 반응으로, 4단의 증발기 중 폐열회수를 위해 상압에서 운전되는 2차 증발기를 제외하고 1차, 3차 증발기 내부를 -460mmHg로 감압하여 슬러지의 세포막을 터뜨려 내부 수분을 건조시키는 단계

다단건조단계에서는 슬러지의 건조성을 향상시키기 위해 다음과 같이 전열판, 교반날개, 유도판, 폐열회수시스템 등을 설치하였다

1) 슬러지와 매체유 혼합물 건조에 열전달을 극대화하기 위해 필요 열전달 면적을 확보할 수 있는 원반형 전열판 설치
2) 슬러지와 매체유 혼합물을 강제로 순환 교반시켜 가열관의 표면에 눌어붙은 스케일 등 이물질의 부착을 저감하는 교반 날개설치
3) 슬러지와 매체유의 비중차이 때문에 발생하는 하부몰림현상을 방지하고 슬러지를 균일하게 분포하게 하기 위해 교반기에 유도관을 설치
4) 총 소모 에너지를 줄일 수 있는 폐열 회수 시스템 설치

<3단계 : 매체유회수단계>
연속진공다단건조기에서 이송된 슬러지 건조물과 매체유 혼합물을 원심고 액분리기와 매체유 회수기를 순차적으로 배치한 "매체유회수설비"에서 슬러지 건조물과 매체유로 분리하여, 매체유는 회수하고 낮은 유분함량의 슬러지를 건조물을 생산하는 단계

<4단계 : 연료탄 제조단계>
"연료탄 제조설비"에서 진공유중건조기술로 생산한 건조슬러지를 이용하여 GR 하수슬러지 연료탄을 제조하는 단계

3.2 실증연구시설 주요 공정별 기능

3.2.1 혼합예열 전처리 공정
슬러지와 매체유를 혼합하는 전처리 공정으로서, 슬러지 저장조, 믹서, 혼합예열탱크, 매체유 저장조, 매체유 공급조, 매체유 분리조로 구성하였다.
주요부품의 역할은 다음과 같다.

(가) 슬러지 저장조
슬러지 투입을 위한 슬러지 저장조로 10톤/일(8시간 가동기준)의 저장용량을 가진다.

(나) 믹서(Mixer)
투입슬러지와 매체유를 혼합하기 위한 장치로, 혼합과정에서 비중분리에 의해 무거운 돌덩이 등 불순물을 하부로 분리해 내는 기능도 갖추고 있다.
(다) 슬러지혼합예열탱크
혼합예열탱크의 장치 사진과 내부 구조도를 아래에 도시하였다.
혼합예열탱크는 용기 내에 슬러지와 매체유(이온정제유 등)를 일정 비율로 혼합하고, 용기 외통의 재킷 및 중앙에 교반기를 설치하여 온도를 70~80℃로 유지하는 장치이다. 슬러지와 매체유를 혼합하여 슬러리화 함으로써 전열효과 및 유동성을 증대하고 이송의 편의성을 도모할 수 있다.
3.2.2 다단건조단계

(1) 연속 다단 진공증발 건조 공정
슬러지와 매체유의 혼합액에 간접방식에 의해 열을 가하여 수분을 증발시키는 단계로 3단의 증발기를 직렬로 연결한 다단 건조방식으로 구성되어 있다. 또한 각 증발기에는 응축기와 기액분리기를 설치하였다. 각 증발기의 사전과 내부 구조도 그리고 응축기의 모습은 아래에 도시하였다.

 사진: 증발건조기 상부, 증발건조기 하부, 증발기 구조, 응축기
각 증발기는 외부 하부에 스팀재킷과 내부에 6개의 주관과 원반형 전열판을 설치하여 건조열원을 공급하였으며 원반형 전열관의 전열면적은 재킷면적의 1.5배 이상이 되도록 설치하였다. 또한 중심부에 유휴기관 교반기를 설치하여 상하좌우의 입체교반으로 매체유속에 슬러지를 균일하게 분포하게 하여 슬러지 물질 현상과 이에 의한 파이프 막힘 현상을 방지하고 매체유사용량을 감소시켜 에너지 절약효과를 얻을 수 있었다.

또한 폐열수시스템의 적용으로 건조공정의 소요에너지의 절감하였다. 이를 위해 직렬로 연결된 증발기는 각기 다른 온도와 압력조건에서 건조를 진행하였으며 증발기별 건조조건은 표 3-1과 같다.

<table>
 <tr><th>구분</th><th>건조온도</th><th>건조압력</th></tr>
 <tr><td>1차 증발기</td><td>85℃</td><td>-460mmHg</td></tr>
 <tr><td>2차 증발기</td><td>105℃</td><td>상압</td></tr>
 <tr><td>3차 증발기</td><td>95℃</td><td>-460mmHg</td></tr>
</table>

(2) 진공 증발 건조조절공정
슬러지와 매체유의 혼합액의 건조공정 후단에 진공 증발 건조조절공정을 설치하여 안정된 연속건조공정이 가능하도록 하였다. 건조기 후단에 증발 조절기 2단을 별도로 연결하였으며 조절공정의 역할은 첫째 슬러지와 매체유의 혼합액을 진공상태의 건조공정에서 건조조절공정 이후의 상압상태의 공정으로 연결시키기 위해 건조조절기1기를 진공상태에서 혼합액을 이송시킨 후 진공에서 상압상태로 압력변화시에 또 다른 건조조절기가 진공상태에서 혼합액을 이송받는 식으로 연속운전에서 진공과 상압상태의 전환을 원활히 하는 역할이다.

둘째는 건조조절 공정이후의 매체유회수공정의 효율을 높이기 위해 혼합액에 열을 가하여 매체유의 점도를 낮추어 고형물과 매체유의 분리효율을 높이는 역할이다.

마지막으로 조절증발기 내의 압력과 온도를 측정하여 슬러지의 건조정도를 확인하고 건조가 제대로 이루어지지 않았을 경우 추가로 건조가 이루어
지도록 하여 투입슬러지의 함수율이 차이가 있을 경우에도 목표 함수율인 함수율 3%까지 건조가 이루어질 수 있도록 하여 다양한 투입슬러지의 성상에 탄력적으로 운전이 가능하게 하였다. 또한 증발조절기의 건조 온도는 115℃였으며 압력은 -460mmHg와 상압상태로 교차 적용하였다. 조절증발기의 사진과 내부 구조도는 아래에 도시하였다.

3.2.3 매체유회수 공정
건조공정 후 매체유는 회수하고 건조슬러지를 생산하기 위해 매체유 회수공정을 통하여 고형물과 매체유를 분리하였다.

(1) 원심탈유기
슬러지와 매체유의 혼합액을 115℃로 승온한 상태에서 원심력에 의하여 고형물과 매체유를 분리하는 장치로 배출슬러지의 함유율은 약 18%로 혼합했던 매체유의 약 96%정도를 분리한다. 원심탈유기의 모식도는 아래에 도시하였다.

(2) 매체유회수기
원심탈유기에서 배출되는 건조슬러지의 함유된 매체유를 매체유회수기를 사용하여 건조슬러지의 함유율을 5%이하가 되도록 매체유를 분리하였다. 매체유회수기는 원심분리기에서 배출되는 슬러지를 300℃정도로 가열하여 건조슬러지에 함유된 매체유를 증발시키고 이를 다시 응축하여 매체유로 재사용하였다. 매체유회수기에서 배출되는 건조슬러지의 함유율은 1%이하였고 함유율은 5%이하였다. 매체유회수기에서 사용되는 에너지는 건조공정에 투입되는 슬러지 톤당 44,650kcal로 총 에너지 사용량의 9%에 해당하는 양이다.

3.2.4 열원공급과 환경오염물질 배출 방지시설과 폐열회수 시설

(1) 소각설비
건조한 건조슬러지를 소각로에서 소각시켜 건조공정에 필요한 열원을 공급하고 동시에 진공펌프로 흡입한 배가스를 소각로에서 건조슬러지와 함께 연소처리하여 악취를 제거하고 대기방지설비를 통해 배출하였다. 열원공급설비는 1차, 2차 연소로와 폐열보일러로 구성되어 있으며 열원공급설비의 모습은 아래 도시하였다. 건조슬러지 연소온도는 850℃였으며 폐열보일러를 통해서 건조공정에 필요한 3.5kg/㎝²·G, 147℃의 스팀을 공급하였다.
(2) 환경오염물질 배출 방지시설

(가) 대기배출물질

진공유증건조의 경우 배가스의 양이 매우 적어 진공펌프로 흡입하는 가스만이 배가스로 발생하며 이는 전량 소각로 연소공기로 연소처리하였다. 연소된 대기배출물질은 반건식세정탑과 백필터를 통해서 굴뚝으로 배출하였다. 반건식세정탑과 백필터의 모습은 아래 도시하였다.

(나) 응축수

진공유증건조를 통해 슬러지로부터 분리된 수분은 응축기에서 응축되어 응축수 상태로 배출된다. 본 설비에서 발생하는 응축수는 매체유가 에멀젼 형태로 함유되어 있어 유수분리설비를 통하여 매체유상분을 제거하였다. 유수분리설비는 유수분리탱크와 분리된 매체유와 응축수를 배출하는 펌프로
구성되어 있으며 유수분리탱크의 모습은 아래 도시하였다. 배출되는 응축수에 함유된 애멀젼상태의 매체유는 황산알루미늄을 첨가하여 애멀젼상태를 파괴하여 Floc 상태로 유도한 후 미세기포로 부분 제거시키는 방식으로 분리하였다.

〈반건식세정탑〉
〈백필터〉

〈유수분리탱크〉

(다) 폐열회수 공정
건조과정 중 2단 증발기에서 증발하는 증발증기의 잔열을 1단 증발기 열원으로 재사용하여 폐열을 회수함으로써 에너지 효율을 높이는 공정이다.
3.3 실험재료

3.3.1 매체유
매체유는 전열판으로부터 슬러지로 열을 전달하여 슬러지 건조를 촉진하고, 슬러지에 유동성을 부여함으로써 슬러지의 균일한 분산과 파이프이송이 가능하도록 하는데 있다. 적용 가능한 매체유로서 폐식용유, 벌크C유, 이온 정제유를 대상으로 하였다.

3.3.2 슬러지
본 연구에서는 수도권내의 공공하수처리장에서 발생하여 수도권매립지로 반입되는 하수슬러지로서 실증연구에 이용하였다. 수도권매립지에 반입되는 평균 함수율 평균 80% 내외의 탈수슬러지를 생슬러지와 소화슬러지 구별 없이 무작위로 공급받아 실증연구에 이용하였으며, 1회 투입량은 하수슬러지 저장조의 용량인 10톤으로 하였다.

3.3.3 매체유와 슬러지 혼합비율
실험연구 초기에는 진공유중건조 시 슬러지의 비중에 의한 하부몰림 현상을 방지하기 위해 슬러지와 매체유를 1:1.3의 비율로 혼합하였으나, 유도관식 교반기 설치를 통해 슬러지 하부 몰림 현상에 의한 파이프 막힘 현상을 해소하여 1:1.0으로 혼합비율을 낮추어 실증연구를 진행하였다.

3.4 평가방법 및 분석항목

3.4.1 최적매체유 선정
(1) 매체유별 건조능력
매체유 종류에 따른 진공유중건조 기술의 건조능력 차이를 확인하기 위하여 함수율과 저위발열량 등 매체유별 건조 전·후 슬러지 성상을 비교 분석하였다.

(2) 매체유의 동정도 분석
진공유중건조에서 매체유는 열전달의 역할 이외에 슬러지에 유동성을 부여하여 슬러지의 균일분산과 파이프 이송 등을 가능하게 하는 역할이 있다.
진공유 중건조에서 매체유는 분리·회수 후 재사용되므로, 장기간 사용 시 매체유의 성능 변화가 있는지 확인하기 위하여 매체유의 동점도를 측정하였다. 실증실험설비의 매체유회수설비에서 회수된 매체유를 보관하는 매체유탱크에서 매체유를 채취하여 2일에 1회씩 총 14회 동점도를 측정하였다. 동점도는 동점도 분석기 (Digital Viscometer DV-1, 화신기계상사)를 이용하여 분석하였다.

3.4.2 건조성능 평가

(1) 건조 전후 슬러지 성상 분석

수도권 내 위치한 하수처리장에서 발생한 하수탈수오니 중 수도권매립지에 반입된 슬러지를 진공유중건조 실증연구 대상시료로 하였다.

건조성능 평가를 위해 건조 전에는 슬러지 저장조에서 투입슬러지를 채취하였으며, 건조 후에는 매체유회수설비 중 원심고액분리기를 통과한 탈유슬러지와 탈유슬러지가 매체유 회수기를 거친 후 생산된 건조슬러지를 채취하였다. 건조 전·후 슬러지 시료의 분석항목 및 분석방법은 표 3-2와 같다.

<표 3-2> 건조 전·후 슬러지 성상 분석항목 및 분석방법

<table>
<thead>
<tr>
<th>대상시료</th>
<th>구분</th>
<th>분석항목</th>
<th>분석방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>투입슬러지</td>
<td>3성분</td>
<td>강열감량(수분, 가연분)</td>
<td>폐기물공정시험기준:2008</td>
</tr>
<tr>
<td>공업분석</td>
<td>수분, 휘발성가연분, 고정탄소</td>
<td>GR M 9004:2001</td>
<td></td>
</tr>
<tr>
<td>원소조성</td>
<td>수분, 휘발성가연분, 고정탄소</td>
<td>원소분석기, ASTM D 2361:2002</td>
<td></td>
</tr>
<tr>
<td>탈유슬러지</td>
<td>합유율</td>
<td>n-Hexane 추출물질</td>
<td>폐기물공정시험기준:2008</td>
</tr>
<tr>
<td>건조슬러지</td>
<td>발열량</td>
<td>저위발열량, 고위발열량</td>
<td>KS E 3707 : 2001</td>
</tr>
<tr>
<td>Kjeldahl</td>
<td>합유량</td>
<td>Pb, Cd, Cu, Cr, Hg, As</td>
<td>EPA 3050B:1996</td>
</tr>
<tr>
<td>용출</td>
<td>Pb, Cd, Cu, Cr, CN, Hg, As, 유기인, 트리클로로에틸렌, 테트라클로로에틸렌</td>
<td>폐기물공정시험기준:2008</td>
<td></td>
</tr>
</tbody>
</table>
유도관 설치유무에 따른 건조능력 변화 분석

유도관을 설치 전, 후 슬러지와 매체유를 각기 다른 비율로 혼합한 후 하수 슬러지 건조를 실시하여 파이프 막힘 현상 등이 발생하는지 조사하여 파이프 막힘 현상을 보이지 않는 최적(최소)의 혼합비를 조사하였다.

파이프 막힘 현상이 발생하지 않는 최소 혼합비로서 유도관을 설치하지 않은 경우 1:1.3, 유도관을 설치한 경우 1:1.0을 적용하여 슬러지와 매체유를 혼합한 후 건조를 실시하여 각 증발기별로 함수율을 측정하였다. 이때 증발기별 함수율 측정시료는 각 증발기의 후단의 이송펌프에서 채취하였으며 함수율은 함수율 측정기로 자동적으로 측정하였다.

<table>
<thead>
<tr>
<th>시험항목</th>
<th>시험방법</th>
<th>시험위치</th>
<th>분석방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>파이프</td>
<td>운전 관찰</td>
<td>전체 건조공정</td>
<td>육안 관찰</td>
</tr>
<tr>
<td>막힘 현상</td>
<td>함수율측정</td>
<td>1차, 2차, 3차 증발기 및 최종 건조물</td>
<td>함수율 측정기 이용</td>
</tr>
</tbody>
</table>

(3) 매체유회수공정 최적화

건조가 완료된 후 고형물과 매체유를 분리하는 과정에서 매체유를 더욱 많이 안정적으로 회수하기 위해 기존의 원심탈유기 후단에 매체유 회수기를 통해 매체유를 회수하였으며 최종 건조물의 매체유 함유량을 측정하여 매체유 회수율을 계산하였다.

3.4.3 물질수지 평가

건공유증건조 실증연구시설에 대한 물질수지는 실증실험 또는 이론적 계산을 통해 도출한 투입슬러지의 투입량 및 함수율, 건조슬러지의 투입량 및 함수율, 스팀투입량, 건조 단계별 응축수 발생량, 매체유 투입량 및 보충량 등의 평균값을 이용하여 산정 및 평가하였다.
3.4.4 에너지수지 평가

진공유중건조 실험연구시설에서의 에너지수지를 평가하기 위하여 표 3-4와 같이 투입에너지량으로서 스팀사용량, 전력사용량을 측정하고, 생산에너지량으로서 건조슬러지 총발열량을 평가하였다. 또한 에너지수지 평가의 정성적 인자로서 실증실험시설 운영중 시스템 내 온도변화를 측정하였다.

표 3-4 에너지수지 평가방법

<table>
<thead>
<tr>
<th>구분</th>
<th>평가항목</th>
<th>시험방법</th>
<th>횟수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>투입에너지</td>
<td>온도</td>
<td>온도계 이용</td>
<td>1시간 간격</td>
<td>1차, 2차, 3차 증발기, 증발조절기 A, B</td>
</tr>
<tr>
<td>(IN)</td>
<td>스팀사용량</td>
<td>누적계량기 이용</td>
<td>1회/1일</td>
<td>전체공정</td>
</tr>
<tr>
<td></td>
<td>전력사용량</td>
<td>누적계량기 이용</td>
<td>1회/1일</td>
<td>전체공정</td>
</tr>
<tr>
<td></td>
<td>LPG사용량</td>
<td>사용량 실측</td>
<td>1회/1일</td>
<td>매체유 회수기</td>
</tr>
<tr>
<td>생산에너지</td>
<td>건조슬러지 총발열량</td>
<td>건조슬러지 생산량 및 발열량 측정</td>
<td>1회/1일</td>
<td>-</td>
</tr>
<tr>
<td>(OUT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.5 경제성 평가

진공유중건조 실험연구시설에 대한 경제성 평가를 위해 표 3-5와 같이 비용과 편익을 산정하였다.

비용은 사적비용과 사회적비용으로 구분할 수 있고, 편익도 사적편익과 사회적편익으로 구분할 수 있다. 사회적비용 및 편익은 가치환산에 대한 다각적인 방법이 필요하고 금액으로 산정하기 어려우므로 분석항목에서 제외하였다.

따라서 비용의 세부항목으로서 사적비용에 해당하는 시설설치비, 시설운영비를 평가하였고, 편익의 세부항목으로는 사적편익으로서 반입수수료와 건조슬러지 판매비용을 평가하였다.
표 3-5 진공유중건조기술의 경제성평가 항목

<table>
<thead>
<tr>
<th>구분</th>
<th>세부항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>비용</td>
<td></td>
</tr>
</tbody>
</table>
| 사적비용 | • 시설설치비(초기투자비)
- 시설공사비(토목, 건축, 기계, 전기계장, 기타공사 및 제경비)
- 설계비, 감리비, 기타 비용 |
| | • 시설운영비
- 고정비(인건비, 감가상각비, 유지보수비)
- 변동비(전력비, 용수비, 매체유비, 보일러 연료비, 기타비용) |
| 사회적비용* | • 시설 운영에 따른 환경오염(수질, 악취 등) 피해 효과 등 | |
| 편익 | 사적 편익 | |
| | • 슬러지 반입수수료 |
| | • 건조슬러지(GR 연료탄) 판매비용 |
| 사회적편익* | • 슬러지 적법 처리에 따른 환경오염 저감효과 등 |

* 사회적 비용 및 편익은 가치환산에 대한 다각적인 방법들이 필요하고 금액으로 산정하기 어려우므로 분석항목에서 제외

3.4.6 환경성평가
본 설비의 하수슬러지 건조과정에서 표 3-6에 제시된 항목을 측정하여 환경성을 분석하였다.

표 3-6 환경성 평가

<table>
<thead>
<tr>
<th>시험항목</th>
<th>시험방법</th>
<th>시험위치</th>
<th>횟수</th>
<th>분석기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>악취검사 등</td>
<td>복합약취, 비산분진</td>
<td>부지경계선</td>
<td>3회</td>
<td>세전환경보건연구소</td>
</tr>
<tr>
<td></td>
<td>복합약취</td>
<td>포집약취 처리 전(배관) 및 대기배출구</td>
<td>3회</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>소음</td>
<td>부지경계선</td>
<td>3회</td>
<td>”</td>
<td></td>
</tr>
<tr>
<td>대기 오염도 검사</td>
<td>일반항목+HCl+암모니아, H2S</td>
<td>대기배출구</td>
<td>3회</td>
<td>”</td>
</tr>
<tr>
<td></td>
<td>일반항목 등</td>
<td>소각로 전</td>
<td>3회</td>
<td>”</td>
</tr>
<tr>
<td>응축수 수질분석</td>
<td>일반항목(PH, COD, SS, T-N, T-P, 색도, 매체유) 음이온(Cl, F, SO4, NO3), 양이온(NH4, Ca, Mg, K) 중금속(As, Cr6+, Cu, Pb, Hg, Zn, Mn)</td>
<td>응축수배출구 (2회)</td>
<td>3회</td>
<td>한국화학융합시험연구원</td>
</tr>
</tbody>
</table>
<그림 3-3> 부지경계선(주변악취, 비산먼지, 소음 측정위치)
제4장 연구결과

4.1 최적 매체유 선정

진공유증건조기술은 슬러지에 기름성분의 매체유를 혼합한 후 수분을 건조시키므로 전열판에서부터 슬러지까지 열을 전달하는 열전달매체인 매체유는 건조공정에 가장 중요한 요소이다.

본 설비를 가동하기 시작한 2008년 3월에는 매체유로 폐식용유를 사용하였으며 2008년 9월부터 벙커C유를 매체유로 사용하였다. 그 후 2009년 중순부터는 폐윤활유를 정제한 이온정제유를 매체유로 사용하여 다양한 매체유의 적응성을 확인하였다. 대상 매체유의 특성 및 가격은 표 4-1과 같다.

<table>
<thead>
<tr>
<th>매체유 종류</th>
<th>발열량 (kcal/kg)</th>
<th>비점 (℃)</th>
<th>비중</th>
<th>점도 (동점도, cSt)</th>
<th>가격 (원/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>폐식용유</td>
<td>8,800~9,000</td>
<td>240~320</td>
<td>0.92</td>
<td>49~64 (25℃)</td>
<td>900</td>
</tr>
<tr>
<td>벙커C유</td>
<td>9,500~10,000</td>
<td>360</td>
<td>0.95</td>
<td>50~540 (50℃)</td>
<td>830</td>
</tr>
<tr>
<td>이온정제유</td>
<td>10,000~11,000</td>
<td>300~350</td>
<td>0.87</td>
<td>40~45 (25℃)</td>
<td>500</td>
</tr>
</tbody>
</table>

열조건이외의 또 다른 매체유의 역할은 슬러지와 매체유를 혼합 후에는 슬러지에 유동성을 부여하여 고체가 아닌 액체와 같이 유동이 가능해지며 이로 인해 슬러지 동량 현상 방지, 슬러지의 이송량 등의 간편한 제어, 슬러지의 파이프 이송으로 설비의 다양한 공정구성이 가능해지는 등 여러 장점이 발생하며 이는 전체 공정의 효율증대에 중요한 역할을 한다. 매체유는 건조 후 분리 재사용하므로 재순환 사용하는 매체유의 안정성을 살펴보기 위해 매체유탱크에서 채취한 매체유(벙커C유)의 동점도를 2009년 1월 19일부터 2월 26일까지 38일 동안 14회 측정한 결과를 그림 4-1에 도시하였다. 매체유의 동점도는 증가와 감소경향을 나타내지 않고 비교적 일정하게 유지되어 매체유의 순환 재사용에 따른 동점도의 변화가 거의 없는 것으로 나타났다.
또한 매체유의 경우 최종건조물에 함유되어 있는 매체유 함량만큼을 계속 추가 공급하므로 사용하는 매체유는 계속 회석된다. 그림 4-2와 같이 하루 30톤의 하수슬러지를 건조하고 최종 건조물에 5%(w/w)의 매체유가 함유되어 있을 경우, 5.7일 만에 매체유가 2배로 회석되는 것으로 계산된다. 매체유의 동점도가 38일간의 연속사용에도 증가와 감소의 추세를 나타내지 않고 일정한 상태를 유지할 수 있는 이유인 것은 열에 안정한 매체유를 선정하고 공정 중 매체유 추가 공급에 의해 순환되는 매체유가 회석되기 때문으로 판단된다.
매체유는 진공유증건조에서 매우 중요하므로 최적매체유를 선정하기 위해 3가지 매체유(폐식용유, 범커C유, 폐윤활유)를 정제한 이온정제유를 적용하여 보았다. 최적 매체유의 선정 기준은 여러 가지가 있으나 대표적으로 중요한 기준은 3가지로 나타낼 수 있다.

첫째, 가장 중요한 기준은 매체유의 비점이 물의 비점보다 높아 수분 중발시 매체유의 증발이 없이 수분만 증발되어야 한다. 매체유가 수분과 함께 증발하지 않아야 매체유를 건조 후 분리 재사용할 수 있으며, 회수량이 많을수록 매체유 소요비용을 줄일 수 있으므로 일정 온도 이상의 비점을 가져야 한다. 비점이 비교적 낮은 240-320℃의 폐식용유를 사용한 경우에도 매체유의 회수가 원활히 이루어졌으며 폐식용유 이후 매체유 선정시 폐식용유보다 비점이 높은 범커C유와 이온정제유를 선정하였다.

둘째 선정기준은 매체유 사용의 안전성이다. 매체유는 유중건조에 사용하는데 안전한 물질이어야 하며 순환 재사용에 문제가 없어야 한다. 적용한 매체유는 물보다 비점이 높아 사용이 안전하고 품질기준을 만족하는 정제유로 환경오염물질의 배출이 없다.

마지막으로 매체유의 가격이 저렴해야 하며 안정적인 수급이 가능하여야 한다. 매체유는 기본적으로 순환재사용하나 최종건조물에 함유되어 있는 매체유의 함유율만큼은 계속 보충하여야 하므로 선정매체유의 공급 가격과 안정적인 수급은 매체유 선정에 매우 중요하다. 적용하였던 3가지의 매체유의 가격은 표 4-1과 같으며 3가지 매체유 모두 안정적인 수급이 가능하다.

표 4-3과 4-4에 나타난 것과 같이 3종류의 매체유를 Case 1-4의 조건에서 진공유증건조에 적용해 본 결과, 최종건조물의 함수율이 최고 1.9%로 매체유별 진공유증건조의 건조능력에는 큰 차이를 보이지 않았다. 그러나 3가지 매체유중 폐식용유는 공급가격이 비싸고 범커C유는 상온에서 고체로 존재하므로 공정 가동 시작이나 운전 중에도 파이프 막힘 현상을 방지하기 위해서는 관련 설비를 예열할 수 있는 장치가 필요한 단점이 있다. 반면에 이온정제유는 높은 비점으로 안전하고 안정적인 품질로 수급에 문제가 없으며 가격 또한 가장 저렴하므로 본 연구에서는 진공유증건조기술의 상용화시설에서 적용가능한 최적매체유로서 이온정제유를 선정하였다.
4.2 진공유중건조 공정 최적화

4.2.1 건조능력평가
하수슬러지의 건조 전, 후 성분변화를 측정하기 위해 여러 조건에서 하수슬러지를 건조하면서 건조 전, 후 슬러지의 특성을 분석하였으며 각 실험조건은 표 4-2와 같다.

표 4-2 진공유중건조 실증실험의 슬러지 건조 조건

<table>
<thead>
<tr>
<th>구분</th>
<th>분석 대상</th>
<th>운전일자</th>
<th>매체유 종류</th>
<th>매체유 혼합비율</th>
<th>매체유 회수방법</th>
<th>분석치 사용용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>투입슬러지</td>
<td>2008년 6월 5-8일</td>
<td>폐식용유</td>
<td>1:1.3</td>
<td>원심탈유기</td>
<td>건조능력평가</td>
</tr>
<tr>
<td>Case 2</td>
<td>투입슬러지</td>
<td>2009년 2월 2-9일</td>
<td>벙커C유</td>
<td>1:1.3 1:1.0</td>
<td>원심탈유기</td>
<td>건조능력평가</td>
</tr>
<tr>
<td>Case 3</td>
<td>투입슬러지</td>
<td>2010년 9월 15-17일</td>
<td>이온 정제유</td>
<td>1:1.0</td>
<td>원심탈유기, 매체유 회수기</td>
<td>건조능력평가, 환경성 평가</td>
</tr>
<tr>
<td>Case 4</td>
<td>투입슬러지</td>
<td>2010년 8월 10,17일</td>
<td>이온 정제유</td>
<td>1:1.0</td>
<td>원심탈유기, 매체유 회수기</td>
<td>건조능력평가</td>
</tr>
<tr>
<td>Case 5</td>
<td>슬러지 투입량, 건조슬러지 생산량, 에너지 사용량</td>
<td>2009년 3월 16일 -4월 24일</td>
<td>벙커C유</td>
<td>1:1.0</td>
<td>원심탈유기</td>
<td>물질수지, 에너지수지</td>
</tr>
</tbody>
</table>

진공유중건조 실증연구시설을 이용하여 Case 1-5의 조건에서 슬러지 건조 실험실험을 수행하였다. 이때 Case 3,4에서 매체유회수기를 적용하는데 Case 1,2,5와 같이 원심탈유기만으로 매체유를 분리할 때에 비해 원심탈유기에서 분리하는 매체유의 양을 적게 운전하여 원심탈유기의 부하를 줄여 원심탈유기의 안정적인 운전을 유도하였다. 투입슬러지는 운전 당시 반입된 슬러지를 사용하여 각 Case마다 다른 성성을 나타냈다. 각 건조조건에서의 슬러지의 성분변화는 다음과 같다.
(1) Case 1, 2, 3

Case 1, 2, 3의 조건에서 하수슬러지를 건조했을 때 투입슬러지와 건조슬러지의 성분 분석 결과는 표 4-3과 같다(부록 2 p7-52 참조).

<table>
<thead>
<tr>
<th>항목</th>
<th>세부 항목</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>건조전</td>
<td>건조후</td>
<td>건조전</td>
</tr>
<tr>
<td>3성분 (%)</td>
<td>수분</td>
<td>79.5</td>
<td>1.9</td>
<td>82.3</td>
</tr>
<tr>
<td></td>
<td>고형분</td>
<td>20.5</td>
<td>98.1</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>회분</td>
<td>10.5</td>
<td>32.2</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>유기물</td>
<td>48.3</td>
<td>66.3</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>전체</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3성분 (%</td>
<td>함유율</td>
<td>0.09</td>
<td>6.3</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>43.7</td>
<td>40.1</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>3.5</td>
<td>6.0</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>3.1</td>
<td>2.4</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1.8</td>
<td>0.3</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>20.9</td>
<td>22.9</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>Cl</td>
<td>0.4</td>
<td>0.2</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>합계</td>
<td>73.3</td>
<td>72.0</td>
<td>71.7</td>
</tr>
<tr>
<td>중금속 용출시험 (mg/L)</td>
<td>Pb</td>
<td>0.03</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>0.01</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>0.04</td>
<td>0.04</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Cr⁺⁺</td>
<td>ND</td>
<td>0.01</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CN</td>
<td>ND</td>
<td>ND</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Hg</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>As</td>
<td>0.02</td>
<td>0.1</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>유기인</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>트리클로로에틸렌</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>트리클로로에틸렌</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>중금속 함유량 (mg/kg)</td>
<td>Pb</td>
<td>ND</td>
<td>ND</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>ND</td>
<td>1.7</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>161</td>
<td>170</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>48</td>
<td>49</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Hg</td>
<td>0.1</td>
<td>0.03</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>As</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>공업 분석</td>
<td>고정탄소(%)</td>
<td>-</td>
<td>42.1</td>
<td>10.53</td>
</tr>
<tr>
<td></td>
<td>휘발성분(%)</td>
<td>-</td>
<td>27.8</td>
<td>60.17</td>
</tr>
<tr>
<td>저위발열량(kcal/kg, wet)</td>
<td>398</td>
<td>4,095</td>
<td>555</td>
<td>4,151</td>
</tr>
<tr>
<td>고위발열량(kcal/kg, dry)</td>
<td>5,281</td>
<td>6,026</td>
<td>5,402</td>
<td>5,603</td>
</tr>
</tbody>
</table>

표 4-3 각 조건별 건조시 하수슬러지 성분분석 (Case1, 2, 3)
각기 다른 매체유와 매체유 혼합비율 그리고 회수방법으로 진공유중건조를 통해 하수슬러지를 건조한 결과 매체유의 종류에 상관없이 건조슬러지의 함수율이 2%이하까지 건조되었으며 특히 매체유회수기를 적용한 Case 3의 경우 건조슬러지의 함수율이 0.01%로 매우 낮았다. 또한 매체유회수기를 적용한 Case 3의 경우 건조슬러지의 매체유 함량이 2.79%로 낮아져 원심탈유기만을 적용했을 때에 비해 매체유 회수율이 높았다.

(2) Case 4
Case 4는 이온정제유를 매체유로 사용하여 하수슬러지를 건조하였으며 수도권매립지관리공사에서 투입슬러지와 원심탈유기에서 매체유를 제거한 탈유슬러지, 원심탈유 후 매체유회수기로 매체유를 분리한 건조슬러지 총 3 종류의 시료를 채취해 분석하였으며 분석한 슬러지의 세부사항은 표 4-4와 같다.

<table>
<thead>
<tr>
<th>슬러지 종류</th>
<th>시료채취일</th>
<th>탈유정도</th>
</tr>
</thead>
<tbody>
<tr>
<td>투입슬러지</td>
<td>20010년 8월 17일</td>
<td>탈유안함</td>
</tr>
<tr>
<td>탈유슬러지-1</td>
<td>20010년 8월 10일</td>
<td>원심탈유기 사용</td>
</tr>
<tr>
<td>탈유슬러지-2</td>
<td>20010년 8월 17일</td>
<td>원심탈유기 사용</td>
</tr>
<tr>
<td>건조슬러지-1</td>
<td>20010년 8월 10일</td>
<td>원심탈유기, 매체유회수기 사용</td>
</tr>
<tr>
<td>건조슬러지-2</td>
<td>20010년 8월 17일</td>
<td>원심탈유기, 매체유회수기 사용</td>
</tr>
</tbody>
</table>

투입슬러지와 탈유슬러지, 건조슬러지의 성분분석결과는 표 4-5와 같다. 투입슬러지의 함수율은 71.1%였으며 투입슬러지를 건공유중건조하였을 때 원심탈유 후 탈유슬러지는 1.5%, 매체유회수기를 거진 건조슬러지의 함수율은 0.2%였다. 탈유슬러지의 평균 저위발열량은 5,550kcal/kg이었으며 건조슬러지의 평균 저위발열량은 5,125kcal/kg 이었다. 함수율은 매체유회수기를 거치면서 1.5%에서 0.2%로 낮아졌다. 이렇게 낮은 함수율까지 건조하면 건조물의 저위발열량이 높아지고 건조물의 악취가 제거되는 등 연료로서의 가치가 높아진다. 또한 매체유 회수기 적용시 탈유슬러지에 비해 건조슬러지의 저위발열량은 약 7% 감소하였다. 이는 매체유회수기를 거치면서
추가 건조가 일어나 건조슬러지의 함수율이 탈유슬러지에 비해 낮아지기 때문이며, 발열량 저감에는 두 가지 이유가 있다. 첫째, 슬러지의 매체유 함유량이 낮아져 발열량의 차이가 나기 때문으로 이는 발열량 저하의 약 70%를 차지하고, 두 번째 이유는 고온에 의해 휘발성분이 일부 손실되었기 때문인 것으로 사료된다.

<table>
<thead>
<tr>
<th>분석항목</th>
<th>투입슬러지</th>
<th>탈유슬러지-1</th>
<th>탈유슬러지-2</th>
<th>건조슬러지-1</th>
<th>건조슬러지-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>수분(%)</td>
<td>71.7</td>
<td>1.5</td>
<td>1.5</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>유기물(%)</td>
<td>24.0</td>
<td>73.4</td>
<td>72.4</td>
<td>58.3</td>
<td>56.0</td>
</tr>
<tr>
<td>회분(%)</td>
<td>4.3</td>
<td>25.1</td>
<td>26.1</td>
<td>41.5</td>
<td>43.7</td>
</tr>
<tr>
<td>C(%)</td>
<td>35.1</td>
<td>34.7</td>
<td>41.4</td>
<td>31.5</td>
<td>29.8</td>
</tr>
<tr>
<td>N(%)</td>
<td>2.0</td>
<td>1.7</td>
<td>2.1</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>H(%)</td>
<td>5.1</td>
<td>4.1</td>
<td>3.2</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>함유율(%)</td>
<td>0.1</td>
<td>15.8</td>
<td>12.0</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>고위발열량(kcal/kg, dry)</td>
<td>3,351</td>
<td>6,166</td>
<td>5,522</td>
<td>5,470</td>
<td>5,116</td>
</tr>
<tr>
<td>저위발열량(kcal/kg, wet)</td>
<td>243</td>
<td>5,843</td>
<td>5,257</td>
<td>5,296</td>
<td>4,953</td>
</tr>
</tbody>
</table>

4.2.2 유도관식 교반기 적용
본 시설에서 사용하는 증발기의 구조 최적화를 통해 건조용량을 증가시키는 효과를 보였다. 유도관식 교반기를 설치하여 슬러지 혼합시 슬러지를 슬러지와 매체유 혼합액내에서 균일하게 분포시켜 매체유 혼합비율을 1:1.3에서 1:1.0으로 낮추고 건조용량을 15% 증가시켰다.
유도관식 교반기는 증발기 내부에 교반 날개와 원통형 다단 유도관으로 구성되어 있으며 유도관식 교반기의 세부구조는 다음과 같다. 유도관식 교반기는 그림 4-3과 같이 원통형 다단구조의 유도관 사이로 교반날개가 설치되며 교반날개는 유도관 내부의 슬러리를 아래쪽으로 이동하게 하며 바깥쪽은 슬러리를 위쪽으로 이동하게 하여 슬러리를 순환식으로 교반한다. 교반날개와 다단유도관이 함께 설치된 모습은 그림 4-4와 같다.
그림 4-3과 같이 유도관식 교반기는 원통형 다단구조의 유도관 사이로 교반날개가 설치되며 교반날개는 유도관 내부의 슬러리를 아래쪽으로 이동하게 하며 바깥쪽은 슬러리를 위쪽으로 이동하게 하여 슬러리를 순환식으로 교반한다. 교반날개와 다단유도관이 함께 설치된 모습은 그림 4-4와 같다.

유도관식 교반기를 통한 균일교반의 원리는 다음과 같다. 증발기 내부 중앙의 모터 구동에 의해 회전을도록 교반날개를 갖는 교반축이 설치되어 슬러리를 교반하고 원통형의 다단 유도관이 설치되어 슬러리의 효율적인 상하교반을 원활히 하여 유도관 설치전의 좌우교반에 상하교반을 추가한 일체적
인 교반을 통해 슬러리의 유동성을 증가시켰다.

유도관식 교반기 설치 전에는 슬러지와 매체유의 혼합비율이 충분히 않으면 그림 4-5의 왼쪽처럼 비중 차에 의하여 무거운 슬러지가 하부에 쌓여 슬러지가 균일하게 분포가 될 수 없다. 그로 인해 다음 증발기로 이송할 때 슬러지 밀도가 높은 부분에서 이송배관이 막히는 문제가 발생하였고 이를 방지하기 위하여 매체유의 혼합비율을 높게 유지할 수밖에 없어 슬러지와 매체유의 혼합비율을 1:1.3 이상을 유지하였다.

그러나 증발기 내부에 유도관 설치 후에는 그림 4-5의 오른쪽에 나타난 것처럼 증발기내의 혼합방식의 변화가 나타난다. 유도관식 교반기 설치 후 기존의 좌우교반에 상하교반이 더해지면서 슬러지와 매체유가 매우 균일하게 혼합되었고 이에 따라 슬러지 하부몰림현상에 따른 파이프 막힘 현상이 발생하지 않았다. 그리하여 슬러지와 매체유의 혼합비율을 기존 1:1.3에서 1:1.0으로 줄여도 파이프 막힘 현상이 발생하지 않음을 발견하였다. 매체유의 혼합비율을 1:1.3에서 1:1.0으로 낮추면매체유투입량이 23% 정도 줄어들어 더 많은 슬러지를 투입할 수 있어 건조기의 용량이 약 15% 증가하는 효과를 보았다.

<그림 4-5> 유도관식 교반기 설치 후 증발기내의 혼합방식 변화
4.2.3 원반형 전열판 적용

본 설비의 증발기 내부에 열원의 공급을 위해 기존의 파이프가 상하방향으로 설치되어 유동하는 내용물과 수직으로 만나는 튜브 번들방식이 아닌 원반형 전열판(그림 4-6)을 설치하여 유동하는 슬러지와 매체유의 혼합액인 슬러리와의 마찰을 최소화 하였으며 번들방식 적용시 발생하는 슬러리 고착현상을 방지하여 열전달 손실을 최소화시켜 건조가 원활히 진행되도록 하였다.

유중건조에서는 슬러지의 고형분이 기름성분인 매체유와 함께 유동하므로 내마모성이 높아 기계 내구성이 매우 높으며 더욱 전열판을 원반형으로 설치하여 마찰을 최소화하여 내구성을 극대화하였다. 그림 4-7은 원반형 전열판을 2년 6개월간 사용후 튜브 번들타입에서 발생할 수 있는 전열판에 내용물이 부착되는 현상인 Fouling 현상이 없음을 보여주는 사진이며 그림 4-8은 증발기내의 전열판을 2년 6개월 동안 연속운전 전, 후를 비교한 사진으로 마찰에 의한 마모가 거의 없음을 알 수 있어 내마모성이 우수함을 증명하였다. 증발기내의 슬러리는 슬러지가 가라앉아 파이프가 막히는 것을 방지
 자기 위해 건조를 진행하지 않을 때도 항상 교반기를 운전하고 있는 점을 고려할 때 증발기 내의 전열판의 내마모성이 매우 우수한 것을 알 수 있다.

![그림 4-7 튜브번들타입(좌)과 원반형전열판(우) 설치시 fouling 현상 비교](image)

![그림 4-8 원반형전열판 적용시 내마모성 확인](image)

4.2.4 열회수설비 적용

본 설비는 다단건조방식을 적용하고 있으며 이를 이용하여 건조공정에서 발생하는 증발증기를 재사용, 전체 건조 공정의 에너지 효율을 높이는 폐열 회수장치를 설치하여 에너지를 절감하였으며 그 내용은 다음과 같다.

1) 직렬로 연결된 3개의 증발기 중 1, 3차 증발기는 진공 저온 상태에서 건조를 실시하고 2차 증발기는 상압, 105℃의 조건에서 건조를 수행한다.

2) 2차 증발기에서 건조 후 방출되는 수증기를 1번 증발기로 순환 공급하
여 1차 증발기의 건조에 필요한 에너지로 사용하며 1차 증발기는 별도로 보일러로부터 에너지를 공급받지 않는다.

그림 4-9는 폐열회수장치 적용시 운전조건을 나타내었다. 폐열회수장치 설치 전에는 2차 증발기를 -460mmHg, 90℃의 조건에서 운전하였으나 폐열회수장치 설치 후에는 상압, 105℃의 조건에서 운전하여 설치전에 비해 많은 스팀에너지가 소모된다. 그러나 1번 증발기에서는 2번 증발기의 증발 증기를 이용할 뿐 보일러로부터 스팀을 공급받지 않아 1차증발기의 건조에 필요한 스팀량인 425.2kg/hr에 해당하는 에너지를 절감할 수 있으므로 총 wet sludge 톤당 185Mcal의 에너지를 절감할 수 있다.

그림 4-10은 열회수기를 설치하지 않은 증발기와 열회수기를 설치한 증발기를 연속으로 운전하여 wet sludge 톤당 건조 슬러지 생산과 스팀사용량 그리고 전기사용량을 살펴본 그래프이다. 그 결과 열회수기의 설치유무에 관
계없이 wet sludge 톤당 53.5kwh 가량의 전기가 소모되었으며 스팀사용량 은 열회수기를 설치하지 않은 경우 wet sludge 톤당 1.05톤이었던 것이 열 회수기를 설치한 후 0.8톤만이 사용되어 열회수기를 설치한 증발기를 운전 할 때 24%가량의 에너지가 절약되는 것으로 나타났다.

그림 4-10의 그래프에서 화살표로 표시된 부분은 건조공정을 재시작시 예 비운전 때문에 많은 에너지가 소모되어 높은 스팀소모량을 나타낸 것이다.

<그림 4-10> 열회수기 사용 전 후 슬러지 생산량, 스팀사용량, 전기 사용량 비교

그림 4-10에 나타난 것과 같이 폐열회수장치 적용 후 소모에너지량이 폐 열회수장치 적용 전에 비해 낮아졌으며 직접 또는 간접가열방식 기류건조와 에너지 비용을 비교해 보면 표 4-6에 나타난 것과 같이 진공유중건조의 경 우 기류건조방식(10%이하)에 비해 낮은 함수율(1% 이하)까지 건조함에도 불구하고 에너지 소모량이 가장 적은 것을 알 수 있다. 직접 또는 간접가열 방식 기류건조방식의 에너지소모량은 2009년 9월 광주시 하수슬러지 처리 시설의 제안서에서 발췌한 수치이다.
표 4-6 하수슬러지 건조공법별 에너지 비용 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>건민</th>
<th>P사</th>
<th>K사</th>
</tr>
</thead>
<tbody>
<tr>
<td>건조방식</td>
<td>진공유중건조</td>
<td>3-pass 열풍드럼 직접건조</td>
<td>패들 및 디스크 방식 간접건조</td>
</tr>
<tr>
<td>함수율</td>
<td>1%이하</td>
<td>10%이하</td>
<td>10%이하</td>
</tr>
<tr>
<td>필요열량 (kcal/ton wet sludge)</td>
<td>433,300</td>
<td>624,600</td>
<td>609,400</td>
</tr>
<tr>
<td>필요전력량 (kwh/ton wet sludge)</td>
<td>54</td>
<td>73</td>
<td>58</td>
</tr>
<tr>
<td>매체유사용량 (Liter/ton wet sludge)</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>에너지 비용 (원/톤)</td>
<td>38,799</td>
<td>51,265</td>
<td>49,091</td>
</tr>
</tbody>
</table>

비고
- LNG 가격: 702원/m³ (9,500kcal/m³)
- 전력비: 70원/kwh
- 매체류비(이온정제유): 500원/L
- P사와 K사의 자료는 2009년 9월 광주시 하수슬러지 처리시설 제안서 참조

4.2.5 매체유화수 최적화

진공유중건조기술은 하수슬러지를 건조시 건조가 완료된 후 매체유와 고형물을 분리하는 과정이 필요하다. 매체유 회수율을 높이기 위해서는 운영비 절감 효과를 가져올 수 있다. 기존의 원심탈유기를 이용하여 고형물과 매체유를 분리할 경우 투입되는 하수슬러지의 성상이나 건조상태에 따라 건조슬러지의 매체유 함유율이 달라질 수 있다. 또한 매체유와 고형물 분리를 위해 원심탈유기만을 사용할 경우 매체유화수를 할당해도 보였다. 또한 매체유와 고형물 분리를 위해 원심탈유기만을 사용할 때(Case1, Case2) 건조슬러지의 평균 함유율은 5.25%였다. 그러나 원심탈유기의 강한 고정으로 연속운전에 어려움을 보여 원심탈유기의 부하를 낮추고 매체유화수기를 설치하여 안정적인 연속운전과 매체유의 회수를 가능하게 하였다. 매체유화수기는 탈수슬러지에 열을 가하여 매체유를 증발시킨 후 응축기를 통해 응축시켜 매체유로 재사용하게 하는 장치이며 구조는 그림 4-11과 같다.
매체유회수기 정면도를 보면 상부의 슬러지 투입구로 원심탈유기를 거쳐 1차 매체유를 분리한 슬러지가 투입되고 슬러지배출구로 매체유를 목표량까지 분리한 건조슬러지가 배출된다. 왼쪽 하단에서 투입되는 열풍은 슬러지와 접촉하지 않고 슬러지가 이동하는 파이프의 외벽을 가열하게 되어 슬러지에 열을 전달한다. 이로 인해 열풍은 전량 재순환 사용할 수 있어 에너지 소모를 줄일 수 있다. 매체유회수기의 운전조건은 표 4-7과 같으며 실제 설비에는 LPG를 연료로 투입하였으며, LPG 사용량은 투입슬러지 1톤당 평균
1.86Nm³가 사용되었다. 이를 열량으로 환산하면 44,650kcal이고, 열량환산 값을 통해서 LNG 사용량으로 환산하면 4.4Nm³/톤 투입슬러지이다.

<table>
<thead>
<tr>
<th>구분</th>
<th>조건</th>
</tr>
</thead>
<tbody>
<tr>
<td>운전온도</td>
<td>300℃</td>
</tr>
<tr>
<td>슬러지 체류시간</td>
<td>30분</td>
</tr>
</tbody>
</table>

매체유화수기의 운전조건

<table>
<thead>
<tr>
<th>매체유화수기</th>
<th>에너지사용량</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPG 사용량</td>
<td>1.86Nm³/톤-투입슬러지 (24,000 kcal/Nm³-LPG)</td>
</tr>
<tr>
<td>열량 환산값</td>
<td>44,650kcal/톤-투입슬러지 (LNG로 환산시 총 공정소요에너지의 9%)</td>
</tr>
<tr>
<td>LNG 사용량 환산값</td>
<td>4.4Nm³/톤-투입슬러지 (9,500 kcal/Nm³-LNG)</td>
</tr>
</tbody>
</table>

표 4-8에는 건공유증건조장치로 건조한 건조슬러지를 분석한 결과로 투입 슬러지와 원심탈유기를 거쳐 매체유를 분리한 탈유슬러지를, 최종 매체유화수기를 거쳐 매체유화수가 완료된 상태의 건조슬러지의 함유율을 나타낸 것이 다. 본 시료는 2010년 8월 10일과 17일 실시한 건조공정중에 발생한 시료이며 이온정제유를 매체유로 사용하였다.

<table>
<thead>
<tr>
<th>시료</th>
<th>함유율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>투입슬러지</td>
<td>0.10</td>
</tr>
<tr>
<td>탈유슬러지-1</td>
<td>15.8</td>
</tr>
<tr>
<td>탈유슬러지-2</td>
<td>12.0</td>
</tr>
<tr>
<td>탈유슬러지 평균</td>
<td>13.9</td>
</tr>
<tr>
<td>건조슬러지-1</td>
<td>1.36</td>
</tr>
<tr>
<td>건조슬러지-2</td>
<td>2.16</td>
</tr>
<tr>
<td>건조슬러지 평균</td>
<td>1.76</td>
</tr>
</tbody>
</table>

(분석: 수도권매립지관리공사)
위의 결과를 보면 건조가 완료되고 원심탈유기를 거쳐 매체유를 제거한 탈유슬러지의 평균 함유율은 13.94% 이었고 매체유 회수기를 통해 매체유를 제거한 건조슬러지의 평균 함유율은 1.76%이다. 이 결과에 따르면 혼합한 매체유의 99.6%가 회수됨을 보였다.

4.2.6 황함량 저감
건조슬러지의 황함량은 슬러지의 연료화에 중요한 기준중 하나이다. 폐기물관리법의 하수슬러지를 건조하여 화력발전소의 연료로 사용하는 기준(부록참조)에 따르면 황함량을 2%이하로 규정하고 있다. 그러나 실제 공공하수처리장에서 발생하는 하수슬러지의 황함량이 2%를 넘는 경우가 많다. 그림 4-12에서 나타낸 것과 같이 목포시 환경에너지 센터와 충주시 하수슬러지 처리시설 그리고 수도권매립지에 반입되는 하수슬러지 일부 시료는 건기준 황함량이 2%이상이었으며(그림 4-12) 지역별 황함량 측정결과는 표 4-9와 같다.

<그림 4-12> 각 지역별 하수슬러지의 황함량
목포시: 목포시 환경에너지센터 반입예정 슬러지
충주시: 충주시 하수슬러지 처리시설 반입예정 슬러지
매립지: 수도권매립지 반입슬러지
표 4-9 목포시, 충주시, 수도권매립지 반입슬러지의 황함량

<table>
<thead>
<tr>
<th>구분</th>
<th>목포시</th>
<th>충주시</th>
<th>수도권매립지</th>
</tr>
</thead>
<tbody>
<tr>
<td>측정치(%)</td>
<td>1.8</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.23</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>0.82</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>4.51</td>
<td>2.0</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>2.16</td>
<td>2.8</td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td>0.71</td>
<td>2.5</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>3.96</td>
<td>3.0</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>2.41</td>
<td>3.2</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>2.6</td>
<td>1.68</td>
</tr>
<tr>
<td>평균(%)</td>
<td>2.42</td>
<td>2.51</td>
<td>2.88</td>
</tr>
<tr>
<td>표준편차</td>
<td>1.58</td>
<td>0.40</td>
<td>3.45</td>
</tr>
</tbody>
</table>

(분석기관: 한국화학융합시험연구원)

그러나 진공유중건조설비로 하수슬러지를 건조시 투입슬러지와 건조슬러지의 건기준 고형물의 황함량을 10여 차례 측정한 평균을 보면 투입슬러지 고형물 내의 건기준 황함량이 2.9%에서 건조슬러지 고형물내의 건기준 황함량이 0.7%로 투입슬러지 대비 20% 수준으로 낮아지는 것을 확인하였다(그림 4-13)

![그림 4-13 투입슬러지와 건조슬러지 고형물내의 건기준 황함량 비교](p7-52 참조)
진공유중건조를 통한 하수슬러지 건조시 투입슬러지 고형분내의 황성분이 저감되는 것을 확인한 후 슬러지내의 황성분의 기증을 살펴보기 위해 투입슬러지와 건조슬러지, 응축수, 배기가스와 매체유의 황성분의 변화를 비교해 보았다. 표 4-10은 투입슬러지 1톤 기준으로 진공유중건조시 황성함량을 계산해본 결과이다.

측정결과 투입슬러지에 포함되어있던 황성분은 투입슬러지 1톤당 6.6kg이었으며 진공유중건조 후 투입슬러지의 황성분 중 62%는 증발하여 응축수에 존재하는 것으로 확인되었으며 26%만이 건조슬러지에 남아있는 것으로 나타났다. 또한 배기가스와 함께 대기 배출되는 황성분은 극히 미량이었으며 순환 재사용되는 매체유에는 매체유의 0.39%가량의 황성분이 존재하며 이는 황성분이 포화상태로 존재하는 것으로 이 이상 축적되지 않는 것을 볼 수 있었다.

이와 같은 결과는 진공유중건조의 경우 일반 기류건조와는 달리 황성분이 수분이나 매체유에 녹아나와 증발하기 쉬운 조건을 형성하여 수분과 함께 증발하고 증발된 황성분이 응축수에 녹아있는 형태로 존재하여 기류건조에 비하여 건조슬러지 고형물의 황성함량이 낮아지는 것으로 사료된다.

<표 4-10> 진공유중건조 과정에서의 황 거동(슬러지 1톤 기준)

<table>
<thead>
<tr>
<th>구분</th>
<th>측정치</th>
<th>황함량</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>0.66%</td>
<td>6.60kg</td>
<td>함수율 80%의 투입슬러지 1톤 내의 총황함량</td>
</tr>
<tr>
<td></td>
<td>0.8%</td>
<td>1.70kg</td>
<td>건조슬러지 0.2톤의 고형물 내의 총황함량</td>
</tr>
<tr>
<td>응축수</td>
<td>0.52%</td>
<td>4.15kg</td>
<td>투입슬러지 1톤당 798kg 발생하는 응축수의 함량</td>
</tr>
<tr>
<td>OUT</td>
<td>0.01ppm</td>
<td>0.0002kg</td>
<td>시간당 16,710Nm³ 발생하는 배기가스의 함량</td>
</tr>
<tr>
<td>배기가스</td>
<td>0.36% ±0.09</td>
<td>0.036kg</td>
<td>매체유는 0.36%에서 포화상태에 이르러 황의 이동이 없는 것으로 판단됨. 다만, 추가공급되는 매체유의 경우는 0.36%까지 황성분의 이동이 발생함</td>
</tr>
</tbody>
</table>

(분석기관: 한국화학융합시험연구원)
(부록 2 P35-52, 부록 6 P92-94 참조)
4.3 건조슬러지 활용방안

4.3.1 화석연료 대체연료로 사용

진공유중건조기술로 생산된 건조슬러지는 열량이 평균 4,000kcal/kg으로 높고 함수율이 1% 내외로 낮아 연료로서의 가치가 높다. 연료의 함수율이 낮을수록 저위발열량이 증가하고 연소실 온도 저하에 따른 에너지 손실을 가져와 연료로서의 가치가 높아진다. 또한 건조물의 함량이 높으면 연소시 환산량이 많이 발생하여 대기오염을 유발시킬 뿐 아니라 기계손상을 가져올 수 있어 연료로서의 가치가 낮아진다. 그러나 진공유중건조기술로 생산된 건조물의 경우 투입슬러지에 비해 함량이 낮아지므로 타 건조기술로 생산된 건조물에 비해 연료로서의 가치가 높다.

진공유중건조로 건조한 건조슬러지와 기류건조로 건조한 건조슬러지의 연소특성을 살펴보기 위해 건양대학교 나노화학과에서 직접열풍건조로 건조한 건조슬러지와 진공유중건조로 건조한 건조슬러지의 연소실험을 실시하였다. 그림 4-14에 나타난 것과 같이 건조 슬러지가 발화되는 200℃ 근처에 이르기 전에 기류건조시료의 경우 유기성 휘발분이 100℃부터 증발되는 반면에 진공유중건조는 200℃ 근처에서부터 휘발분이 증발되는 것을 관찰할 수 있다. 이러한 것은 기류건조기를 이용하여 건조한 시료가 진공유중건조에 비해 상대적으로 저온에서 휘발되는 유기물의 량이 많다는 것을 의미한다. 이것은 곧바로 악취의 문제로 연결될 수 있다.

진공유중건조 시료의 경우 낮은 온도에서 휘발되는 저분자량의 유기물이 상대적으로 낮은 것을 볼 수 있는데 이는 열매체유에 이들 유기물이 녹아 추출되기 때문으로 볼 수 있을 것이다.

유중건조시료에서는 기류건조 시료에서는 볼 수 없는 310℃ 근처에서의 발열반응을 일으키는 신호를 볼 수 있는데 이는 아마도 건조시료에 잔류하는 열매체유의 연소에 기인한 것으로 사료된다. 이 발열량은 저분자량의 유기물의 감소에 따른 시료 전체 발열량의 감소를 보다 잘 반영하는 역할을 하며, 그로 인해 오히려 시료의 전체 발열량은 감소보다는 약간의 증가를 보여준다.
4.3.2 연료탄 제조, 활용

진공유조건조기술로 하수슬러지를 건조하면 저위발열량이 높고 황성분이 저감된 고품질의 연료를 생산하게 된다. 이러한 건조슬러지는 GR 하수슬러지 연료탄으로 활용할 수 있어 연료로서의 활용도를 높일 수 있다. GR 하수슬러지 연료탄은 신재생에너지로 분류되며 고형연료 사용금지구역에서도 사용가능하여 사용범위가 매우 넓다. 표 4-11은 GR 하수슬러지 연료탄 기준
(GR M 9018-2010, 부록참조)과 진공유중건조기술로 건조한 하수슬러지로 만든 하수슬러지 연료탄의 성분을 나타냈다.

표 4-11 하수슬러지 연료탄의 성분

<table>
<thead>
<tr>
<th>항 목</th>
<th>기 준</th>
<th>1회</th>
<th>2회</th>
<th>3회</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>저위발열량</td>
<td>4,000kcal/kg이상</td>
<td>8,843</td>
<td>6,071</td>
<td>6,095</td>
<td>7,003</td>
</tr>
<tr>
<td>고정탄소</td>
<td>20%이상</td>
<td>37</td>
<td>39</td>
<td>47</td>
<td>41.0</td>
</tr>
<tr>
<td>휘발성분</td>
<td>50%이하</td>
<td>32</td>
<td>36</td>
<td>26</td>
<td>31.3</td>
</tr>
<tr>
<td>회분</td>
<td>35%이하</td>
<td>29</td>
<td>24</td>
<td>26</td>
<td>26.3</td>
</tr>
<tr>
<td>수분</td>
<td>10%이하</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>시안화합물</td>
<td>1.0mg/ℓ이하</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>구리</td>
<td>3.0mg/ℓ이하</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>카드뮴</td>
<td>0.3mg/ℓ이하</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>수은</td>
<td>0.005mg/ℓ이하</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>비소</td>
<td>1.5mg/ℓ이하</td>
<td>N/D</td>
<td>0.01</td>
<td>N/D</td>
<td>0.003</td>
</tr>
<tr>
<td>납</td>
<td>3.0mg/ℓ이하</td>
<td>N/D</td>
<td>0.08</td>
<td>N/D</td>
<td>0.027</td>
</tr>
<tr>
<td>6가 크롬</td>
<td>1.5mg/ℓ이하</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
</tr>
</tbody>
</table>

(분석기관: 한국화학융합시험연구원)
(부록 4 p82-88, 부록 5 p89 참조)

표 4-12에 나타난 것과 같이 3회에 걸쳐 하수슬러지를 제조하여 성분을 검사해 본 결과 하수슬러지 연료탄이 GR 하수슬러지 연료탄 성분 기준을 만족하였다.

또한 하수슬러지 연료탄을 연소시킬 때 발생하는 대기배출물질을 측정해 본 결과 GR 하수슬러지 연료탄 대기배출기준(GR M 9018-2010, 부록참조)을 모두 만족하는 것으로 나타났다(표 4-12).
표 4-12 하수슬러지 연료탄 연소시 대기배출물질 분석

<table>
<thead>
<tr>
<th>오염물질</th>
<th>GR 하수슬러지 연료탄 대기배출 기준</th>
<th>하수슬러지 연료탄 연소시 대기배출물질 농도 측정결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>매연</td>
<td>2도</td>
<td>1</td>
</tr>
<tr>
<td>연지</td>
<td>100(12)(mg/m³)</td>
<td>80</td>
</tr>
<tr>
<td>황산화물</td>
<td>300(12)(ppm)</td>
<td>47.1</td>
</tr>
<tr>
<td>질소산화물</td>
<td>200(12)(ppm)</td>
<td>48.3</td>
</tr>
<tr>
<td>염화수소</td>
<td>50(12)(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>일산화탄소</td>
<td>600(12)(ppm)</td>
<td>199</td>
</tr>
<tr>
<td>불소화합물</td>
<td>3(ppm)</td>
<td>1.6</td>
</tr>
<tr>
<td>황화수소</td>
<td>10(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>수은화합물</td>
<td>5(mg/m³)</td>
<td>ND</td>
</tr>
<tr>
<td>카드뮴화합물</td>
<td>1(mg/m³)</td>
<td>ND</td>
</tr>
<tr>
<td>비소화합물</td>
<td>3(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>크롬화합물</td>
<td>1(mg/m³)</td>
<td>0.02</td>
</tr>
<tr>
<td>구리화합물</td>
<td>10(mg/m³)</td>
<td>0.03</td>
</tr>
<tr>
<td>아연화합물</td>
<td>10(mg/m³)</td>
<td>0.26</td>
</tr>
<tr>
<td>니켈화합물</td>
<td>20(mg/m³)</td>
<td>ND</td>
</tr>
<tr>
<td>시안화합물</td>
<td>10(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>브롬화합물</td>
<td>5(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>벤젠화합물</td>
<td>50(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>폐놀화합물</td>
<td>10(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>염소</td>
<td>50(ppm)</td>
<td>ND</td>
</tr>
<tr>
<td>액취</td>
<td>500 (척수배수)</td>
<td>173</td>
</tr>
</tbody>
</table>

(분석기관: 한국화학융합시험연구원)
(부록 5 p90-91 참조)

그림 4-15는 연료탄 펠렛 성형과정을 보여주고 있다.
그림 4-16은 하수슬러지 연료탄을 연료탄 보일러에서 연소시키는 과정을 나타낸 것으로 보조연료의 투입 없이 연소가 진행되었으며 연소시 악취는 감지되지 않았다.

또한 하수슬러지 연료탄의 연소율을 측정해 보았다. 연소율 측정방법은 폐기물공정시험기준 2008에 따라 시료의 회분과 유기물 함량(%)을 측정하고 동일한 시료 500g을 연소로에 넣고 가스 토치를 이용하여 약 2분간 불을 가해 점화하였다. 이 때 송풍기를 이용하여 공기를 지속적으로 공급하여 시료가 더 이상 타지 않을 때까지 연소시켰다. 연소가 끝나면 송풍기를 끄고 잔존물을 수거하여 회분을 측정하였다. 연소율의 계산방법은 다음과 같다.

\[
\text{연소율(%) = } [1-(a\times(1-b))\div(c \times b))]\times100
\]
a: 연료탄의 회분 (%)
b: 연소 잔존분 회분 (%)
c: 연료탄 유기물 함량 (%)

표 4-13는 하수슬러지 연료탄과 연소잔존물(연소재)의 성분분석결과이다. 연소율을 측정한 결과 97.9와 95.8%의 연소율을 보여 GR M 9018-2010의 하수슬러지 연료탄 기준인 95%를 만족하였다.

<table>
<thead>
<tr>
<th>투입시료</th>
<th>수분</th>
<th>회분</th>
<th>유기물</th>
</tr>
</thead>
<tbody>
<tr>
<td>하수슬러지 연료탄</td>
<td>4.5%</td>
<td>27.2%</td>
<td>71.2%</td>
</tr>
<tr>
<td>연소잔존물 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연소잔존물 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<table>
<thead>
<tr>
<th>투입시료</th>
<th>수분</th>
<th>회분</th>
<th>연소시간</th>
<th>연소율</th>
</tr>
</thead>
<tbody>
<tr>
<td>연소잔존물 1</td>
<td>94.8%</td>
<td>30분</td>
<td></td>
<td>97.9%</td>
</tr>
<tr>
<td>연소잔존물 2</td>
<td>90.2%</td>
<td>30분</td>
<td></td>
<td>95.8%</td>
</tr>
</tbody>
</table>
</table>

4.4 물질수지 평가
슬러지 건조전후의 특성분석 결과 및 진공유중건조기술의 반응기 특성을 고려하여 물질수지를 수립하였으며 그 결과를 그림 4-17에 도시하였다. 본 연구에서 설치 및 운영한 진공유중건조 실험연구시설의 물질수지를 계산한 결과, 시간당 1.25톤의 하수슬러지를 투입할 경우 시간당 266kg의 건조슬러지를 생산할 수 있으며, 응축수 발생량은 시간당 997kg로 산정되었다. 건조슬러지 중 유분함량을 5%로 가정하면 매체유는 시간당 13kg을 보충해야 하는 것으로 산정되었다.
<그림 4-17> 진공유중건조기술 물질수지도(30톤/일, 24시간 가동 기준)

4.5 에너지수지 평가

표 3-4에 제시된 바와 같이 투입에너지로서 스팀사용량, 전력사용량을 측정하였고, 생산에너지로서 건조슬러지의 총발열량을 산정하여 에너지수지를 평가하였다. 에너지수지 평가를 위하여 표 4-2의 Case 2 조건에서 실증실험을 수행하였다. 즉, 2009년 3월 16일부터 4월 24일까지 벡터C유를 이용하여 원심탈유기를 이용하여 매체유를 회수하는 조건에서 하루 24시간 연속실험이 수행하였다. 운전기간동안 평균 투입슬러지량은 29.27ton/일, 건조슬러지량은 6.39ton/일, 스팀소모량은 23.3ton/일로 시간당 1,008kg(투입슬러지 톤당 806kg/hr), 전기사용량은 평균 53.5kwh로 측정되었다. 24시간 연속운전 시 30톤/일의 시설용량을 가지는 본 연구의 실증연구시설을 이용하여 측
정한 결과를 이용하여, 슬러지 1톤당 에너지량을 산정하여 표 4-14에 나타내었다.

<table>
<thead>
<tr>
<th>구분</th>
<th>측정에너지</th>
<th>실험값</th>
<th>환산값(투입슬러지 1톤 기준)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>환산계수</td>
</tr>
<tr>
<td>IN</td>
<td>스팀사용량</td>
<td>806kg</td>
<td>543.6kcal/ton steam</td>
</tr>
<tr>
<td></td>
<td>전력사용량</td>
<td>53.5kwh</td>
<td>860.4kcal/kwh</td>
</tr>
<tr>
<td>OUT</td>
<td>저위발열량</td>
<td>4.151kcal/kg</td>
<td>0.27ton-건조슬러지/ton-투입슬러지</td>
</tr>
</tbody>
</table>

스팀사용량을 열량으로 환산하면 스팀 1kg 생산시 543.6kcal 소요 (111℃의 순환스팀응축수로부터 147℃의 스팀 생산) 전력에너지를 열량으로 환산하면

\[1\text{kwh} = 1,000 \times 3,600\text{w} \cdot \text{sec} = 3,600,000\text{w} \cdot \text{sec} = 3,600,000\text{J} = 860.4\text{kcal} \]

본 실험연구시설은 시간당 1.25톤의 하수슬러지 처리하고 시간당 903kg의 스팀 (투입슬러지 톤당 722kg의 스팀)이 건조공정에서 소요되도록 설계되었으며 에너지소모량 실측결과 설계치보다 10.4% 가량의 열손실이 있는 것으로 나타났다.

또한 본 실험은 매체유휴수기를 적용하기 전에 실시한 것으로 매체유휴수기 적용시 LPG 1.86Nm^3 즉, 투입슬러지 톤당 46,010kcal가 추가적으로 소모된다.

또한 동기간동안 각 증발기의 실제 운전온도를 측정한 평균값을 그림 4-18에 도시하였다. 1차 증발기의 평균 온도는 81.6℃, 2차 증발기의 평균 온도는 102.5℃, 3차 증발기의 평균온도는 93.3℃이었다. 건조기 후단에 병렬로 연결된 콘트롤탱크의 경우 각각 109.8℃, 109.5℃로 비슷한 운도에서 운전되었다. 이 운도는 설계온도인 1차 증발기 80℃, 2차 증발기 105℃, 3차 증발기 95℃, 콘트롤탱크 115℃와 약간의 차이를 보이나 이는 계측오차인 것으로 고려된다.
본 실증연구시설에서 하루 29.27톤의 하수슬러지를 건조할 때 에너지수지를 수립하여 그림 4-19에 도시하였다. 하루 29.27톤의 하수슬러지를 건조할 때 소요되는 실제 에너지량은 투입슬러지 톤당 593,688kcal(전기 46.010kcal, 스팀 547,678kcal)으로 일일 총 소요에너지량은 17,377,248kcal/일으로 산정되었다. 건조물의 평균 발열량은 4,151kcal/kg으로 하수슬러지 29.27톤 건조시 생산되는 건조슬러지는 6.39톤이므로 생산된 총에너지량은 26,524,890kcal(906,214kcal/톤)이다. 생산에너지에서 소요에너지의 빠른 양은 에너지의 9,147,642kcal/일(312,526kcal/톤)으로, 생산된 슬러지 건조물의 65%만으로 건조공정 필요에너지를 모두 충당할 수 있으며, 나머지 35%의 건조물로 양의에너지(양여수익)을 창출할 수 있을 것으로 판단되었다.

<그림 4-18> 각 증발기별 평균 운전 온도

<그림 4-19> 진공유중건조시 에너지 투입량과 잉여에너지 생산량
4.6 경제성 평가

4.6.1 시설 설치비

본 진공유중건조 실증연구시설은 1일 8시간 가동기준 10톤의 시설용량을 가지며, 24시간 가동시 1일 최대 30톤 처리가 가능한 시설이다. 본 실증연구시설은 기반 조성이 되어 있는 실험부지에 건축물 없이 구조물만 구축한 형태이므로, 시설 설치비에서 토목공사비, 건축공사비는 소요되지 않았으며, 기계 및 전기계장 공사비는 약 26억원이 소요되었다. 본 금액은 실증연구시설 운영 중 발생한 개선공사비용이 포함된 것이다.

30톤/일 용량 하수슬러지 건조시설의 토목과 건축비를 포함한 총공사비를 산정한 결과는 31.5억원이었으며 세부내역은 표 4-15에 나타났다. 이중 기계, 전기 공사비는 20.6억원이었으며 총 공사비 중 차지할 비율은 61%였다.

표 4-15 진공유중건조시설의 설치비 세부내역 (30톤/일)

<table>
<thead>
<tr>
<th>예상금액</th>
<th>토목공사</th>
<th>건축공사</th>
<th>기계공사</th>
<th>전기계장공사</th>
<th>기타공사 및 제경비</th>
<th>총공사비</th>
</tr>
</thead>
<tbody>
<tr>
<td>억원/30톤</td>
<td>1.5</td>
<td>4.0</td>
<td>17.2</td>
<td>3.4</td>
<td>5.4</td>
<td>31.5</td>
</tr>
<tr>
<td>억원/톤</td>
<td>0.04</td>
<td>0.12</td>
<td>0.51</td>
<td>0.10</td>
<td>0.18</td>
<td>0.95</td>
</tr>
</tbody>
</table>

여러 가지 하수슬러지 처리기술, 특히 다른 형태의 건조공정과 본 진공유중건조기술의 시설설치비를 비교하기 위해, 본 실증연구시설의 시설설치비를 참고하여 시설용량 200톤/일, 토목공사비, 건축공사비, 기타 공사 및 제경비를 포함한 총공사비를 산정한 결과는 표 4-16에 나타내었다. 진공유중건조시설의 설치비(총공사비)는 시설용량 200톤/일 기준으로 약 200억원이 소요되며, 하수슬러지 1톤당 공사비는 약 1억원으로 산정되었다.

표 4-16 진공유중건조시설의 설치비 세부내역 (200톤/일)

<table>
<thead>
<tr>
<th>예상금액</th>
<th>토목공사</th>
<th>건축공사</th>
<th>기계공사</th>
<th>전기계장공사</th>
<th>기타공사 및 제경비</th>
<th>총공사비</th>
</tr>
</thead>
<tbody>
<tr>
<td>억원/200톤</td>
<td>18</td>
<td>40</td>
<td>105</td>
<td>18</td>
<td>19</td>
<td>200</td>
</tr>
<tr>
<td>억원/톤</td>
<td>0.09</td>
<td>0.20</td>
<td>0.525</td>
<td>0.09</td>
<td>0.10</td>
<td>1</td>
</tr>
</tbody>
</table>
본 진공유중건조기술과 다양한 하수슬러지 처리기술의 초기투자비를 비교하기 위하여 표 4-16의 본 연구에서 산정한 진공유중건조시설 설치비와 문헌에 보고된 타 기술의 시설설치비 자료를 비교하여 표 4-17에 나타내었다 (9).

하수슬러지 처리기술 중 건조기술의 경우에는 진공유중건조와 비슷한 설치비를 나타냈으며 건조방식에 의한 하수슬러지 처리 설비가 소각, 탄화, 고화 방식에 의한 설비보다 33%이상 저렴한 것으로 나타났다.

<table>
<thead>
<tr>
<th>설치지역</th>
<th>본 연구*</th>
<th>수원**</th>
<th>부천**</th>
<th>김해**</th>
<th>수도권(단계)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>처리방법</td>
<td>진공유중건조</td>
<td>직접열풍건조</td>
<td>소각</td>
<td>탄화</td>
<td>고화</td>
</tr>
<tr>
<td>처리량(톤/일)</td>
<td>200</td>
<td>295</td>
<td>252</td>
<td>77</td>
<td>234</td>
</tr>
<tr>
<td>설치비(억원/톤)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.33</td>
<td>1.76</td>
<td>1.83</td>
</tr>
</tbody>
</table>

* 예상 금액임
** 출처: 하수슬러지 처리기술 평가연구 결과보고, 한국환경공단, 2010년 7월

4.6.2 시설 운영비

시설 운영비는 고정비와 변동비를 합한 금액을 산출할 수 있으며, 이 중 고정비에는 인건비, 감가상각비, 유지보수비가 포함되고, 변동비에는 전력비, 연료비, 용수비, 매체유비 등이 포함된다. 본 연구에서는 진공유중건조 설중연구시설의 시설 운영비 산정을 위해, 고정비와 변동비를 산정하였다.

고정비의 경우, 기존의 하수슬러지 처리를 위한 상용화 시설 규모를 감안하여 시설용량 30톤/일을 기준으로 하여 인건비, 감가상각비, 유지보수비를 산정하였으며, 그 결과를 표 4-18에 나타내었다.

변동비의 경우, 실증연구시설에 생산 건조슬러지를 활용한 연료탄생산비용을 포함하는 것으로 실증연구시설 스팀 생산을 위한 열원 공급 방법(보일러 연료 종류)에 따라 두 가지 방법으로 산정하였다. 즉, 건조에 투입되는 열원을 (1) GR 하수슬러지 연료탄을 연료로 사용하여 얻는 경우와 (2) LNG를 연료로 사용하여 얻는 경우의 두 가지로 산정하였으며 그 결과를 표 4-19에 나타내었다.

이때 매체유화수기 연료비는 LNG를 연료로 사용했을 때 비용이다. 건조 물을 연료로 사용할 때는 보일러 연료비가 없는 대신 건조물을 소각한 후
발생하는 재처리비와 보일러 운전을 위한 약품비가 필요하다. 또한 양여건조 물로 GR 하수슬러지 연료탄 생산할 경우 추가비용이 발생한다. GR 하수슬러지 연료탄을 연료로 사용시 투입슬러지 톤당 변동비는 14,830원 (연료탄 생산시: 26,478원)이 필요하고 LNG를 연료로 사용할 때는 투입슬러지 톤당 47,524원 (연료탄생산시: 59,172원)이 필요하다.

<표 4-18> 진공유중건조기술의 시설 운영비 (고정비) (30톤/일)

(단위: 원/톤)

<table>
<thead>
<tr>
<th>구분</th>
<th>금액(원/톤)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전기, 수도비</td>
</tr>
<tr>
<td></td>
<td>연료탄</td>
</tr>
<tr>
<td></td>
<td>LNG</td>
</tr>
</tbody>
</table>

* 전기요금: 63kwh/톤 투입슬러지
 - 기본요금: 120kwh x 12 x 4,350원/kwh
 - 사용요금: 63kwh x 30톤 = 1,890kwh → 1,890kwh x 330일/년 x 55.3원/kwh
* 수도비: 18톤/일 (1,000원/톤)
* 매체유비: 이온정제유 320kg/일 (건조슬러지 함유율 5% 기준, 단가 500원/kg)
* 기타비용: 약품비 2,040원/일 (2010년 11월 물가정보자), 재처리비: 1.2톤/일 (처리 45,000원/톤)
* 매체유화수기 연료비: LNG 5.9N㎥/hr (702원/㎥, 9,500kcal/㎥ 기준)
 (총 소모량: 44,650kcal/톤 투입슬러지)
* 보일러 연료비: LNG 61N㎥/hr (702원/㎥, 9,500kcal/㎥ 기준)
 (총 소모량: 461,202kcal/톤 투입슬러지)
* 연료탄 생산비
 - 30톤/일 하수슬러지 건조시 발생 건조슬러지: 6.4톤
 - 첨가제 비용: 건조슬러지의 10%의 무연탄 (0.64톤/일) 첨가, 8,960원/톤 투입슬러지
 (무연괴탄 6,800~7,500kcal/톤 기준 420,000원/톤, 2010년 11월 물가정보자)
 - 연료탄 제조비용 (첨가제 비용외의 비용): 첨가제 비용 x 0.3
본 진공유중건조기술과 문헌에 보고된 다양한 하수슬러지 처리기술의 시설 운영비를 비교하여 표 4-20에 나타내었다(9). 고정비는 시설 규모나 운영방식에 따라 비용 산정시 유동성이 크므로, 본 연구에서는 시설 운영비 중 변동비(전력비, 연료비, 용수비, 매체유비 등)만을 비교 하였으며 표 4-20의 변동비 중 연료탄 생산비를 제외하고 비교 평가하였다.

표 4-20에 나타낸 타기술의 소요연료비는 LNG 연료 사용 기준이다. LNG를 연료로 사용할 때 진공유중건조의 변동비와 타기술의 변동비를 비교하면 소각을 제외한 타기술에 비해 낮은 변동비가 소요됨을 나타내었다. 이는 진공유중건조기술의 에너지 효율이 높아 적은 연료로 하수슬러지의 건조가 가능하기 때문이다. 또한 GR 하수슬러지 연료탄을 연료로 사용할 경우 연료비를 줄일 수 있어 14,830원의 변동비만으로도 투입슬러지 1톤을 건조시킬 수 있다.

<table>
<thead>
<tr>
<th>설치지역</th>
<th>본 연구*</th>
<th>수원**</th>
<th>부천**</th>
<th>김해**</th>
<th>수도권(단계)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>처리방법</td>
<td>진공유중건조</td>
<td>직접열풍 건조</td>
<td>소각</td>
<td>탄화</td>
<td>고화</td>
</tr>
<tr>
<td>처리량 (톤/일)</td>
<td>30</td>
<td>295</td>
<td>252</td>
<td>77</td>
<td>234</td>
</tr>
<tr>
<td>금액 (원/톤)</td>
<td>14,830 (연료 : 하수슬러지 연료탄)</td>
<td>54,423</td>
<td>17,942</td>
<td>61,169</td>
<td>53,756</td>
</tr>
<tr>
<td></td>
<td>47,524 (연료 : LNG)</td>
<td>54,423</td>
<td>17,942</td>
<td>61,169</td>
<td>53,756</td>
</tr>
</tbody>
</table>

* 예상 금액임
** 출처: 하수슬러지 처리기술 평가연구 결과보고, 한국환경공단, 2010년 7월

4.6.3 경제성분석

본 설비, 하루 30톤 하수슬러지 처리설비의 총 투자비용은 33.5억원으로 세부내역은 표 4-17과 같다. 운영비 중 고정비와 변동비는 각각 표 4-20, 4-21에 나타내었다.

본 설비를 운영하면서 발생하는 수익은 2가지가 있다.
첫 번째 하수슬러지를 건조처리시 발생하는 하수슬러지 처리비용이다. 둘 째로는 GR 하수슬러지연료탄을 건조공정에 연료로 사용하고 남는 양은 연료
탄 판매수익이다. 먼저 하수슬러지 처리비의 경우, 수도권매립지에서는 현재 슬러지 톤당 23,328원에 슬러지를 반입하여 고화처리하고 있다. 그러나 톤 당 23,328원의 처리비는 현재 수도권매립지의 하수슬러지 처리비용이고 실 제 각 지방자치단체에서 부담하고 있는 비용은 운송비를 포함하여 이보다 높은 금액을 부담하고 있다. 실례로 2009년 과천시 환경사업소 하수슬러지 처리비용은 운송비 포함하여 61,160원이었다.

두 번째 수익인 GR 하수슬러지 연료탄 수익은 하수슬러지 건조물을 활용 하여 GR 하수슬러지 연료탄을 생산, 판매하여 발생한다. 본설비로 생산되는 건조슬러지는 저위발열량이 높아 GR 하수슬러지 연료탄 제조시 발열량이 5,000kcal/kg이상을 나타낸다. GR 하수슬러지 연료탄 제조에 사용할 수 있는 무연탄의 가격에 비교하여 연료탄 가격을 산정하였다. 2010년 11월 기준 물가경보지에 나타난 톤당 420,000원의 7,000kcal/kg 무연탄 가격대비 발 열량 5,000kcal/kg의 GR 하수슬러지연료탄 가격을 300,000원/톤으로 가정 하고 이에 30%의 할인율을 적용하여 최종 GR 하수슬러지 연료탄의 초기시 장전출가격을 210,000원/톤(210원/kg)으로 적용하였다.

본 기술의 경제성을 분석하기 위해 하수슬러지 30톤/일 처리기준 비용편익을 건조열원으로 GR 하수슬러지연료탄을 사용하는 경우와 LNG를 사용하 는 두 가지 경우로 비교해 보았다(표 4-21).

<표 4-21> 하수슬러지 처리 비용편익분석(30톤/일)
(단위 : 백만원/년)

<table>
<thead>
<tr>
<th>구분</th>
<th>간접가열(슬러지 건조)을 위한 스팀 생산용 보일러 연료</th>
<th>LNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>고정비</td>
<td>240.5 (24,292원/톤x30톤x330일/년)</td>
<td>240.5 (24,292원/톤x30톤x330일/년)</td>
</tr>
<tr>
<td>변동비</td>
<td>253.8 (25,636원/톤x30톤x330일/년)</td>
<td>577.5 (58,330원/톤x30톤x330일/년)</td>
</tr>
<tr>
<td>비용 합계(a)</td>
<td>494.3</td>
<td>818.0</td>
</tr>
<tr>
<td>슬러지 반입수수료</td>
<td>230.9 (23,328원/톤x30톤x330일/년)</td>
<td>230.9 (23,328원/톤x30톤x330일/년)</td>
</tr>
<tr>
<td>연료탄 판매비용</td>
<td>256.4 (3.7톤/일x210,000원/톤x330일/년)</td>
<td>485.1 (7.0톤/일x210,000원/톤x330일/년)</td>
</tr>
<tr>
<td>수익 합계(b)</td>
<td>487.3</td>
<td>716.0</td>
</tr>
<tr>
<td>이익(b-a)</td>
<td>-7</td>
<td>-102</td>
</tr>
</tbody>
</table>
하수슬러지를 건조하여 생산된 GR 하수슬러지 연료탄의 발열량을 5,000 kcal/kg으로 가정하면 건조공정에 46.7%의 하수슬러지 연료탄이 소모되고 53.3%의 연료탄 판매가 가능하다. 또한 하수슬러지 처리비용을 수도권매립지 처리기준인 23,328원을 기준으로 비용편익을 분석해 본 결과 GR 하수슬러지연료탄을 연료로 사용할 경우, LNG를 연료로 사용할 경우에 비해 더 높은 경제성을 보였으나 사업성을 확보하기 위해서는 더욱 높은 하수슬러지 처리비용이 필요하다.

본 설비의 경제성 분석을 위해 하루 200톤의 하수슬러지 처리설비의 내부 수익률(IRR, Internal Return Rate)을 분석하였다. 시설 투자비용은 표 4-16, 운영비는 표 4-22와 4-23에 나타난 값을 사용하였으며 이는 4-18과 4-19의 산출방식에 의해 계산되었다. 운영비용 중 고정비는 건조공정의 연료에 관계없이 투입슬러지 톤당 17,968원이었고 변동비의 경우에는 연료탄 생산비를 제외한 하수슬러지 건조비용이 GR 하수슬러지 연료탄을 연료로 사용한 경우 15,090원/톤 투입슬러지이고 LNG를 사용할 경우는 40,920원/톤 투입슬러지이다.

<표 4-22> 진공유증건조기술의 시설 운영비(고정비)(200톤/일)
(단위 : 원/톤)

<table>
<thead>
<tr>
<th>구분</th>
<th>인건비</th>
<th>감가상각비</th>
<th>유지보수비</th>
<th>경상비</th>
<th>보험료</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,697</td>
<td>11,240</td>
<td>1,258</td>
<td>470</td>
<td>303</td>
<td>17,968</td>
</tr>
</tbody>
</table>

<표 4-23> 진공유증건조기술의 시설 운영비(변동비)(200톤/일)
(단위 : 원/톤)

<table>
<thead>
<tr>
<th>구분</th>
<th>금액(원/톤)</th>
<th>전기, 수도비</th>
<th>매체유비</th>
<th>기타비용</th>
<th>매체유회수기 연료비</th>
<th>보일러 연료비</th>
<th>연료탄 생산비</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>스팀생산용</td>
<td>하수슬러지 연료탄</td>
<td>5,303</td>
<td>5,318</td>
<td>1,939</td>
<td>2,530</td>
<td>0</td>
<td>11,630</td>
<td>26,720</td>
</tr>
<tr>
<td>보일러연료</td>
<td>LNG</td>
<td>5,303</td>
<td>5,318</td>
<td>68</td>
<td>2,530</td>
<td>27,701</td>
<td>11,630</td>
<td>52,550</td>
</tr>
</tbody>
</table>
본 연구에서 200톤/일 규모의 진공유중건조시설에 대하여 IRR 분석을 실시한 결과를 표 4-24에 나타내었다. IRR 분석에 의하면 적정투자수익률 6.48% 이상을 만족하는 하수슬러지 처리비(반입수수료)는 두 Case 모두 58,000원 이상인 것으로 나타났다.

<표 4-24> 하수슬러지 진공유중건조시설(200톤/일, 3단건조) IRR분석 결과

<table>
<thead>
<tr>
<th>연료종류</th>
<th>하수슬러지 처리비(원)</th>
<th>IRR (%)</th>
<th>연료종류</th>
<th>하수슬러지 처리비(원)</th>
<th>IRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR 하수슬러지 연료탄</td>
<td>25,000</td>
<td>-</td>
<td>LNG</td>
<td>25,000</td>
<td>-</td>
</tr>
<tr>
<td>40,000</td>
<td>-4.17</td>
<td></td>
<td>40,000</td>
<td>-4.22</td>
<td></td>
</tr>
<tr>
<td>58,000</td>
<td>7.00</td>
<td></td>
<td>58,000</td>
<td>6.97</td>
<td></td>
</tr>
<tr>
<td>80,000</td>
<td>17.72</td>
<td></td>
<td>80,000</td>
<td>17.69</td>
<td></td>
</tr>
</tbody>
</table>

<IRR 분석조건>
1. 하수슬러지 처리용량: 200톤/일
2. 분석기간: 10년
3. 조달금리: 연7%
4. GR 하수슬러지 연료탄 판매가격: 210,000원/톤
5. 적정수익률: 2011년 1월 3일 기준 3년 만기 회사채 이자율 4.32%의 1.5배인 6.48%이상을 적정 수익률의 기준으로 분석
4. 건조슬러지를 연료로 사용할 경우와 LNG를 연료로 사용할 경우
5. 하수슬러지 톤당 처리비가 25,000원, 40,000원, 58,000원, 80,000원인 경우
6. GR 하수슬러지 연료탄을 연료로 사용하는 경우는 53.3%의 잉여 GR 하수슬러지 연료탄을 판매하며 LNG를 연료로 사용하는 경우는 생산한 GR 하수슬러지 연료탄 전량을 연료탄으로 생산 판매

표 4-24의 IRR 분석에서는 본 연구의 30톤/일(24시간 가동기준) 규모의 실증연구시설에 적용하였던 3단 건조시설을 기초로 산정한 수치이다. 그러나 200톤/일 규모의 상용화시설의 경우 증발기 4대를 직렬로 연결한 4단 건조시설이 적합하므로, 4단 건조시설을 적용한 경우의 IRR분석은 실시하였으며 그 결과를 표 4-25에 나타내었다. 이 경우 4개의 증발기 중 1단과 3단 증발기에서는 각각 2단과 4단 증발기의 폐열을 회수할 수 있어 3단 건조시설에 비해 많은 양의 폐열을 회수할 수 있다. 이에 따라 연료투입량이 적어져 3단 건조설비의 경우 투입슬러지 톤당 보일러 연료비가 27,701원에서 4단 건조시설 적용시 25,811원으로 낮아지며 잉여 연료탄 판매량이 증가되어 더
욱 많은 수익을 창출할 수 있어 GR 하수슬러지 연료탄과 LNG를 건조공정의 연료로 사용하는 두 Case 모두 49,000원의 하수슬러지 처리비로 적정투자수익률 6.48% 이상을 만족시킬 수 있다. 또한 투자회수기간은 하수슬러지 처리비가 49,000원 경우 8년, 60,000원일 경우 7년, 80,000원일 경우에는 5년이 소요되는 것으로 산정되었다.

또한 본 설비의 경제성을 알아보기 위해 2008년 11월과 12월에 한국건설원가연구원에 의뢰하여 하수슬러지 처리설비사업 분석 단 건조설비 > 200 / IRR (4)를 분석을 실시하였다. LCC 분석은 일반 기류건조와 진공유중건조에서 발생한 건조물을 연료로 사용할 경우와 LNG를 연료로 사용할 경우로 나누어 실시하였다.

시설용량 100톤/일 규모의 시설에 대하여 계획, 설계, 폐기처분비와 같은 공통되는 항목은 제외하고, 초기공사비(시공비 - 직접공사비/간접공사비/일반관리비 및 이윤), 유지관리비(일반관리비 - 인건비/일상점검비/기타, 유지보수비 - 보수보강비, 사용자비용 - 전력/연료/용수)의 비용항목을 중심으로 두 기술의 LCC를 비교분석하였다. 초기 공사는 설무자와 원가분석사의 의견을 반영하였으며, 유지관리비용 기준은 관련 원가산정기준을 최대한 반영하여 비용을 산출하였다.

LCC 분석결과, 두 기술간 비용 차이는 연료비에서 비롯되며, 하수슬러지 건조공정에 진공유중건조를 적용하였을 때 기류건조에 비해 15년간의 생애주기비용(LCC)은 연료의 종류에 상관없이 20% 이상 낮은 것으로 분석되었다(부록 7 p 95-98 참조). 즉, 생산된 하수슬러지 건조물을 연료로 사용할 경우, 일반 기류건조는 52.0mLNG/hr의 추가연료비가 소요되는 반면, 진공유중건조는 추가연료비가 소요되지 않는 것으로 산정되었다. 또한 LNG를 연료로 사용할 경우에도 일반기류건조는 365.1mLNG/hr, 진공유중건조는

<table>
<thead>
<tr>
<th>연료종류</th>
<th>하수슬러지 처리비(원)</th>
<th>IRR (%)</th>
<th>연료종류</th>
<th>하수슬러지 처리비(원)</th>
<th>IRR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GR</td>
<td>25,000</td>
<td>-</td>
<td>LNG</td>
<td>25,000</td>
<td>-</td>
</tr>
<tr>
<td>하수슬러지 연료탄</td>
<td>40,000</td>
<td>1.83</td>
<td></td>
<td>40,000</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>49,000</td>
<td>6.99</td>
<td></td>
<td>49,000</td>
<td>6.51</td>
</tr>
<tr>
<td></td>
<td>60,000</td>
<td>12.60</td>
<td></td>
<td>60,000</td>
<td>12.17</td>
</tr>
<tr>
<td></td>
<td>80,000</td>
<td>21.63</td>
<td></td>
<td>80,000</td>
<td>21.25</td>
</tr>
</tbody>
</table>

또한 본 설비의 경제성을 알아보기 위해 2008년 11월과 12월에 한국건설원가연구원에 의뢰하여 하수슬러지 처리설비사업 분석 단 건조설비 > 200 / IRR (4)를 분석을 실시하였다. LCC 분석은 일반 기류건조와 진공유중건조에서 발생한 건조물을 연료로 사용할 경우와 LNG를 연료로 사용할 경우로 나누어 실시하였다.

시설용량 100톤/일 규모의 시설에 대하여 계획, 설계, 폐기처분비와 같은 공통되는 항목은 제외하고, 초기공사비(시공비 - 직접공사비/간접공사비/일반관리비 및 이윤), 유지관리비(일반관리비 - 인건비/일상점검비/기타, 유지보수비 - 보수보강비, 사용자비용 - 전력/연료/용수)의 비용항목을 중심으로 두 기술의 LCC를 비교분석하였다. 초기 공사는 설무자와 원가분석사의 의견을 반영하였으며, 유지관리비용 기준은 관련 원가산정기준을 최대한 반영하여 비용을 산출하였다.

LCC 분석결과, 두 기술간 비용 차이는 연료비에서 비롯되며, 하수сл러지 건조공정에 진공유중건조를 적용하였을 때 기류건조에 비해 15년간의 생애주기비용(LCC)은 연료의 종류에 상관없이 20% 이상 낮은 것으로 분석되었다(부록 7 p 95-98 참조). 즉, 생산된 하수슬러지 건조물을 연료로 사용할 경우, 일반 기류건조는 52.0mLNG/hr의 추가연료비가 소요되는 반면, 진공유중건조는 추가연료비가 소요되지 않는 것으로 산정되었다. 또한 LNG를 연료로 사용할 경우에도 일반기류건조는 365.1mLNG/hr, 진공유중건조는
257.9㎥ LNG/hr의 연료비가 소요되는 것으로 분석되었다.

4.7 환경성 평가

4.7.1 대기배출물질

진공유중건조기술은 진공밀폐상태에서 하수슬러지를 건조하여 악취의 외부확산이 없고 악취결집은 양이 적고 포집이 용이하여 보일러 연소공기로 산화처리가 용이하다.

진공유중건조설비를 통해 발생하는 대기배출물질의 성상을 파악하기 위하여 연소표 전 후 포집가스를 분석하였다. 대기측정시험은 2010년 9월 15일부터 9월 17일까지 3일간 수행하였고, 연소처리 전 포집가스는 연소로 전단부에서, 연소처리 후 포집가스는 연소로 후단부에서 시료를 취하였으며, 분석결과는 표 4-26에 나타내었다.

연소처리시 NH₃와 HCl 농도가 감소하였으며, 연소산화처리 전후 본석항목 모두 배출허용기준을 만족하는 것으로 나타났다. 이로부터 진공유중건조기술을 이용하여 하수슬러지를 건조시 발생하는 포집가스는 연소산화처리 후 대기 배출이 가능한 것으로 나타났다.

표 4-26 포집가스 중 대기오염물질 분석 결과

<table>
<thead>
<tr>
<th>항목</th>
<th>부하율</th>
<th>배출허용기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>먼지(mg/m³)</td>
<td>70%</td>
<td>14.1</td>
</tr>
<tr>
<td>H₂S (ppm)</td>
<td>연소처리 전</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>연소처리 후</td>
<td>N/D</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>연소처리 전</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>연소처리 후</td>
<td>0.97</td>
</tr>
<tr>
<td>HCl (ppm)</td>
<td>연소처리 전</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>연소처리 후</td>
<td>N/D</td>
</tr>
<tr>
<td>SOx (ppm)</td>
<td>13</td>
<td>41</td>
</tr>
<tr>
<td>NOx (ppm)</td>
<td>62</td>
<td>69</td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>N/D</td>
<td>6.0</td>
</tr>
</tbody>
</table>
| O₂ (ppm) | 13.3 | 13.4 | 13.4 | 16,780 | 16,628 | 16,720 | (분석기관: (주)세진환경 보건연구소)
(부록 3.1 p59-64 참조) |
또한 연소산화처리 전, 후 악취성분의 변화를 알아보기 위해, 2010년 9월 15일부터 17일 3일간 연소로 입구와 연돌의 배기가스 시료를 취하여 공기 희석관능법에 의한 복합악취를 측정하였다. 복합악취는 연소산화처리 후 연소산화처리 전의 3% 수준으로 낮아지면서 배출허용기준을 만족하는 것으로 나타났다(표 4-27).

<table>
<thead>
<tr>
<th>복합악취 (희석배수)</th>
<th>부하량 70%</th>
<th>100%</th>
<th>110%</th>
<th>배출허용기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>연소산화처리 전</td>
<td>10,000</td>
<td>6,694</td>
<td>6,694</td>
<td></td>
</tr>
<tr>
<td>연소산화처리 후</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>500이하</td>
</tr>
</tbody>
</table>

(분석기관: (주)세진환경 보건연구소)
(부록 3.2 65-72 참조)

4.7.2 응축수
본 설비에서 하수슬러지를 건조할 때 발생하는 증발증기는 모두 응축기에 서 응축되어 응축수의 형태로 배출된다. 진공유중건조에 의한 하수슬러지를 건조시 하수슬러지를 매체유와 혼합한 후 수분을 증발시킴으로 응축수에 미량의 매체유(병커C유)가 에밀전의 형태로 존재할 수 있다. 따라서 응축수를 하수처리장으로 연계처리하기 전에 유분을 포함한 응축수 중 오염물질을 전처리한 필요가 있다.

진공유중건조기술에서 발생하는 응축수의 전처리 기술로서 2003년 1월 응집부상법을 최적화하기 위해 서울산업대학교(現 서울과학기술대학교)와 공동으로 다음과 같이 연구를 진행하였다.

- 중발 응축수 처리 실험
 (가) 실험개요
 응축수 성상은 슬러지 건조시 증발된 수분에 매체유(병커C유)가 에밀전 형태로 섞인 상태로, 기름성분인 N-Hexane 추출물질과 COD, pH 등이 배
출기준치를 초과하고 있어 응축수의 처리를 위한 응집부상법의 최적 처리조건을 조사하여 응축수의 성상과 처리방안에 대한 연구를 진행하였다.

(나) 실험방법
증발응축수 전처리 실험은 서울산업대학교(現 서울과학기술대학교) 환경공학과 폐수처리연구실에서 수행하였다. 증발응축수의 전처리 방법으로서 응집부상법의 반응조건을 최적화하기 위해 1L의 증발응축수에 무기응집제 황산알루미늄 20mL와 고분자응집제 폴리머를 20mL 주입하여 floc을 형성시킨 후 미세기포로 부상시켜 제거하였다(무기응집제와 고분자 응집제의 투입량은 실험을 통하여 결정한 최적주입량임).

(다) 결과
응축수의 전처리 결과는 표 4-28와 그림 4-20과 같다. 전처리 전, 후 응축수에 존재하는 유분의 양 (N-hexane 추출물질로 표시)을 광유와 동식물유로 구분하여 측정해 본 결과 광유는 90.48%, 동식물유는 82.09%의 제거효율을 보였다.

<table>
<thead>
<tr>
<th>항 목</th>
<th>응축수 처리 전</th>
<th>응축수 처리 후</th>
<th>제거효율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>10.77</td>
<td>8.06</td>
<td>-</td>
</tr>
<tr>
<td>N-hexane 추출물질 (광유, mg/L)</td>
<td>25.2</td>
<td>2.4</td>
<td>90.48</td>
</tr>
<tr>
<td>N-hexane 추출물질 (동식물유, mg/L)</td>
<td>26.8</td>
<td>4.8</td>
<td>82.09</td>
</tr>
</tbody>
</table>

(분석기관: 서울산업대학교(現 서울과학기술대학교))
결론

1) 진공유 중건조 건조 후 생성되는 응축수에 에멀젼 형태로 섞여있는 매체유(병커C유)를 위의 방법과 조건으로 제거한 결과 응집이 잘 일어나고 응집된 floc은 미세기포를 이용하여 부식시킨 후 제거가 용이하며 이때 응축수에 함유된 매체유의 80~90%가 제거되 어 매우 효과적이다.

2) 진공유 중건조 건조기술은 응집제와 미세기포만이 필요하여 매우 간단하고비용이 적게 드는 장점이 있고 또한 제거 효과도 뛰어나 매체유 제 거에 효과적이다.

3) 또한 위의 분리기술은 매체유 이외에도 응축수내의 미량의 고형분 (SS)을 효과적으로 제거하는 것으로 나타났다. 응축수는 응집 부상 범을 통해 전처리 후 하수 처리장으로 보내 처리한다.

본 연구의 진공유중건조 실증연구시설에서 2010년 9월 15일부터 17일까 지 하수슬러지 건조시 발생하는 응축수를 채취하여 성분을 분석하였다. 그 결과는 표 4-29와 같으며 본 연구의 진공유중건조 실증연구시설에서 발생하는 응축수내에 에멀젼 형태로 존재하는 매체유를 분리하기 위해 유수분리설
비를 설치하였으며 발생 응축수에 황산알루미늄을 125ppm 농도로 투여하여 침전물을 형성시키고 가압부상법으로 침전물을 제거하는 방법으로 매체유 성분을 제거하였다. 표 4-29에서 응축수 처리 후 응축수내의 기름성분을 나타내는 N-hexane 추출물질은 8.9ppm으로 서울과학기술대학교와 공동연구를 진행하였을 때와 비교하여 조금 높은 수치이나 하수처리장에서 연계처리 가능하며 침전물 제거시 SS성분도 제거되어 SS의 농도가 9.1ppm으로 매우 낮은 것을 알 수 있다.

표 4-29 응축수 성분 분석

<table>
<thead>
<tr>
<th>분석항목</th>
<th>분석결과</th>
<th>평균값</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1회</td>
<td>2회</td>
</tr>
<tr>
<td>pH</td>
<td>9.2</td>
<td>9.3</td>
</tr>
<tr>
<td>CODcr(mg/l)</td>
<td>839</td>
<td>909</td>
</tr>
<tr>
<td>BOD(mg/l)</td>
<td>6,490</td>
<td>6,930</td>
</tr>
<tr>
<td>SS(mg/l)</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>T-N(mg/l)</td>
<td>1,200</td>
<td>1,280</td>
</tr>
<tr>
<td>NH₃-N(mg/l)</td>
<td>1,100</td>
<td>1,140</td>
</tr>
<tr>
<td>NO₂-N(mg/l)</td>
<td>0.89</td>
<td>0.94</td>
</tr>
<tr>
<td>NO₃-N(mg/l)</td>
<td>0.67</td>
<td>0.64</td>
</tr>
<tr>
<td>T-P(mg/l)</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>색도(도)</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>N-hexane 추출물질(mg/l)</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Cl (mg/l)</td>
<td>58.9</td>
<td>61.8</td>
</tr>
<tr>
<td>F (mg/l)</td>
<td>84.3</td>
<td>85.9</td>
</tr>
<tr>
<td>SO₄²⁻(mg/l)</td>
<td>70.5</td>
<td>76.2</td>
</tr>
<tr>
<td>As(mg/l)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cr⁶⁺(mg/l)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cu(mg/l)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pb(mg/l)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Hg(mg/l)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Zn(mg/l)</td>
<td>10.5</td>
<td>13.0</td>
</tr>
<tr>
<td>Mn(mg/l)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ca(mg/l)</td>
<td>5.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Mg(mg/l)</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>K(mg/l)</td>
<td>2.4</td>
<td>12.4</td>
</tr>
</tbody>
</table>

(분석기관 : 한국화학융합시험연구원)
(부록 3.4 76-81 참조)
4.7.3 주변환경오염도

본 시설 가동시 발생하는 악취와 먼지 발생소음의 측정 결과는 표 4-30에 나타내었다. 진공유중건조기술을 적용한 건조설비 가동시 악취, 먼지, 소음 등 주변환경오염도를 측정해 본 결과 모두 배출기준 이하의 값이 나와 진공유중건조기술을 적용한 건조설비는 가동시 주변환경오염에는 영향을 미치지 않는 것으로 나타났다.

<표 4-30> 주변환경오염도 측정결과

<table>
<thead>
<tr>
<th>항 목</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>평균</th>
<th>비고(기준치)</th>
</tr>
</thead>
<tbody>
<tr>
<td>복합악취(희석배수)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6.69</td>
<td>10</td>
<td>6.69</td>
<td>10</td>
<td>15이하</td>
</tr>
<tr>
<td>비산먼지(mg/m³)</td>
<td>0.08</td>
<td>0.01</td>
<td>0.03</td>
<td>0.25</td>
<td>0.16</td>
<td>0.24</td>
<td>0.04</td>
<td>0.5이하</td>
</tr>
<tr>
<td>소음(db)</td>
<td>69.7</td>
<td>65.2</td>
<td>50.8</td>
<td>65.8</td>
<td>63.0</td>
<td>64.4</td>
<td>61.9</td>
<td></td>
</tr>
</tbody>
</table>

※ 측정위치 : 건조로 부지 경계선
※ 비산먼지 : High Volume Air Sampler 사용

(분석기관 : (주)세진환경 보건연구소)
(부록 3.3 76-81 참조)

또한 본 실증연구시설 가동 유무에 따른 주변악취 측정결과 (표 4-31), 본 연구설비 가동시 악취발생이 거의 없는 것으로 판단되었다.

<표 4-31> 주변악취측정 결과

(단위 : 희석배수)

<table>
<thead>
<tr>
<th>항 목</th>
<th>1차</th>
<th>2차</th>
<th>3차</th>
<th>평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>본 건조설비는 가동안함(2회 측정)</td>
<td>6.69</td>
<td>10</td>
<td>-</td>
<td>8.35±2.34</td>
</tr>
<tr>
<td>본 건조설비 가동(3회 측정)</td>
<td>6.69</td>
<td>10</td>
<td>6.69</td>
<td>7.79±1.91</td>
</tr>
</tbody>
</table>
또한 하수슬러지 건조과정에서의 분진발생 정도를 확인하기 위하여 본 연구실에 설치된 실질적인 실증연구시설에서 함수율 1%이하로 건조한 건조슬러지와 B시의 직접열풍건조설비로 함수율 8%까지 건조한 건조슬러지를 건양대학교 나노바이오학과에서 광학현미경으로 확대하여 촬영하였다. 그림 4-21은 각 건조슬러지의 모습을 같은 배율로 촬영한 결과이다.

진공유증건조설비로 건조한 건조슬러지의 경우 입자의 크기가 일정하고 분진 발생이 없는 것으로 판단되었다. 또한 하수슬러지 내의 수분을 완전히 제거하여 악취의 발생이 없었으며 수분이 1% 미만으로 낮고 미량의 유분이 존재하므로 장기 보관시에도 부패 염려가 적은 것으로 나타났다. 반면에 직접 열풍건조로 건조한 건조슬러지는 입자의 크기가 다양하고 분진이 발생하는 것으로 판단되었으며, 건조물에 8%정도의 수분이 남아있어 악취가 발생하고 장기 보관시 부패가능성이 있는 것으로 나타났다.

![그림 4-21] 건조기술별 건조슬러지의 확대사진(동일 비율)
4.8 CDM 사업분석

진공유중건조설비를 통해 하수슬러지를 건조하여 생산되는 건조물은 황함량이 적으며 저위발열량이 높은 고품질의 연료를 생산할 수 있으며 생산된 건조물은 화석연료의 대체가 가능하므로 향후 CDM 사업으로 연계가 가능하다.

진공유중건조를 통해 하수슬러지를 건조시 탄소배출권 가능 획득량을 산정한 결과는 표 4-32와 같다.

<table>
<thead>
<tr>
<th>건조슬러지생산량</th>
<th>21.3톤/일</th>
</tr>
</thead>
<tbody>
<tr>
<td>건조슬러지에너지량</td>
<td>21.3톤/일 x 330일/년 x 4,151kcal/kg x 1000kg/톤 = 2.9x10^{10}kcal/년</td>
</tr>
<tr>
<td>잉여에너지량</td>
<td>2.9x10^{10}kcal/년 x 0.35 = 1.0x10^{10}kcal/년</td>
</tr>
<tr>
<td>원유대체효과</td>
<td>1.0x10^{10}kcal/년 ÷ 9,267kcal/L ÷ 158.9L/배럴 = 6,791배럴/년</td>
</tr>
<tr>
<td>석유환산 (ton)</td>
<td>1.0x10^{10}kcal/년 ÷ 10ktcal/TOE = 1,000 TOE/년</td>
</tr>
<tr>
<td>탄소배출권</td>
<td>1,000 TOE/년 x 3.883톤CO_{2}/TOE = 3,883톤 CO_{2}/년</td>
</tr>
<tr>
<td></td>
<td>3,383톤 CO_{2}/년 x 14.34 EUR/톤CO_{2} = 48,512 EUR/년 = 73,118,742원/년</td>
</tr>
</tbody>
</table>

- 석탄의 이산화탄소 배출계수: 3.883톤CO_{2}/TOE
 (출처: 환경부, 2008.5. 경제살리기와 기후변화대응을 위한 폐기물에너지화 종합대책 p14)
- 탄소배출권 거래가격: 14.34 EUR/톤CO_{2}
 (출처: www.pointcarbon.com), (1EUR=1,507.23원)

탄소배출권 획득량을 계산하기 위해 본 연구 실증연구시설 운전결과를 통한 에너지사용량을 기준으로 계산하였다. 계산을 위한 가정은 다음과 같다.

1. 처리용량: 하수슬러지 100톤/일
2. 투입슬러지의 함수율: 80%
3. 건조물의 함수율: 1%
4. 건조물의 매체유 함유율: 5%
5. 건조물의 발열량: 4,151kcal/kg

건조에 소요되는 에너지는 보일러의 효율을 감안한 실제 연료사용량을 기준으로 계산하였다. 또한 매체유회수기를 설치하여 매체유를 분리하였다. 탄소배출권 획득가능 에너지량은 건조물의 총에너지에서 건조공정에 사용되는 투입에너지량을 제외한 잉여에너지만으로 계산하였다. 잉여에너지량은 에너지 수지에서 계산된 건조물의 35%로 계산하였다. 하수슬러지 100톤을 건조시 생산되는 건조슬러지의 양은 21.3ton/일이다.

표 4-32의 계산에 의하면 하루 100톤의 하수슬러지를 건조하여 건조물 이용하여 건조공정의 열원으로 사용하고 남은 건조물로 화석연료로 대체할 때 연간 6,791배럴의 원유를 대체할 수 있으며 가능 탄소배출권 획득 금액은 연간 48,512EUR 즉, 73백만원 가량이다.

일반기류건조로 생산되는 건조물은 발열량이 낮고 공정에 소요되는 에너지가 많아 생산되는 건조물 이외에 추가연료가 필요하며 이러한 경우 탄소배출권사업으로의 연계가 불가능하다. 그러나 진공유중건조의 경우 생선되는 건조물의 발열량이 높고 건조공정에 소모되는 투입에너지가 적어 생산되는 건조물의 총열량이 투입되는 총열량보다 많으므로 탄소배출권 사업으로의 연계가 가능한 것으로 판단되었다.
제5장 결론

하수슬러지의 해양투기와 2012년부터 전면금지됨에 따라 하수슬러지의 육상처리를 위해 소각, 고화, 탄화, 건조 등의 다양한 방법이 제안되고 있다. 이중 하수슬러지를 건조하여 연료로 활용하려는 슬러지 건조기술의 개발은 유가상승 및 지구온난화 가속화 등으로 인해 활발히 진행되고 있다. 하수슬러지 건조기술은 적·간접 기류건조, 전자기파 건조, 급속 유통층발 건조, 진공유증건조 등의 다양한 기술들이 제안, 개발되고 있다.

진공유증건조기술은 슬러지와 기름을 혼합한 후 진공저온상태에서 물과 기름의 비점차를 이용하여 슬러지를 건조하는 기술이다. 본 연구에서는 하수슬러지를 건조하여 연료로 활용하는 상용화기술로서 진공유증건조기술에 대한 실험을 통해 기술을 검토하였으며 그 결과는 다음과 같다.

□ 최적매체유 선정

폐식용유, 병커C유, 이온정제유를 매체유로 적용한 결과, 건조슬러지 중합수율이 최대 1.9%로 매체유별 건조능력에는 큰 차이가 나타나지 않았으나, 폐식용유는 구입가가 높고, 병커C유는 상온에서 고체로 존재하여 예열 장치를 필요로 하므로, 수급에 문제가 없으며 가격도 비교적 저렴한 이온정제유를 최적매체유로 선정하였다.

□ 진공유증건조 공정 최적화

매체유의 종류에 상관없이 함수율 2% 이하까지 슬러지 건조가 가능하였으며, 매체유화수기를 적용하면 함수율이 더 낮아져 0.2% 이하로 건조되며, 이때 함수율은 3% 이내로 확인되었다.

유도관식 교반기 설치하여 슬러지와 매체유 혼합비율을 1:1.3 → 1:1.0로 낮춤으로써 매체유 투입량이 23% 감소되고 건조용량이 15% 향상하였다. 또한 열회수기를 설치하여 슬러지 1톤 건조시 스팀사용량을 1.05톤 → 0.8톤으로 낮춤으로써 에너지 사용량을 24% 절감하였다.
□ 진공유증건조기술 종합평가

○ 물질수지

투입슬러지 함수율 80%, 건조슬러지 함수율 1%, 함유율 5%로 가정하여 30톤/일(24시간 가동기준) 실증시설에 대한 물질수지를 수립한 결과, 시간당 1,250kg의 하수슬러지 건조시 266kg의 건조슬러지가 생산되었고 이때 응축 수 발생량은 997kg이며, 배체유는 13kg 보충해야 하는 것으로 나타났다.

○ 에너지수지

함수율 80%의 하수슬러지 29.27톤을 투입하여 함수율 1%, 발열량 4,151 kcal/kg의 건조슬러지 6.39톤을 생산하는데 소요에너지량 17,377,248 kcal(593,688kcal/톤), 생산에너지량 26,524,890 kcal(906,214kcal/톤)으로 총 9,147,642kcal(312,526kcal/톤)의 잉여에너지 생산 가능한 것으로 산정 되었다.

○ 경제성

본 연구의 진공유증건조 실증연구시설(30톤/일)을 대상으로 경제성 분석을 한 결과, 토목, 건축 공사비를 포함한 시설설치비는 시설용량 1톤당 약 1억 원으로 산정되었다. 운영비 대비 편익분석을 한 결과, 건조슬러지(연료탄)을 연료로 사용하는 경우 운영비는 50,770원/톤, 편익은 49,228원/톤으로 산정되었고, LNG를 연료로 사용하는 경우 운영비는 83,464원/톤, 편익은 72,328원/톤으로 산정되었다. 따라서 현재 매립지 반입수수료(23,328원/톤) 을 기준으로 할 경우, 편익보다 운영비가 높아 경제성이 확보되지 않는 것으로 나타났다.

따라서 상용화시설 규모로 하였을 때 시설투자비 회수가 가능하고 경제성 이 확보되는 최소반입수수료를 산정하였다. 그 결과 시설용량 200톤/일 진 공유증건조시설의 시설설치비는 토목, 건축공사를 포함하여 1억원/톤, 운영 비는 GR 하수슬러지 연료탄을 연료로 사용할 경우 44,688원/톤, LNG를 연 료로 사용할 경우는 70,518원/톤으로 산정되었다. IRR을 산정하여 본 결과, 하수슬러지 반입수수료가 58,000원/톤 이상일 때 적정투자수익률을 만족시
키는 것으로 나타났다.

또한 200톤/일 규모의 설비에서 기존의 3단 건조공정을 4단 건조공정으로 하여 폐열회수설비를 추가할 경우 하수슬러지 반입수수료가 49,000원/톤 이 상일 경우 적정투자수익률을 만족시키며 80,000원/톤일 경우 시설투자비 회수기간은 5년으로 분석되어 사업성이 확보될 것으로 기대되었다.

○ 환경성

진공유중건조기술은 밀폐된 상태로 운전되므로 악취의 외부확산이 적으며, 악취 포집량이 적어 소각처리가 용이한 것으로 판단되었다. 본 연구의 실증 연구시설에서 배출된 응축수는 유수분리설비 및 응집가압부상법으로 전처리 후 연계처리가 필요하였다.

본 실증연구를 통하여 30톤/일(24시간 가동기준) 규모의 진공유중건조기술을 이용한 하수슬러지 건조연료화 가능성을 확인할 수 있었다.

향후 상용화시설에 적용하기 위해서는 규모확대를 위한 scale-up 인자를 면밀히 검토할 필요가 있으며, 건조과정에서 발생하는 응축수의 연계처리가 어려운 경우 배출허용기준 이내로 처리할 수 있는 수처리공정을 갖추어야 할 것으로 사료된다.
참고문헌

1) 배재근, 2009, “유기성 오니의 처리 및 자원화 동향”, 첨단환경기술, 17(5), pp. 2~16

2) 환경부, 2008.6, “하수슬러지 종합 대책”

5) 환경관리공단, 2008.10, 유기성폐기물을 이용한 에너지 제품의 품질기준 설정방안 연구 최종보고서

6) 환경부 자원순환국 폐자원에너지 팀, 2009.4, “하수슬러지 에너지화 추진 계획”

10) 김동욱, 공주대학교, 2010, “2010년 하수슬러지 처리시설 실태조사 결
과보고”, 하수슬러지 처리기술 대토론회 자료집(환경부 주최, 2010.7.23, 서울교육문화회관 거문고홀), pp. 7-20

11) 박성범, 한솔이엠이 주 하수슬러지 박막 건조기술”, 하수슬러지 처리기술 대토론회 자료집(환경부 주최, 2010.7.23, 서울교육문화회관 거문고홀), pp. 137-149

13) 환경부, 2008.5, “경제살리기와 기후변화대응을 위한 폐기물에너지화 종합대책”

14) www.pointcarbon.com