토양오염조사 표준품셈 및 토양정화업무 처리지침 마련 연구

최 종 보 고 서

2013. 3

연구 기 관
한국환경공단

환경부
제 출 문
환경부장관 귀하

이 보고서를 「토양오염조사 표준품셈 및 토양정화업무 처리 지침 마련 연구」 용역의 최종보고서로 제출합니다.

2013. 3

인천광역시 서구 경서동 종합환경연구단지
한국환경공단 이사장 박승환

■ 연구수행자

 연구 총괄 : 안종익
 책임연구원 : 김덕진
 연구원 : 박정억
 이창환
 이영빈
 박효선
 최다혜

(한국환경공단 토양지하수처)
목   차

제 1 장 서 론 ........................................................................................................... 1
  1.1 연구배경 및 목적 ...................................................................................... 1
  1.2 연구내용 및 방법 .................................................................................... 2

제 2 장 토양오염조사 비용 표준품셈 마련 ....................................................... 7
  2.1 토양오염조사 지침 관련 국내·외 사례조사 ............................................... 7
      2.1.1 해외 토양오염조사 사례조사 .......................................................... 7
      2.1.2 국내 토양오염조사지침 조사체계 분석 ........................................... 32
      2.1.3 국내·외 토양오염조사방법 비교 분석 및 문제점 도출 ....................... 45
  2.2 토양오염조사 방법에 대한 개선방안 제시 ............................................ 47
      2.2.1 채취방법, 조사밀도에 대한 개선방안 제시 ................................... 47
      2.2.2 현행 토양오염조사에 대한 발전방안 제시 ................................... 55
  2.3 토양오염조사 공정별 업무분석 및 예정원가 산출 .................................. 56
      2.3.1 업무내용 분석 및 평가 ................................................................... 56
      2.3.2 토양오염조사 공정별 세부 분석 ....................................................... 58
      2.3.3 현장조사 및 조사수행 절차 비교·분석 ............................................. 64
      2.3.4 공정별 예정원가 산출 .................................................................... 65
  2.4 토양오염조사 표준품셈 마련 ................................................................. 71
      2.4.1 토양정밀조사 등 각종 토양오염조사방법별 표준품셈(안) 제시 ........ 71

제 3 장 오염토양 정화업무 처리지침 마련 ...................................................... 80
  3.1 토양정화 관련 국내·외 현황조사 ......................................................... 80
      3.1.1 해외 토양정화 현황조사 ................................................................. 80
      3.1.2 국내 토양정화 현황조사 ................................................................. 82
      3.1.3 국내·외 토양정화방법·오염원별 비용 및 기간에 관한 비교 분석 ....... 121
  3.2 토양정화 업무절차 및 정화계획 분석 요령 제시 ................................... 126
      3.2.1 토양정화 관련규정 및 업무절차 분석 ........................................... 126

- i -
제 4 장  반출정화 현황과약 및 반출정화대상 확대여부 검토  ………… 147
  4.1 해외 토양정화 정책방향 조사(미국, 일본, 호주, 네덜란드 등) ………… 147
    4.1.1 토양정화관련 현황조사 .................................................. 147
    4.1.2 반출정화제도의 법적근거 및 환경관리 규정 검토 .......................... 154
    4.1.3 반출정화시설의 운영 및 정화토 활용 현황조사 .......................... 174
  4.2 국내 반출정화시설 현황과약 및 분석 ........................................... 179
    4.2.1 반출정화실적 현황 조사 및 반입정화처리 정화실적 분석  ………… 179
  4.3 반출정화제도 관련 규정 개선안 제시 ........................................... 182
    4.3.1 반출정화제도 인식도 및 제도개선 등에 대한 의견 수렴  ………… 182
    4.3.2 반출정화대상 확대 또는 축소 등 개선방안 제시  ………… 189
  4.4 반출정화토양의 재사용 촉진방안 제시 ........................................... 190
    4.4.1 정화토 재사용 촉진방안 마련 ........................................... 190

부록 ................................................................................................. 196
  A 토양정화업무 처리지침 ............................................................... 198
표 목차

[표 2.1.1-1] 토양조사 관련 ISO 지침 ................................................................. 8
[표 2.1.1-2] 제정된 KS 규격 ...................................................................... 9
[표 2.1.1-3] 토양시료 채취지점의 분포 형태 예시 ...................................... 13
[표 2.1.1-4] ASTM 지침 ........................................................................... 20
[표 2.1.1-5] 원형 오염지역 발견을 위한 최소 채취지점 수(규칙적 방법 적용시) 26
[표 2.1.1-6] 미발견 오염지역의 최대 크기 산정을 위한 K값(사각 격자형 지점 선정) 27
[표 2.1.1-7] 주유소 부지 토양 시료채취의 최소 준수사항 ............................ 30
[표 2.1.1-8] 주유소 부지 지하수 시료채취의 최소 준수사항 ........................ 31
[표 2.1.2-1] 국내 토양오염조사 관련 제도 ................................................... 32
[표 2.1.2-2] 토양오염우려기준 및 토양오염대책기준 ................................. 34
[표 2.1.2-3] 기초조사 대상자료 목록 .......................................................... 39
[표 2.1.2-4] 세부검증항목 ...................................................................... 42
[표 2.1.2-5] 세부검증방법 ...................................................................... 43
[표 2.1.3-1] 국내 토양오염조사 지침 ......................................................... 45
[표 2.2.1-1] 개량조사 시료채취 밀도 및 채취방법 ..................................... 48
[표 2.2.1-2] 정밀조사 시료채취 밀도 및 채취방법 ..................................... 49
[표 2.2.1-3] 시료채취 지점 수 산정기준 ...................................................... 50
[표 2.3.4-1] 중급수 항목 전처리 전·후 비용 .............................................. 69
[표 2.3.4-2] 기존 수수료 및 개선(안) 비교 ............................................... 69
[표 2.3.4-3] 시료수 증가에 따른 분석비 감소 요율 ..................................... 69
[표 2.4.1-1] 토양정밀조사(유독물 저장시설) 표준품셈(안) .......................... 71
[표 2.4.1-2] 토양환경평가(산단 유류오염지역) 표준품셈(안) .................. 73
[표 2.4.1-3] 토양정밀조사(유독물 저장시설) 현행 및 개선(안) 비교 ............ 74
[표 2.4.1-4] 토양환경평가 I (산단 유류오염지역) 현행 및 개선(안) 비교 ....... 75
표 2.4.1-5 토양환경평가Ⅱ(산단 유류오염지역) 현행 및 개선(안) 비교 76

표 3.1.2-1 오염토양의 처리위치별 정화현황 83

표 3.1.2-2 오염토양 정화기술의 분류 86

표 3.1.2-3 오염토양 정화기술의 종류[FRTR, 2002] 87

표 3.1.2-4 국내 오염토양 정화기술 평균 처리비용 순위 89

표 3.1.3-1 유럽 오염토양정화기술 평균 처리비용, 정화기간, 정화효율, 정화비용 122

표 3.2.2-1 정화사업 추진절차에 따른 세부업무범위 132

표 3.2.2-2 토양정화검증 요약 136

표 3.2.2-3 토양정화 세부 검증항목 137

표 3.2.2-4 토양정화 세부 검증방법 137

표 3.3.1-1 정화공법 선정기준 138

표 3.3.1-2 정화공법 선정절차 139

표 3.3.1-3 오염물질에 따른 1단계 오염토양 정화기술 선별 140

표 3.3.1-4 2단계 정화기술 선별 평가항목 141

표 3.3.1-5 2단계 선정 정화기술에 대한 기술적 타당성 평가 결과(예시) 141

표 3.3.1-6 토양정화기술에 대한 효율성 및 현장시공성 평가 결과(예시) 142

표 4.1.1-1 수퍼펀드 부지오염 물질 별 기술적용현황(1982~2002) 153

표 4.1.2-1 오염토양 정화시설의 구조 및 유지관리 기준의 개요 158

표 4.1.2-2 오염토양 정화시설의 공통 기준 160

표 4.1.2-3 열처리시설의 공통 기준 161

표 4.1.2-4 열처리시설의 공정별 기준 162

표 4.1.2-5 세정방식과 화학분해방식의 기준 163

표 4.1.2-6 준설 오염토양의 정화방법에 따른 허용기준 169

표 4.1.2-7 준설토양의 모래 분류를 위한 품질 허용기준 170

표 4.1.2-8 오염된 준설토양 관리를 위한 평가양식 172

표 4.1.2-9 준설토양의 반입, 정화, 반출 등록 개요 173
표 4.2.1-1 보관시설 및 정화시설 면적 현황

표 4.2.1-2 반입정화시설 면적 비율(보관시설/정화시설)

표 4.3.1-1 설문조사 응답율 현황

표 4.3.1-2 외국의 경우와 비교하여 국내 반출정화제도 엄격성 여부

표 4.3.1-3 설문조사 기타 의견(국내 반출정화제도 엄격성 여부)

표 4.3.1-4 외국의 경우와 비교하여 국내 반출정화제도 관리·운영기준 엄격성 여부

표 4.3.1-5 설문조사 기타 의견(국내 반출정화제도 관리·운영기준 엄격성 여부)

표 4.3.1-6 반출정화제도 문제 해결 방안

표 4.3.1-7 설문조사 기타 의견(반출정화제도 문제 해결 방안)

표 4.3.1-8 설문조사 자유 의견(반출정화제도 시정 및 개선사항)

표 4.3.1-9 반출정화제도 확대 여부와 관련한 의견

표 4.3.1-10 설문조사 기타 의견(반출정화제도 확대 여부와 관련한 의견)

표 4.3.1-11 향후 반입정화시설 신규 및 추가 설치 여부

표 4.3.1-12 설문조사 자유 의견(반입정화시설 운영상의 애로사항)

표 4.4.4-1 시·도별 매립시설 설치현황
그림 목차

[그림 2.1.2-1] 토양정밀조사의 단계별 조사내용 ............................................. 35
[그림 2.3.1-1] 토양정밀조사의 공정별 업무내용 ........................................... 56
[그림 2.3.1-2] 토양환경평가의 공정별 업무내용 ........................................... 57
[그림 2.3.1-3] 토양환경검증의 공정별 업무내용 ........................................... 58
[그림 2.3.3-1] 토양오염조사 수행절차 ............................................................. 64
[그림 2.3.4-1] 토양시료채취비(인건비) ............................................................ 66
[그림 2.3.4-2] 토양시료채취비(재료비) ............................................................ 66
[그림 2.3.4-3] 깊이별 추가 심도 수수료 산정 ...................................................... 67
[그림 2.3.4-4] 깊이별 추가 심도 토양시료채취비 산정 방안 ................................. 67
[그림 2.3.4-5] 중금속 항목 분석 각 공정별 소요시간 ....................................... 68
[그림 2.3.4-6] 관측정 설치비 산정 예시 ......................................................... 70
[그림 2.4.1-1] 인건비 산정 내역(토양정밀조사) ............................................. 72
[그림 2.4.1-2] 인건비 산정 내역(토양환경평가) ............................................. 73
[그림 3.1.2-2] 오염토양의 처리위치별 정화 현황(단위 : 건) ............................... 84
[그림 3.1.2-4] 오염물질 처리기술 ................................................................. 85
[그림 3.1.2-5] 생물학적 분해법의 처리공정도 ................................................. 91
[그림 3.1.2-6] 생물학적통폐법 모식도 ........................................................... 92
[그림 3.1.2-7] 토양경작 시스템 ................................................................. 93
[그림 3.1.2-8] 바이오파일법의 처리공정도 ..................................................... 95
[그림 3.1.2-9] 식물재배 정화법의 처리공정도 ................................................. 97
[그림 3.1.2-10] 퇴비화법의 처리공정도 .......................................................... 101
[그림 4.1.3-3] Herne 반입정화시설에 설치된 열분해 공정 ........................................... 176
[그림 4.2.1-1] 반입정화시설 보유 업체 연도별 등록현황 ............................................. 179
[그림 4.2.1-2] 반입정화시설 면적 현황 ................................................................. 180
[그림 4.2.1-3] 정화공법별 시설 규모 ................................................................. 181
[그림 4.2.1-4] 연도별 반입량, 처리량 현황 ......................................................... 181
제 1 장
서 론

1. 연구배경 및 목적
2. 연구방법 및 내용
제 1 장 서 론

1.1 연구배경 및 목적

현행 토양환경보전법에서는 토양시료채취 및 분석수수료만 제시하고 있으며(시행 규칙 별표 11, 토양오염검사수수료), 토양정밀조사, 토양환경평가 및 토양정화검증 등 각 조사의 특성을 반영한 표준품셈이 마련되어 있지 않아 합리적인 조사비용 산정이 곤란한 상황으로 각 조사의 특성을 반영한 토양오염조사 사업비 산정방안 및 표준품셈을 마련하고자 한다.

특히, 토양오염조사의 경우 조사 및 부지특성에 따른 인력 투입 및 시료채취 수량·심도의 차이와 분석수량 증가에 따른 동일한 전처리 중복 등으로 조사비용에 차이가 있을 수 있어 이에 대한 고려가 필요하다.

또한, 토양정화에 대한 전반적인 내용이 수록된 「오염토양 정화방법 가이드라인 (07년)」을 제작하였으나, 이론 중심으로 되어 있어 지자체 공무원의 실무 활용에 어려움이 있었다. 따라서, 본 연구에서 정화현장과 밀접한 내용을 수록한 「토양 정화업무 처리지침」을 제작하여 자자체 공무원의 이해도를 높일 수 있도록 하였다.

마지막으로 반출정화의 경우 2006년 이후 매년 처리량이 증가 추세에 있으며, 반출정화대상 확대 요구도 지속적으로 늘어나고 있으나, 반출정화의 가장 큰 문제점 중의 하나인 ‘오염토양의 확산’이 해결되었다고 말하기는 어렵다. 따라서, 선진외국의 토양정화 정책방향과 국내 반출정화 현황파악·분석을 통하여 반출정화대상 관련 규정 개선안 및 반출정화 후 정화토양의 재사용 촉진방안을 제시하고자 한다.
1.2 연구내용 및 방법

본 연구의 주요 내용 및 방법은 다음과 같다.

オー토양오염조사 비용 표준품셈 마련
- 토양정밀조사, 토양환경평가 및 토양정화검증 등 각 조사지침 관련 국내·외 사례조사
  - 외국의 토양오염조사 및 시료 채취방법 등 사례조사
  - 국내 토양오염조사 지침 및 조사체계 분석
  - 국내·외 토양오염조사 방법 비교·분석
  - 국내 각종 토양오염조사지침의 토양시료 채취방법, 조사밀도 등 운영상 문제 제점 도출
- 현행 토양오염조사 방법에 대한 개선방안 제시
  - 토양정밀조사, 토양환경평가 및 토양정화검증 등 현행 조사지침의 토양시료 채취방법, 조사밀도 등 개선방안 제시
  - 현행 토양오염조사 체계의 향후 발전방안 제시
- 토양정밀조사, 토양환경평가, 토양정화검증 등 각 조사의 공정 분석 및 예정원 가 산출
  - 각 토양오염조사 공정별 업무내용 분석 및 평가
  - 시료채취, 관측정 설치 및 분석공정 세부 분석
  - 현장조사 및 조사수행 절차 비교·분석
  - 토양시료 채취, 지하수 관측정 설치 등 공정별 예정원가 산출(2013년도 물 가기준 적용)
  - 토양시료 분석수량 증가에 따른 분석비 적용요율 산정
  - 이해관계자 의견 수렴 및 결과분석
- 토양오염조사 표준품셈 제시
  - 토양정밀조사 등 각종 토양오염조사방법별 표준품셈(안) 제시
  - 표준품셈에 기초한 토양오염조사 비용 산출 프로그램 작성
  - 토양오염조사 비용 산출 프로그램 운영방법 작성
지자체 공무원의 토양정화업무 처리지침 마련
- 토양정화방법별 공정개요, 비용 등 국내외 사례조사
  • 국내에서 적용 중인 주요 정화방법별 공정 개요
  • 국내외 정화방법별/오염원별 토양정화비용과 정화기간 등 현황 조사
- 토양정화 업무절차 및 정화계획 분석 요령 제시
  • 국내 토양정화 관련 규정 및 업무절차 분석
  • 토양정화계획 세부내용 분석
- 단계별 정화업무 처리지침 마련
  • 오염특성에 따른 정화방법, 정화기간 등 오염토양정화계획의 적정성 판단기준 제시
  • 토양정화업무 처리지침(안) 마련
○ 반출정화 현황파악 및 반출정화대상 확대여부 검토
- 선진외국의 토양정화 정책방향 조사(미국, 일본, 호주, 네덜란드 등)
  • 오염토양 정화방법에 대한 규정 및 정화방법 동 현황조사
  • 반입정화시설 운영현황, 법적 근거 및 환경관리 규정 등
- 국내 반출정화 현황파악 및 분석
  • 연도별·시설별 오염토양 반출량, 정화량, 정화토양 사용량 등 반출정화실적 현황 조사
  • 반입정화처리에 대한 오염물질별, 정화방법별 정화실적 분석
- 반출정화대상 관련 규정 개선안 제시
  • 현행 운영되는 제도상의 장·단점 비교분석
  • 학계, 지자체, 업계 등 반출정화 인식도 및 제도개선 등에 대한 의견 수렴
  • 반출정화대상 확대 또는 축소 등 개선방안 제시
  • 반출정화제도 중장기 발전방안 제시
- 반출정화 후 정화토양의 재사용 촉진방안 제시
  • 국내외 정화토양 활용현황 파악
  • 반출정화 후 정화된 토양의 재사용 촉진방안 제시
제 2 장
토양오염조사 비용 표준품셈 마련

1. 토양오염조사 지침 관련 국내·외 사례조사
2. 토양오염조사 방법에 대한 개선방안 제시
3. 토양오염조사 공정별 업무분석 및 예정원가 산출
4. 토양오염조사 표준품셈 마련
제 2 장 토양오염조사 비용 표준품셈 마련

2.1 토양오염조사 지침 관련 국내·외 사례조사

2.1.1 해외 토양오염조사 사례조사

이 절에서는 토양조사와 관련하여 국제적으로 사용되고 있거나 외국에서 실행하고 있는 토양오염지침들에 대해서 검토하였으며, 대표적으로 국제 표준화 기구와 미국의 표준협회, 그리고 호주의 지침을 대상으로 선정하였다. 이들의 경우 토양오염조사의 구체적인 실행방법을 제공한다는 점을 목적이며 단계별로 규정한 후 각 단계에 필요한 일반적인 조사방법과 고려사항을 제시하여 개별 상황에 맞는 최적의 방법을 조사자가 결정할 수 있도록 도움을 주는 경우가 대부분이었으나 호주의 일부 지침에서는 시료채취지점의 수와 지하수 관측장 설치지점의 수 등을 구체적으로 규정한 사례도 있었다.

가. 국외 토양오염조사 지침 및 조사체계 분석

1) ISO 지침

국제 표준화 기구인 ISO(International Standardization Organization)는 비정부 간 기구로서 나라마다 다른 공업규격을 국제적으로 조정하고 표준화하는 역할을 하고 있으며, 토양조사가 관련해서는 ISO 10381 계열의 8개 지침을 제정·보유하고 있다. 이 지침들은 Soil quality - Sampling(토양의 질-시료채취)으로 분류되어 있으며 [표 2.1.1-1]에 정리하였다.
<table>
<thead>
<tr>
<th>연번</th>
<th>번호</th>
<th>제 목</th>
<th>제정연도</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISO 10381-1</td>
<td>Soil quality - Sampling - Part 1: Guidance on the design of sampling programmes</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ISO 10381-2</td>
<td>Soil quality - Sampling - Part 2: Guidance on sampling techniques</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ISO 10381-5</td>
<td>Soil quality - Sampling - Part 5: Guidance on the procedure for the investigation of urban and industrial sites with regard to soil contamination</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ISO 10381-6</td>
<td>Soil quality - Sampling - Part 6: Guidance on the collection, handling and storage of soil for the assessment of aerobic microbial processes in the laboratory</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ISO 10381-7</td>
<td>Soil quality - Sampling - Part 7: Guidance on sampling of soil gas</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ISO 10381-8</td>
<td>Soil quality - Sampling - Part 8: Guidance on sampling of stockpiles</td>
<td>2006</td>
<td></td>
</tr>
</tbody>
</table>

[표 2.1.1-1] 토양조사 관련 ISO 지침

국내의 경우 한국표준협회에서 ISO의 토양조사 지침을 기술적인 내용 및 서식을 변경하지 않고 번역하여 한국산업규격 (KS; Korean Industrial Standard) 내에 일부 도입하였다. 현재 [표 2.1.1-1]의 8개 지침 중 1, 2, 3, 4, 6번의 5개 지침에 대한 정비를 완료한 상태이며, 5와 7번 지침에 대해서는 도입을 위한 관련 작업이 진행 중인 상태이다. 제정된 KS 규격은 [표 2.1.1-2]와 같다.
(분류 구분인 토양의 질-시료채취 생략)
<table>
<thead>
<tr>
<th>번호</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS M ISO 10381-1</td>
<td>제1부 시료채취 프로그램에 관한 지침(2004.8.31)</td>
</tr>
<tr>
<td>KS M ISO 10381-2</td>
<td>제2부 시료채취 기술에 관한 지침(2004.8.31)</td>
</tr>
<tr>
<td>KS M ISO 10381-3</td>
<td>제3부 안전에 관한 지침(2004.10.28)</td>
</tr>
<tr>
<td>KS M ISO 10381-4</td>
<td>제4부 자연, 준자연 및 경작지 조사 절차에 관한 지침 (2004.10.28)</td>
</tr>
<tr>
<td>KS M ISO 10381-6</td>
<td>제6부 실험실에서 호기성 미생물 시험 공정의 평가를 위한 토양의 채취, 처리 및 보관에 관한 지침(2005.12.28)</td>
</tr>
</tbody>
</table>

[표 2.1.1-2] 제정된 KS 규격

ISO 10381 계열의 지침들은 우리나라의 토양정밀조사지침이 토양오염이 확인되었거나 우려되는 지역의 토양오염실태를 정밀조사함에 있어 조사대상지역 구분에 따른 시료채취지점의 밀도와 시료채취지점 선정 및 심도 결정 등의 조사방법을 비교적 구체화하여 제공하는 것과는 달리 토양조사와 관련된 업무, 예를 들어 시료채취계획의 수립, 시료채취방법, 조사자 안전관리, 자연·준자연·경작지 조사, 도시·산업지역에 대한 토양오염조사, 호기성 미생물의 시험, 토양가스 및 파이트미에서의 시료채취 방법 등 토양조사 수행의 일반적인 원리와 조사방법 결정시의 고려사항 등을 폭넓게 제공하여 조사자가 현장의 특성을 판단하여 구체적인 조사 방법을 결정하고 조사를 수행하는데 도움이 되는 정보를 제공한다.

이 지침들은 오염이 확인 또는 우려되는 지역, 오염이 되지 않았다고 판단되는 지역 및 오염과 전혀 상관이 없는 지역 등 모든 경우를 포함하는 일반적인 토양조사 절차에 적용할 수 있도록 구성되었다. 또한 일반적인 토양조사 절차를 문헌 조사와 부지방문조사를 통해 부지정보와 자료를 수집·검토하는 1단계 사전조사와 제한적인 시료채취·분석을 통해 오염을 확인하는 2단계 조사, 그리고 부지특성 및 오염특성을 파악하는 등 특정한 목적으로 이용될 수 있는 그 이후의 조사 단계(ex: 3단계, 4단계 조사)로의 구분을 전제로 설명하고 있다.
상기의 ISO 10381 계열의 지침 중 토양정밀조사와 관련이 있는 지침을 검토하여 주요 내용을 정리하였다.

가) ISO 10381-1 : Guidance on the design of sampling programmes

이 지침은 토양의 특성과 토양 오염원과의 영향을 규명하기 위한 시료채취계획의 수립에 적용되는 일반적인 원리를 제공하고 있으며 주요 내용은 다음과 같다.

1) 시료채취계획 수립시의 고려사항
   ○ 가능한 전체를 대표할 수 있도록 토양시료를 채취하여야 한다.
   ○ 토양조사 목적의 정확한 설정이 중요하다. 이는 시료채취의 위치, 밀도, 시기, 절차, 분석정밀도 등의 중요 인자를 결정하기 때문이다.
   ○ 조사목적의 설정 전에 현지 답사차원의 시료채취와 분석이 필요할 수 있다.

2) 토양조사의 기본적 목적
   (이 중 1항과 2항은 일반적인 토양의 특성을 평가하기 위한 절차이며, 3항 ~ 5항이 토양정밀조사의 목적과 관련한 것으로 이 경우 부지특이성에 근거한 시료채취 전략의 개발이 필요함)
   ○ 일반적인 토양의 특성 확인 : 농업 등과 관련한 특정 목적을 위한 토양의 질을 평가하기 위한 목적으로 수행된다.
   ○ 토양도 작성 : 토양의 묘사, 과세를 위한 평가와 토양의 화학적, 광물학적, 생물학적 조성과 물리적 특성에 대한 기본적인 정보를 구축하기 위한 토양 모니터링에 이용될 수 있다.
   ○ 법 관련 등의 규제적 활동 : 토양의 질과 조성에 영향을 미칠 수 있는 활동과 점오염원, 비점오염원 등 원하지 않는 물질의 유입과 같이 인위적인 변동 효과를 수반하는 경우에 필요하다.
   ○ 유해성·위해성 평가 : 토양이 유독·유해화학물질로 오염된 경우 유해성·위해성 평가를 위한 목적으로 오염물질의 특성이나 오염범위를 확인하기 위한 목적으로 수행된다.
   ○ 기타 특별한 목적 : 기본적인 목적 외에 일부 지역에 대해 다음의 사항을 조사할 필요가 있다.
     • 자연적으로 존재하는 물질의 특성, 농도와 분포
     • 오염물질의 특성, 농도와 분포
     • 물리적 특성과 변이도
     • 관심 생물종의 존재와 분포
토양시료 채취계획
토양시료 채취계획을 수립하기 위해서는 사전조사 결과가 고려되어야 한다. 사전조사는 1단계 조사로서 문헌조사, 부지방문 또는 답사로 구성되며 부지의 현재 조건과 과거 활동 및 영향을 줄 수 있는 인접 토지에 대한 자료를 얻기 위한 목적으로 수행된다. 필요시 제한된 시료채취분석을 포함할 수도 있다.

시료채취 심도
토양시료 채취 심도에 대해 일괄적으로 적용되는 추천사항은 없다. 시료채취 심도는 조사의 목적에 따라 결정되며, 조사가 진행되는 동안 변경될 수 있다. 하지만 조사 과정에서 파악되는 모든 토양층과 그 경계면에 대해 토층과 층위가 혼합되지 않도록 주의를 기울여야 하며, 그에 대한 상세한 설명을 할 수 있어야 한다. 그리고 그 내용은 보고서에 포함되어야 한다. 일반적으로 오염된 지역에서는 의사가에 의해 다른 특별한 언급이 없는 한 수평적으로 시료를 채취하여야 하며 그 깊이는 지표면에서부터의 거리를 표기하여야 한다.

시료 채취지점 선정
토양시료 채취지점의 형태는 크게 3가지로 구분할 수 있다.
- 불규칙적인 형태
- 규칙적인 형태
- 불규칙적 형태와 규칙적인 형태를 조합하여 상호간의 점을 보완하는 형태

이러한 구분에 대한 형태의 예시와 특징은 [표 2.1.1-3]에 정리하였다. 선정된 시료 채취 지점은 현장조사 과정에서 변경되어야 하는 경우가 있을 수 있는데 이 경우 그 이유를 보고서에 명확하게 기록하여야 한다.
<table>
<thead>
<tr>
<th>구분</th>
<th>형태</th>
<th>특징</th>
</tr>
</thead>
</table>
| 불규칙형 (N,S,W,X형 등) | ![도형](image) | • 토양성분의 분포가 상대적으로 균일할 경우 적당하며, 농업·원예분야의 토지조사에 널리 사용됨  
• 혼합시료로 분석하는 경우가 많아 오염의 위치를 제시하는 것은 어려우며 전체적 분포를 확인함  
• 고농도 오염지점 확인이 곤란함 |
| 원형 격자형 | ![도형](image) | • 저장탱크 등 오염원 주변의 영향과약에 적당함. 중심의 최고값과 오염 분포 정보를 제공함  
• 채취밀도가 구역별로 차이가 나며 경우에 따라 모든 구역에서 최적의 위치를 벗어날 수 있음 |
| 정규 격자형 | ![도형](image) | • 많은 경우에 적용되며, 격자 크기는 조사의 목적에 따라 달라짐  
• 정규격자식 임의선택형의 단점을 보완한 방법이며, 격자로 구획된 셀 내에서 임의 선택을 통해 지점을 선정함 |
| 임의 선택형 | ![도형](image) | • 오염이 불규칙적으로 나타나는 경우에 적합하며, 지점은 난수표 또는 컴퓨터 프로그램을 이용하여 선정함  
• 불규칙함의 단점이 있으며, 토양조사에는 거의 사용되지 않음 |
| 정규격자식 임의선택형 | ![도형](image) | • 임의 선택형 지점선정의 단점을 일부 보완한 방법이며, 격자로 구획된 셀 내에서 임의 선택을 통해 지점을 선정함 |

[표 2.1.1-3] 토양시료 채취지점의 분포 형태 예시
<table>
<thead>
<tr>
<th>구분</th>
<th>형태</th>
<th>특징</th>
</tr>
</thead>
</table>
| 비선형 임의선택형 | ![비선형 선택형](image1) | • 정규격자식 임의선택형 지점선정의 방법과 유사함  
• 격자 내 임의 선택된 지점의 $x$, $y$ 좌표 중 하나를 고정하고 나머지를 임의 선택하여 선정함 |
| 비사각 격자형   | ![비사각 선택형](image2) | • 정규격자형의 특정과 유사함                                        |
| 직선형       | ![직선형 선택형](image3) | • 지하매설관처럼 오염원이 선형으로 배치된 경우에 적합함              |

[표 2.1.1-3] 토양시험 채취지점의 분포 형태 예시
나) ISO 10381-2 : Guidance on sampling techniques

이 지침은 토양시료의 채취, 보관방법과 관련한 기본적 원리를 자세히 설명하고 있다. 이 지침은 국내의 토양오염공정시험방법의 제3장 토양오염도 검사방법의 내용과 부합하며, 다음에 주요 내용을 정리하였다.

4 시료채취방법 선택의 중요한 규칙
   - 토양의 층별 성질을 알고자 할 경우 보통 층위시료를 채취한다.
   - 토질의 수평적 변이를 조사할 경우 점 시료를 채취하나, 정밀함이 요구되지 않을 경우 다른 형태의 시료 채취법도 활용 가능하다.
   - 특정한 원소 또는 화합물을 능도를 측정하고자 하는 경우 대부분 점 시료 또는 조사지역 내에서의 슬롯시료나 집단시료를 채취한다.
   - 농업적 목적 등 구역 전체의 특성을 파악하고자 할 경우 구역대표시료를 채취한다.
   - 시료의 양은 모든 분석과 시험을 할 수 있을 정도로 충분한 양이어야 한다.
   - 시료의 양은 조사 구역을 대표할 정도로 충분한 양이어야 하지만 구역 내에서 변이가 불명확해질 정도로 지나치게 많아서도 안 된다.
   - 시료는 채취과정 또는 보관, 운송과정에서 변질되어서는 안 된다.
   - 대표시료는 다른 특성을 가진 시료들을 현장분율에 비례하여 혼합한 시료를 말한다.
   - 시료는 채취과정에서 교차오염과 오염의 확산을 방지하여야 한다.

토양의 화학적 성질은 채취과정에서 변질될 수 있다. 어떠한 시료채취방법을 선정하더라도 채취장비의 제질이나 방법으로 인해 시료가 오염되는 경우가 없도록 하여야 한다. 채취과정에서의 발생할 수 있는 교차오염의 경우는 다음과 같다.

5 시료채취 과정의 교차오염
   - 채취장비 또는 시료통에 물질이 흡착되어 제거되는 경우
   - 채취지점 인접한 곳의 토양 입자의 혼입에 의한 오염, 특히 시추 지점의 상층부 토양이 친공과정이나 채취기를 뿌이나내는 과정에서 시추공으로 혼입되어 들어가 시료를 오염시키는 경우
채취장비나 시료통에 존재하는 물질에 의해 오염되는 경우
휘발성 물질의 휘발, 액체물질의 흘림 또는 오염부분이 떨어져 나가는 경우
시료채취를 원활하게 하기 위해 사용하는 물질에 의해 오염되는 경우(연료, 배기가스, 그리이스, 유류, 윤활제, 접착제 등)
비산 입자, 대기 중에 분산된 액체, 강수 등에 의한 오염

토양조사시에는 작업자의 안전과 오염물질의 노출, 교란 및 확산에 의한 환경오염을 방지하여야 하며, 지하 매설물 및 시설 등을 사전에 확인하여 피해가 없도록 하여야 한다. 시료의 채취가 완료되면 모든 시추공, 굴착된 곳을 되매운하여야 하며, 시추공의 경우 그라우팅을 실시하여 오염의 확산을 방지하여야 한다.

다) ISO 10381-5: Guidance on the procedure for the investigation of urban and industrial sites with regard to soil contamination

이 지침은 토양오염이 확인되었거나 의심되는 도시 및 산업지역에 대한 조사절차에 관한 지침으로서 부지의 오염상태와 환경의 질의 확인을 위해 개발되었으며, 도시 및 산업지역이 아닌 경우에도 토양의 질을 확인해야 하는 목적으로 적용이 가능하다. 이 지침은 위해성 평가와 정화계획 수립에 필요한 정보의 수집절차를 포함하지만 이것은 단지 일반적인 정보의 수집절차에 대한 지침일 뿐 특정 정화방법을 선정하거나 설계하는 등의 보다 상세한 목적에는 추가적인 조사가 필요할 수 있다. 다음에 주요내용을 정리하였다.

① 토양조사의 기본적인 단계
- 기초조사(preliminary investigation)
- 확인조사(exploratory investigation)
- 정밀조사(main site investigation)
- 상세한 목적의 추가적인 조사

② 각 단계별 조사의 업무범위
- 기초조사는 자료조사와 현장방문조사로 구성되며 토질·지질·토양·수리지질학 및 환경적 상황에 대한 자료조사와 함께 부지의 사용이력과 현재의 이
용현황에 대한 조사를 수행하여야 한다. 조사결과로서 오염개연성 및 오염의 특성, 위치, 분포 등을 추론할 수 있고 부지의 전체적인 개념모델을 수립할 수 있으며, 이를 통해 시료채취계획을 수립한다. 이 단계에서는 무엇보다도 부지의 이력에 대한 적정한 조사가 중요하다.

확성조사는 토양, 매립물질, 지표수, 지하수, 토양가스 등에 대한 시료채취를 포함하는 현장조사(on site investigation)와 일련의 분석과정으로 구성되며, 기초조사에서 수립한 가설과 부지의 개념모델이 옳았는지를 확인한다. 조사는 주로 경량적인 개념의 조사보다는 정성적인 조사가 진행되며 보통 몇 개의 시료에 대해 광범위한 오염물질 향을 분석한다. 가설이 정확하게 수립된 경우 추가조사가 필요 없다는 결론을 내릴 수도 있으며, 예상했던 것보다 오염의 형태가 복잡하거나 오염농도가 높을 경우 또는 위해성이 현재 존재하거나 향후 발생 가능한 경우 등은 다음 단계의 정밀조사로 연결된다.

정밀조사는 오염물질의 농도 및 분포, 이동가능성과 이동가능한 성분의 분율 및 확산가능성 등 오염현황의 구체적인 분포를 확인하기 위한 목적으로 하며, 오염지역에 대한 미래의 개발가능성을 감안하여 조사하여야 한다. 이 과정에서는 토양, 매립물질, 지표수, 지하수, 토양가스 등의 체취와 분석이 수행되며, 모델링 기법이 유용하게 이용될 수도 있다. 조사는 단계적으로 시료 채취의 밀도를 높여가는데 초기부터 고밀도 채취하는 것보다 효율적일 수 있으며, 조사구역별 특성에 따라 채취밀도의 변형이 가능하다.

③ 시료채취계획 수립 시 고려사항

채취지점의 분포 형태의 선택, 채취심도의 결정, 시료의 형태와 수량에 대한 고려가 필요하다. 특히 시료채취지점간에 거리 선정에 있어서는 통계적인 고려가 중요하며, 조사의 목적에 맞도록 확인되어야 하는 최소 오염의 크기가 정해져야 한다.

대부분의 조사에 있어서 한가지의 채취지점 분포 형태를 선택하기보다는 목적에 부합되도록 두개의 조합이 이용되어야 한다.

오염이 균질한 분포로 예상될 경우 채취지점을 넓게 분포시켜야 할 것이다. 이 방법은 오염지역(hot spot)을 발견하는 데에는 적당하지 않으며, 혼합시료
를 적절히 이용할 경우 적은 수의 분석으로도 넓은 범위의 결과를 확인할 수 있다. 혼합시료는 일반적인 오염물질이 검출될 기회를 높이는 반면, 오염이 검출한계 밑으로 희석될 수 있는 단점을 가지고 있다. 따라서 혼합시료는 인접한 지점의 동일 지층의 시료에 대해서만 적용하여야 하고 휘발성 물질에 대해 사용되어서는 안 된다. 준휘발성 물질일 경우에는 실험실에서 혼합하는 등의 제한적 방법을 통해 적용이 가능하다.

- 오염이 불규칙한 분포로 예상될 경우 채취지점간의 거리를 지정해야 하며, 오염 누출지점이 알려진 경우에는 판단에 근거한 채취지점 선정(오염과 관련한 정보와 현장조사 결과를 감안하여 시료채취지점을 지정하는)에 의한 시료채취가 가능하다.
- 단일한 오염물질이 아닌 복합적인 오염물질에 의해 오염되었다면(예를 들어 중금속과 유류성분에 의한 복합오염인 경우) 채취지점의 분포 형태는 각각의 오염물질에 대해 선택할 필요가 있다.
- 오염가능성이 있는 구역에 대한 채취지점의 수는 구역의 크기에 따라 정해지지만 개별 구역에 대한 최소의 채취지점 수는 보통 6개로 정해진다.
- 시료채취를 위한 격자는 확인조사의 30m 간격부터 정밀조사의 15m 간격까지 다양하게 설정된다. 높은 시료채취밀도는 매우 불균질한 오염에 적합하며, 주유소 등의 유류오염과 관련된 부지일 경우 10m 간격의 격자가 필요할 수도 있다. 고밀도의 시료채취는 통상적으로 오염이 예상되는 지역에, 비교적 낮은 밀도는 오염되지 않았을 것으로 예상되지 않는 지역에 적절하다.

④ 토양시료 채취지점 선정 방법
- 판단에 근거한 시료채취지점 선정(judgemental sampling)
  - 이 방법은 누출에 의한 오염 같은 특정한 오염원이 알려져 있거나 의심되는 경우에 오염여부 및 범위의 확인과 불균질한 분포를 가진 오염에 적합하며, 보통 확인조사에서 오염지역이 확인되면 정밀조사의 목적으로 오염에 대한 상세한 조사에 사용한다.
  - 시료채취지점은 오염원에 근접하다는 등의 특별한 근거에 의해 선정하여야 하며, 이 때 부지의 특성과 결과의 해석방식, 부지의 다른 구역에 적용한 채취지점 분포 형태나 누출지점 또는 고농도 지역의 반경 등을 고려하여야 한다.
이 방법은 부지와 관련된 오염개연성이나 시각적인 오염 우려사항에 대해 확인조사 단계에서 적용되는 것이 바람직하며, 상대적으로 넓은 간격의 규칙적인 시료채취의 보조가 필요할 수 있다.

○ 규칙적인 시료채취지점 선정(Regular sampling)
- 이 방법은 균질한 분포의 오염지역이나 오염되지 않았을 것 같은 지역에 적합한 방법이며 실행이 간단한 장점이 있다. 확인조사와 정밀조사 모두에서 규칙적인 시료채취지점 선정을 통해 부지 전체에 걸쳐 채취지점이 규칙적으로 분포되어야 하지만 판단에 근거한 방법 등의 불규칙적 방법을 적용할 수도 있는데 이는 오염 이동경로 추정이나 규칙적 지점선정의 단점을 보완하는 등의 이유가 있는 경우이다.
- 부지에 일정 간격의 도랑 또는 지형적인 과동 같은 규칙성이 있다면 채취 지점은 지형과 동일한 규칙성을 나타내야 한다. 그럴 경우 시료들에 규칙적인 편차가 날 수 있으며 이러한 단점은 기준선 또는 시작점 선정과 격자간격을 주의하여 결정함으로써 방지할 수 있다.

⑤ 시료의 채취깊이를 결정할 경우 고려사항
- 인공적으로 조성된 지층의 두께와 자연적인 퇴적물 등 물리적·화학적 토양 특성
- 고체, 침출 가능물질, 가스 및 증기 발생물질 누출배관 등 토양 내의 오염원
- 토양의 물리적 특성에 의해 규정되는 가스 및 액체의 수직적 이동통로를 통한 이동
- 부지의 용도
- 지하수의 깊이(오염은 지하수면 상부까지 이동하기 때문에 이 깊이까지는 채취하여야 하며, 오염물질의 밀도가 물보다 높을 경우에는 더 깊은 곳에서 채취되어야 한다.)

⑥ 토양시료 채취 시의 고려사항
- 토양의 각 지층을 대표할 수 있도록 시료를 채취하여야 한다. 개별시료는 제한된 깊이 범위(예 : 0.1m ~ 0.5m)에서 채취되어야 하며 1.0m 범위를 넘을 경우 그 중에 대한 대표성이 없다.
- 모든 지점에 대해 시료는 수렴된 가설에서 제시한 깊이까지 채취되어야 하
며, 예상한 것보다 더 깊은 곳에서 오염이 확인되었다면 채취깊이도 더 깊게 조정되어야 한다.

자연적인 지층에서 시료를 채취하는 것은 매우 유용하며 이것은 자연적 배경을 알려줄 수 있어 이후의 평가에 도움이 될 것이다.

채취한 토양시료 중에서 의미 있는 시료를 선별하여 분석하도록 하는데 대표성 을 지닌 시료와 오염이 의심되는 시료는 모두 분석하도록 한다. 만일 여러 지점 에서 채취된 동일 지층의 시료가 비슷할 경우 대표적인 시료를 선별・분석할 수 있다.

2) 미국 : ASTM 지침

미국 재료시험협회인 ASTM(American Society for Testing and Materials)은 미국의 공업원료 및 그 시험법의 표준화 기관으로서 각종 시험법 및 절차와 관련한 지침을 제정・발간하고 있다. 토양조사와 관련해서는 부지환경평가 지침을 보유하고 있는데 이것은 상업용 부동산의 환경여건을 평가하기 위한 표준절차로서 평가 를 원하는 당사자 간에 의해 자유적으로 이용할 수 있으며, 일명 수퍼펀드 (Superfund)법으로 알려져 있는 CERCLA의 "무고한 토지소유자 변호"의 목적을 위한 "합당한 조사"로도 활용된다. 이 법률은 특정 유해물질의 무분별한 배출을 정화하기 위한 목적으로 1980년 12월 11일에 제정되었으며, 부지환경평가의 법률 적 근거를 제공하고 있다.

ASTM의 부지환경평가 지침은 E 1527-05, E 1528-06, E 1689-95, E 1903-97의 4 개로 구성되어 있으며, 이들은 부지환경평가의 진행 과정에서부터 부동산 거래시 부지의 환경을 평가하기 위한 일련의 검토 과정, 오염부지에 대한 개념적 부지 모델의 개발을 위한 지침을 제공하고 있다. 부지환경평가와 관련한 ASTM의 지침은 다음과 같다.
부지환경평가 절차는 1단계 부지환경평가(Phase I ESA)와 2단계 부지환경평가 (Phase II ESA)로 구분된다. 국내의 경우 토양오염실태조사, 토양환경평가, 토양정밀조사 등 부지의 “토양조사”에 대한 지침을 보유하고 있으나, ASTM의 지침에서는 토양을 포함하는 포괄적 개념의 “부지환경”에 대한 조사절차를 규정하고 있다. 이 지침들은 ISO의 지침과 마찬가지로 시료채취지점의 밀도, 지점선정 방법 및 심도 결정 등 조사방법의 구체적인 제시보다는 부지조사 수행의 일반적인 원리와 조사방법을 폭넓게 제공하여 조사자가 현장의 특성을 판단하여 구체적인 조사방법을 결정하고 조사를 수행하는데 도움이 되는 정보를 제공한다.

ASTM은 또한 1·2단계 부지환경평가 절차를 실행하기 위해 필요한 다양한 기술적 항목들에 대해 별도의 상세한 지침들을 마련하고 있다. 이 지침들은 부지환경평가 절차의 수행에 필요한 용어, 시료채취장비와 방법, 토질의 분류 방법, 시료의 보관 등 취급 방법, 지하수 및 토양가스 채취 방법, 대수층에서의 토양시료 채취 방법, 지하수위 측정 방법, 지하수 모니터링 관리 설치 방법, 토양 및 암반에 대한 기록 방법 등 부지조사에 필요한 기술적인 세부 방법에 대해 설명하고 있다.

1단계 부지환경평가의 내용은 국내의 토양정밀조사지침의 기초조사와 유사하고 2 단계 평가의 경우 개량조사의 개념과 유사성이 있어 이 두 지침의 내용을 간략히 정리하였다.
가) ASTM 1527-05 : Standard Practice for Environmental Site Assessments : Phase I ESA Process

1단계 부지환경평가하는 관련기록 검토, 현장방문조사, 면담조사로 구성되며, 부지 내에 존재하는 오염개연성의 확인을 목적으로 한다. 조사에는 관례적으로 부지 내의 석유류 제품의 존재여부에 대한 조사를 포함하며 일반적으로 시료채취 및 분석은 포함하지 않는다. 상기의 활동과 그 결과들은 상호 유기적으로 해석되고 이용된다. 관련기록 검토과정은 대상부지와 관련한 오염개연성을 확인하는데 도움이 되는 기록들을 입수·검토하는 단계로서 부지의 이력정보, 과거와 현재의 부지 이용현황 및 관련 환경정보에 대해 검토하고 조사는 해당부지와 함께 환경적 영향을 줄 수 있는 주변지역에 대해 수행된다.

현장방문조사는 시각적·물리적인 관찰을 통해 오염개연성을 나타내는 정보를 얻는 단계로서 부지 자체와 부지 내 위치한 건물·시설을 포함하여 주변지역에 대한 조사도 수행되어야 한다.

○현장조사의 주요 확정사항
- 일반 현황 : 부지의 과거·현재의 용도, 인접부지의 과거·현재의 용도, 지질학, 수리지질학, 수리학 및 지형학적인 현황, 부지 내 건물·시설물 및 도로 현황, 식수원 및 하수처리방법 등
- 관찰 사항 : 유해물질과 석유류 제품의 사용·취급·저장·폐기 관련 사항, 지상·지하저장탱크, 악취, 응당이, 드럼 보관상태 및 누출여부, PCBs, 냉·난방 연료, 바닥 등의 얼룩 또는 부식, 식물의 성장이 제한된 지역, 폐기물 매립 및 폐수 관련 사항, 우물 또는 관측정, 정화조 등

면담조사는 과거와 현재의 부지 소유자, 운영자, 거주자와 관련 공무원을 대상으로 부지의 오염개연성을 확인하는 단계로서 방문, 전화, 서면 등을 통해 수행한다. 효율적인 면담조사를 위해서는 부지에 대해 많은 정보를 지닌 적절한 대상자를 선정하는 것이 무엇보다 중요하다.

보고서는 일련의 조사과정과 그 결과에 대해 명확하고 상세하게 기록되어야 하며, 오염개연성이 확인되었을 경우 2단계 부지환경평가를 제안하여야 한다. 보고서는 작성 후 보통 180일(6개월)동안 유효한 것으로 간주되며, 만일 이 기간 내에 면담조사와 환경담보권에 대한 조사, 관청의 기록에 대한 검토와 현장방문을 통한
확인조사를 거친 후 환경전문가가 그 내용을 인정할 경우 1년까지 그 유효기간이 연장될 수 있다.


2단계 부지환경평가는 1단계에서 확인된 오염개연성에 대해 시료의 채취·분석을 통한 실제적인 오염여부의 확인을 목적으로 하며, 일반적으로 적은 수의 시료에 대해 많은 항목을 분석한다. 조사결과 오염이 배경농도 이상으로 검출되어 오염의 개연성이 인정될 경우 그 농도의 높고 낮음에 상관없이 오염의 특성에 추가적인 조사가 진행되어야 한다. 2단계 부지환경평가는 업무범위의 설정 및 작업계획의 수립, 시료의 채취·분석 등의 현장조사, 결과의 평가·해석 및 보고서 작성 단계로 구성된다.

업무범위의 설정 및 작업계획의 수립단계에서는 조사의 목적에 적합한 작업계획과 시료채취 계획을 수립하여야 하고 QA/QC 방법, 시료채취 지점, 분석항목 및 분석방법 등을 결정하여야 한다.

현장조사 단계에서는 현장 스크리닝과 현장 분석기술을 고려하여 시료채취 작업과 현장조사를 수행하여야 하며, 채취된 시료의 이송, 여과, 보존 등의 취급에 주의하여야 한다.

결과의 평가·해석 및 보고서 작성 단계에서는 작업계획 수립시 설정한 가설들이 타당했는지의 여부와 검출된 물질이 오염개연성에 의해 유발된 것인지 아니면 자연상태에 존재하는 것인지에 대한 검증을 선명하여야 하며 그 결과에 따라 다음의 두가지 결론을 내리게 된다.

- 부지가 오염되지 않았음 또는 오염의 존재를 의심할 아무런 근거가 없음
- 부지가 유해물질 또는 석유류 제품에 의해 오염되었음
3) 호주

호주의 환경청은 오염부지관리법을 통해 오염부지와 관련한 다양한 지침들을 제정・승인하여 관리한다. 그 중 시료채취계획 수립을 위한 지침과 주유소 부지 평가를 위한 지침은 시료의 채취・분석과 관련한 지침을 제공하고 있다. 그 중에서 국내의 토양정밀조사지침의 내용과 관련이 있는 부분을 검토・정리하였다.

가) Contaminated Site: Sampling Design Guidelines

이 지침은 오염된 부지를 조사할 경우 시료채취 지점 선정의 형태와 채취 깊이 및 시료의 개수 결정, 분석결과의 통계적인 해석에 도움을 제공한다.

시료채취 목적은 다음의 두 가지로 크게 구분되며 목적에 따라 시료채취 지점 선정의 형태, 시료의 개수 등이 크게 달라질 수 있다. 따라서 시료채취 계획을 수립하기 위해서는 조사의 목적을 명확히 하여야 한다.

- 부지특성 평가와 같이 오염의 위치, 특성, 수준 및 범위 등과 관련한 정보 수집(정밀조사)
- 부지가 성공적으로 정화되었는지를 조사(정화검증)

오염물질의 분포는 완벽하게 파악될 수 없는 한계점을 지니고 있다. 그렇기 때문에 분석결과를 통계적으로 해석하여 오염가능성을 백분율로 표현하거나 또는 수학적 평균농도를 이용하여 기준의 초과여부를 판단하는 등의 방법이 사용된다.

① 시료채취지점 선정의 형태

○ 판단에 근거한 시료채취지점 선정

- 조사부지 내의 오염 분포가능성에 대한 조사자의 지식에 근거해서 시료채취 지점으로 선정
- 이 방법은 부지 이력과 현장 관찰사항 등을 효과적으로 이용할 수 있지만 편견에 치우치기 쉬운 단점이 있음
- 시료채취・분석결과의 질은 조사자의 경험과 유용한 부지이력 정보에 달려 있음
- 이 방법은 정화검증의 경우에는 사용되어서는 안 됨
임의적 시료채취지점 선정

- 시료채취지점은 임의적(random)으로 선정됨. 임의적이라는 것은 독단적이라는 뜻은 아니며 지점의 좌표를 결정하기 위해 적절한 난수발생기가 이용됨.
- 이 방법은 통계적으로 편향되지 않는 점의 격차가 있음. 이와 같은 단점은 오염지역의 발견과 오염의 공간적 분포에 대한 전체적인 그림을 제공하는데 있어 단점으로 작용함.
- 이 방법은 정밀조사 같은 부지특성 평가에서도 사용될 수 있음.

규칙적 시료채취지점 선정

- 시료채취지점은 규칙적인 간격으로 선정됨.
- 이 방법은 최초 지점의 좌표가 난수에 의해 결정되며, 통계적으로 편향되지 않음. 또한 지점이 겹치지 않으며 무작위 시료채취에 비해 쉽게 채취지점을 선정할 수 있음.
- 사각형의 격자가 이 방법의 가장 일반적인 형태임. 만일 오염수준이 알려져 있거나 또는 공간적으로 일정한 편차를 나타낼 것으로 추정될 경우 그 편차의 규칙성을 나타내지 않는 지점을 선정하여야 함.
- 주기적인 편차가 있으나 주기성의 원인이 파악되지 않은 경우 단계적인 임의적 시료채취지점 선정방법을 이용하여야 함. 이 방법은 대상지역을 사각격자로 분할한 후 각 격자의 내부에서 임의적으로 시료를 채취함.

단계적인 시료채취지점 선정

- 전체 지역을 지질학적, 지리적인 특성, 오염특성, 부지의 이력, 각 구역의 향후 용도 등에 따라 분할하여 조사함.
- 분할된 구역은 독립적인 부지로 취급될 수 있으며 각각에 대해 개별적인 시료채취지점 선정방법이 적용될 수 있음.
- 이 방법은 복잡한 오염물질 분포를 가진 대규모 부지의 조사에 가장 적합한 방법임.
부지특성 평가를 위한 시료채취계획(기초조사 및 정밀조사)

기초조사의 시료채취지점 선정

- 오염의 위치에 대한 충분한 정보가 있을 경우 판단에 근거한 방법이 사용될 수 있음
- 정보가 부족할 경우 전체 부지에 대한 규칙적 방법이 권장됨
- 시료채취 깊이는 조사자의 현장 조사결과에 기초하여 오염수준이 가장 높은 곳에서 채취되어야 함

정밀조사의 시료채취지점 선정

- 오염분포에 대한 정보가 없거나, 매립지같이 무작위적인 경우 또는 농지처럼 상당히 균일한 것으로 판단되는 경우에 규칙적인 방법이 권장됨
- 오염분포에 대한 충분한 정보가 있을 경우 판단에 근거한 방법이나 단계적인 방법이 사용될 수 있음. 그러나 판단에 근거한 방법의 경우 채취지점의 분포가 균질하지 않게 배치된다면 부지 전체에 대해 일정한 수준의 채취지점이 추가되어야 함
- 오염의 수직적 분포를 확인하기 위해 두 개 이상의 깊이에서 채취되어야 함
- 깊이별 시료는 보통 각각의 토양층위에서 채취하지만 토양층이 명확하지 않을 경우에는 오염물질 특성에 따른 침투 깊이 또는 부지의 향후 용도를 고려하여 결정되어야 함

시료개수의 결정

- 부지특성 평가에 필요한 최소 시료 개수는 오염의 복잡성, 조사자의 부지에 대한 지식 및 오염지역의 형태 및 크기 등 부지의 특성에 따라 결정하며, 조사자가 파악한 기초적인 부지특성을 고려하여 결정되어야 함
- 확인하고자 하는 오염지역의 크기가 정해진 경우 채취지점의 수는 다음의 표 2.1.1-5와 같이 산정함
<table>
<thead>
<tr>
<th>부지규모(헥타르) (*헥타르=10,000m²)</th>
<th>권장 시료채취 지점 수</th>
<th>시료채취 밀도 (지점/헥타르) (*지점/100m²)</th>
<th>95% 신뢰수준에서 발견될 수 있는 hot spot의 직경 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 (500m²)</td>
<td>5</td>
<td>100 (1.000)</td>
<td>11.8</td>
</tr>
<tr>
<td>0.1 (1,000m²)</td>
<td>6</td>
<td>60.0 (0.600)</td>
<td>15.2</td>
</tr>
<tr>
<td>0.2 (2,000m²)</td>
<td>7</td>
<td>35.0 (0.350)</td>
<td>19.9</td>
</tr>
<tr>
<td>0.3 (3,000m²)</td>
<td>9</td>
<td>30.0 (0.300)</td>
<td>21.5</td>
</tr>
<tr>
<td>0.4 (4,000m²)</td>
<td>11</td>
<td>27.5 (0.275)</td>
<td>22.5</td>
</tr>
<tr>
<td>0.5 (5,000m²)</td>
<td>13</td>
<td>26.0 (0.260)</td>
<td>23.1</td>
</tr>
<tr>
<td>0.6 (6,000m²)</td>
<td>15</td>
<td>25.0 (0.250)</td>
<td>23.6</td>
</tr>
<tr>
<td>0.7 (7,000m²)</td>
<td>17</td>
<td>24.3 (0.243)</td>
<td>23.9</td>
</tr>
<tr>
<td>0.8 (8,000m²)</td>
<td>19</td>
<td>23.8 (0.238)</td>
<td>24.2</td>
</tr>
<tr>
<td>0.9 (9,000m²)</td>
<td>20</td>
<td>22.2 (0.222)</td>
<td>25.0</td>
</tr>
<tr>
<td>1.0 (10,000m²)</td>
<td>21</td>
<td>21.0 (0.210)</td>
<td>25.7</td>
</tr>
<tr>
<td>1.5 (15,000m²)</td>
<td>25</td>
<td>16.7 (0.167)</td>
<td>28.9</td>
</tr>
<tr>
<td>2.0 (20,000m²)</td>
<td>30</td>
<td>15.0 (0.150)</td>
<td>30.5</td>
</tr>
<tr>
<td>2.5 (25,000m²)</td>
<td>35</td>
<td>14.0 (0.140)</td>
<td>31.5</td>
</tr>
<tr>
<td>3.0 (30,000m²)</td>
<td>40</td>
<td>13.3 (0.133)</td>
<td>32.4</td>
</tr>
<tr>
<td>3.5 (35,000m²)</td>
<td>45</td>
<td>12.9 (0.129)</td>
<td>32.9</td>
</tr>
<tr>
<td>4.0 (40,000m²)</td>
<td>50</td>
<td>12.5 (0.125)</td>
<td>33.4</td>
</tr>
<tr>
<td>4.5 (45,000m²)</td>
<td>52</td>
<td>11.6 (0.116)</td>
<td>34.6</td>
</tr>
<tr>
<td>5.0 (50,000m²)</td>
<td>55</td>
<td>11.0 (0.110)</td>
<td>35.6</td>
</tr>
</tbody>
</table>

[표 2.1.1-5] 원형 오염지역 발견을 위한 최소 채취지점 수(규칙적 방법 적용시)
비고 1) 5헥타르 이상의 부지인 경우 작은 구역으로 분할하여 적용
   2) 이 표는 사각격자형의 규칙적 선정방법을 이용할 경우 원형의 오염지역을 95% 신뢰수준
      에서 발견하기 위한 것임

부지 내에 존재할 수 있는 확인되지 않은 오염지역의 최대 크기는 다음과 같은 절차로 결정된다.

- 만일 규칙적인 시료채취지점 선정방법이 사용되었고, 모든 측정결과가 기준 이하일 경우 다음의 절차를 통해 부지 내에 존재할 수 있는 오염지역의 최대 크기를 정할 수 있음
- 적용 방정식  \( L = K \times G \)
  \( L = \) 원형 오염지역의 반경(m)(타원형일 경우 L은 주축의 1.5배)
  \( K = \) 통계적인 상수이며 오염지역의 형태 및 신뢰수준에 종속
  \( G = \) 격자간 거리, 즉 채취지점간의 거리(m)
신뢰수준(%) | K값 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>원형 오염지역</td>
<td>타원형 오염지역</td>
</tr>
<tr>
<td>종횡비 = 2:1</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>0.68</td>
</tr>
<tr>
<td>95</td>
<td>0.59</td>
</tr>
<tr>
<td>90</td>
<td>0.55</td>
</tr>
<tr>
<td>85</td>
<td>0.52</td>
</tr>
<tr>
<td>80</td>
<td>0.50</td>
</tr>
<tr>
<td>75</td>
<td>0.48</td>
</tr>
<tr>
<td>70</td>
<td>0.47</td>
</tr>
<tr>
<td>65</td>
<td>0.45</td>
</tr>
<tr>
<td>60</td>
<td>0.43</td>
</tr>
<tr>
<td>55</td>
<td>0.42</td>
</tr>
<tr>
<td>50</td>
<td>0.40</td>
</tr>
</tbody>
</table>

[표 2.1.1-6] 미발견 오염지역의 최대 크기 산정을 위한 K값(사각 격자형 지점 선정)

비고) 이 방법은 부지 내에 존재할 수 있는 오염지역의 최대 크기 결정 외에 수학적 평균오염도의 해석 및 오염되지 않은 지역의 분율 결정 등에 이용됨

○ 혼합시료(Composite sample)는 분석비용을 절감하기 위해 종종 이용되며 다음과 같은 특징이 있다.
- 이격된 지점에서 채취된 개별 시료는 단일 혼합시료로 완전히 혼합되며, 원칙적으로 혼합시료의 농도는 각 개별시료의 평균 농도를 대표한다. 그러나 혼합시료의 적용은 한 개의 시료만 고농도의 농도를 나타내고 있을 경우 혼합과정에서 농도가 희석될 가능성이 있는 단점이 있다.
- 혼합시료의 채취는 반드시 다음의 규칙을 따라야 하며 규칙이 지켜지지 않을 경우 분석결과가 무효로 될 수 있다.
  - 분석항목: 혼합요소는 중금속 물질 또는 낮은 휘발도를 가지는 물질 등의 무기물질에 대해 유효하며, TPH를 포함하는 휘발성 물질은 혼합시료에 적합하지 않다.
  - 토양/매립 형태: 혼합시리는 시료들은 반드시 수평적으로 동일한 토양층 또는 매립층에서 채취되어야 하며, 점토의 성분이 높은 경우 적합하지 않다.
- 혼합방법 : 혼합에 이용되는 개별시료는 동일한 크기이며, 채취지점이 동간격인 인접한 지점이어야 한다. 그리고 횡적으로 동일한 깊이의 시료가 혼합되어야 하며 혼합시료를 구성하는 개별 시료의 수는 4개 이하이어야 한다.

나) Contaminated Site : Guidelines for Assessing Service Station Sites

이 지침은 주유소 부지의 향후 이용에 있어 공중건강에 대한 위해를 최소화하고 환경을 보호하기 위해 주유소 부지의 평가를 위한 지침을 제공하여 부지의 조사, 정화, 정화검증, 보고 및 비용해석 등의 내용을 다루고 있다.

우선 현장조사에 앞서 다음에 대한 사전 조사가 선행되어야 하며, 이는 부지 내의 잠재적 오염원, 부지 외부의 잠재적 수용체 및 오염물질의 잠재적 이동경로 등의 파악을 위한 것이다.

- 부지의 주소, 위치, 지번 등 일반 정보
- 부지의 과거, 현재, 미래의 용도
- 인접 부지의 과거, 현재, 미래의 용도
- 과거 및 현재 소유자
- 항공사진 등 부지의 사진
- 기 수행된 부지조사 결과
- 저장탱크와 배관, 급유차와 급유장소 관련 내용
- 부지 내 매립 관련 내용
- 재고목록
- 저장탱크의 설치년도, 전식 방법, 유지보수 기록과 제품 또는 폐기물 유출·누출 등과 관련한 저장탱크와 배관의 이력
- 해당 지역의 지질 및 수리지질학적 특성(특히 지하수의 흐름방향 및 유량 등에 대한 세부 내용)
- 지하수의 현재, 미래의 잠재적 용도
- 오염물질의 이동통로로 작용할 수 있는 지하 시설의 위치 등 관련 사항
- 제품의 유출·누출의 잠재적 영향에 대한 기초조사 등

- 28 -
주유소로 사용되었던 부지의 토양환경을 평가하기 위해서는 급유지점, 저장탱크, 급유배관, 펌프장, 피트와 트렌치 등 주유 관련시설의 위치에 초점을 맞춘 조사가 필요하다.

- 주유 관련시설의 위치가 확인된 경우 오염의 특성과 범위를 완전히 조사할 수 있을 것이며 [표 2.1.1-7]은 시료채취 위치와 밀도, 채취심도를 결정하는데 도움이 될 것이다. 시료채취는 휘발성 물질의 손실을 최소화할 수 있는 방법으로 채취되어야 하며 다른 조사방법을 사용할 경우 그 이유를 보고서에 기록해야 한다.
- 부지에서 모든 또는 일부 주유 관련시설이 제거되었고 또 관련기록의 확인이 어렵다면 일반적인 부지에서 사용하는 시료채취전략이 사용되어야 한다.

- 0.2 헥타아르(2,000㎡)의 면적에 대해 최소 28개의 시료채취지점을 균일한 분포로 선정하여야 한다. 이것은 약 8.5m 간격의 격자에 해당하며 직경 10m 크기의 원형 오염지역을 95% 신뢰수준에서 발견할 수 있는 가능성에 근거한다. 채취밀도를 변경할 경우 그 이유를 보고서에 서술하고 근거를 밝혀야 한다.

- 각 채취지점에서 최소 3개 심도의 토양시료를 채취하여야 한다. 이 중 두 시료는 0 ~ 200㎜와 200 ~ 500㎜ 사이에서 채취되어야 하며, 이는 토양 중위와 두터운 오염영역에 근거하여야 한다. 세번째 시료는 과거 존재였던 탱크의 추정 매설깊이보다 아래가 되어야 한다. 각 깊이에 대해 두 개의 시료가 채취되어야 하며, 하나는 휘발성 유기화합물(VOCs) 등의 현장측정에 다른 하나는 실험실 분석을 위해 채취되어야 한다.

- 채취한 시료를 모두 분석하지는 않으며, 분석용 시료는 부지의 이력조사 및 관찰 결과, VOCs에 대한 현장측정을 통해 최종 선택되어야 하고 그 이유가 보고서에 기록되어야 한다. VOCs에 대한 현장측정 PID 또는 FID를 이용하여 수행할 수 있으며 정량적이기보다는 정성적인 자료로써 활용하여야 한다.
<table>
<thead>
<tr>
<th>위치</th>
<th>시료의 수</th>
<th>작업 내용</th>
<th>분석 항목</th>
</tr>
</thead>
</table>
| UST 지역의 되메움 모래 | 탱크당 2 | • 탱크위치 또는 바닥의 하부 채취  
• 공사 중 채취 또는 채취장비 이용 | · TPH/ BTEX*5 |
| UST 지역의 원토양 | 1~2 | • 주변토양 채취(0~200㎜) | · TPH/ BTEX  
· 납 |
| UST 지역의 물 | 1 | • 되메움토/원토양이 오염된 경우 채취 | · TPH/ BTEX  
· 납 |
| 용료 지하폐관 | 라인당 1 | • 되메움토의 대표시료 채취  
• 오염된 경우 원토양 채취(0~200㎜) | · TPH/ BTEX  
· 납 |
| AST 지역의 (드럼/탱크) | 25㎡당 1 | • 누출된 지역은 채취장비 이용  
• 누출되지 않은 경우 저장지역 채취  
(0~200㎜와 200~500㎜) | · TPH/ BTEX  
· 납 |
| 지하폐류탱크 | 탱크당 2 | • 공사중 채취 또는 채취장비 이용 | · TPH  
· PAHs/ 폐כל |
| 폐축전지 저장소 | 25㎡당 1 | • 채취장비 이용 대표시료 채취(0~200㎜) | · 납/pH |
| 폐기물/폐수 처분지역 | 25㎡당 1 | • 채취장비 이용  
• 오염지역/처분지역 채취(0~200㎜) | · TPH  
· pH/납 |
| 반입 되메움토 | 100㎡당 1 | • 반입 되메움토는 안중셔(분석결과)와 함께 공급되어야 함  
• 그렇지 않을 경우 표면부터 대표혼합시료 채취 | · 중금속  
· TPH/ BTEX  
· 유기염소계 살충제  
· PCBs |

[표 2.1.1-7] 주유소 부지 토양 시료채취의 최소 준수사항

비고 1) UST : 지하저장탱크(Underground Storage Tank)  
2) AST : 지상저장탱크(Aboveground Storage Tank)  
3) TPH : 탄소 수 6 ~ 36사이의 탄화수소  
4) BTEX : 벤젠, 톨루엔, 에틸벤젠, 크실렌  
5) 납 항목은 연료가 납을 함유했거나 확인되지 않은 경우 분석  
6) 다환방향족 탄화수소
주유소 부지의 지하수 평가를 위해서 시료의 채취·분석이 필수적이다.

- 지하수는 일반적으로 포화대와 불포화대가 접하는 지점이나 또는 오염에 대한 현장 관찰결과에 근거하여 좀 더 깊은 깊이에서 채취되어야 하며 부지에 최소 1개의 관측정을 설치하여야 한다. 그러나 부지에 대한 조사결과 부지가 오염되지 않았거나 오염물질이 확산되지 않았다는 것이 명백할 경우에는 관측정 설치는 생략될 수 있다.
- [표 2.1.1-8]은 지하수의 채취위치, 깊이 및 밀도결정과 오염현황의 판단에 도움이 될 것이며 조사자가 다른 조사방법을 적용할 경우에는 그 이유를 보고서에 기록해야 한다.
- 탱크 피트에 대한 굴착 및 화학적 실험을 통해 오염물질이 이동되지 않았다는 것을 확인할 수 있다면 관측정을 설치할 필요는 없을 수도 있으며 부지 평가보고서에서 논의되어야 한다.

<table>
<thead>
<tr>
<th>위치</th>
<th>관측정의 수</th>
<th>작업 내용</th>
<th>분석 항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>오염원에 인접한 수리학적 하류부인 부지 내부</td>
<td>부지 내 오염지역당 1개소</td>
<td>부지당 1개소 (부지 내부의 지하수가 오염된 경우에 한함)</td>
<td>TPH²/BTEX³, 납⁴, PAHs⁵, 페놀⁶</td>
</tr>
<tr>
<td>부지경계선에 인접한 수리학적 하류부인 부지 외부¹</td>
<td>부지당 1개소 (부지 내부의 지하수가 오염된 경우에 한함)</td>
<td>관측정 설치 중 토양시료채취, 설치깊이는 지역적, 수리지질학적 상황을 고려하여 결정</td>
<td></td>
</tr>
<tr>
<td>부지경계선에 인접한 수리학적 상류부의 부지 외부¹</td>
<td>부지당 1개소 (부지 내부의 지하수가 오염된 경우에 한하며 배경농도 확인을 위함)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[표 2.1.1-8] 주유소 부지 지하수 시료채취의 최소 준수사항

비고) 1) 부지 외부의 경우 관련자 또는 단체의 동의와 승인이 가능한 경우 수행  
2) TPH : 탄소 수 6 ~ 36사이의 탄화수소  
3) BTEX : 벤젠, 톨루엔, 에틸벤젠, 크실텐  
4) 납 항목은 연료가 납을 함유했거나 확인되지 않은 경우 분석  
5) 다환방향족 탄화수소  
6) 페놀 항목은 폐유 또는 원인불명에 의한 오염인 경우 분석

- 지하수의 오염이 확인될 경우 저장탱크 또는 다른 잠재적 오염원의 수리적 하류방향으로 최소 2개의 관측정을 추가 설치하여 오염의 부지 외부로의 확산이 동을 조사하여야 하며, 최소 1개의 관측정이 배경에 대한 조사로 수리적 상류부에 추가 설치되어야 한다.
2.1.2 국내 토양오염조사지침 조사체계 분석

본 절에서는 현재 국내에서 적용하고 있는 토양오염 조사방법 중 토양정밀조사, 토양환경평가 및 토양정화검증 등 각 조사지침과 관련된 내용 등을 고찰하고 국내 각종 토양오염조사지침의 토양시료 채취방법, 조사밀도 등 운영상 문제점을 도출하였다. [표 2.1.2-1]에 국내 토양환경보전법상의 토양오염조사와 관련한 제도를 간략하게 비교하였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>토양정밀조사</th>
<th>토양환경평가</th>
<th>토양정화검증</th>
</tr>
</thead>
<tbody>
<tr>
<td>조사기관</td>
<td>토양관련전문기관 (토양오염조사기관)</td>
<td>토양관련전문기관 (토양오염조사기관)</td>
<td>토양관련전문기관 (토양오염조사기관)</td>
</tr>
<tr>
<td>시행근거 (토양환경보전법)</td>
<td>제5조제4항</td>
<td>제10조의2</td>
<td>제15조의6</td>
</tr>
</tbody>
</table>
| 대상부지     | - 상시측정 결과 우려기준 넘는 지역  
- 실태조사 결과 우려기준 넘는 지역  
- 그 밖의 토양오염 사고 등으로 우려 기준을 넘을 가능성이 크다고 인정하는 지역 | - 토양오염관리대상 시설이 설치되어 있거나 설치되어 있었던 부지 | - 토양정화지역 |
| 철차         | - 기초조사  
- 개정조사  
- 정밀조사 | - 기초조사  
- 개정조사  
- 정밀조사 | - 검증계획 수립  
- 과정검증  
- 완료검증 |

[표 2.1.2-1] 국내 토양오염조사 관련 제도
가. 토양정밀조사

“토양정밀조사지침”은 토양환경보전법 제5조제4항 및 동법 시행규칙 제1조제4항의 규정에 따라 토양오염이 우려되는 지역의 토양오염실태를 정밀조사함에 있어 조사항목, 시료채취방법 등 정밀조사에 필요한 세부사항을 정함을 목적으로 한다.

지침은 토양측정망 운영 및 토양오염실태조사 결과 토양오염우려기준을 초과하는 지역 또는 측정망 및 토양오염실태조사 지점 설치구역 외의 지역으로서 토양오염우려기준을 초과할 가능성이 있다고 판단되는 지역에서 실시하는 토양정밀조사에 적용한다. 또한 토양정밀조사는 지침을 따르되 조사 대상지역의 오염상황, 오염면적에 따라 필요한 경우 대상지역, 대상시료의 선정 및 시료채취 밀도 등을 토양관련전문기관이 조정할 수 있다.

토양환경보전법상에서는 중금속류, 유류, 유기용제 등 토양오염의 원인이 되는 21개 물질을 규제대상 토양오염물질로 규정하고 있으며, 각각의 물질에 대하여 사람의 건강 및 재산, 동물의 생육에 지장을 초래할 우려가 있는 정도의 토양오염도인 토양오염우려기준과 우려기준을 초과하여 사람의 건강 및 재산, 동물의 생육에 지장을 주어 토양오염에 대한 대책을 필요로 하는 토양오염대책기준을 [표 2.1.2-2]에 정하고 있고 토양정밀조사의 조사항목은 아래와 같이 구분된다.

- 토양측정망 운영 및 토양오염실태 조사결과 토양오염우려기준 초과항목 및 토양 pH
- 토양측정망 및 토양오염실태조사 지점 외의 지역으로서 토양오염우려기준을 초과할 가능성이 있다고 판단되는 항목 및 토양 pH
<table>
<thead>
<tr>
<th>오염 물질</th>
<th>(단위: mg/kg)</th>
<th>토양오염우려기준</th>
<th>토양오염대책기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>카드뮴</td>
<td>1 지역</td>
<td>2 지역</td>
<td>3 지역</td>
</tr>
<tr>
<td>구리</td>
<td>4</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>비소</td>
<td>25</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>수은</td>
<td>4</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>납</td>
<td>200</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>아연</td>
<td>5</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>아연</td>
<td>300</td>
<td>600</td>
<td>2,000</td>
</tr>
<tr>
<td>니켈</td>
<td>100</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>붉아비록</td>
<td>400</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>유기인화합물</td>
<td>10</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>플라크릴네테르더피페닐</td>
<td>2</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>시안</td>
<td>2</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>폐부</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>벤젠</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>투루엔</td>
<td>20</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>에틸벤젠</td>
<td>50</td>
<td>50</td>
<td>340</td>
</tr>
<tr>
<td>크실렌</td>
<td>15</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>석유계총합화수소(TPH)</td>
<td>500</td>
<td>800</td>
<td>2,000</td>
</tr>
<tr>
<td>트리클로로에틸렌(TCE)</td>
<td>8</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>테트라클로로에틸렌(PCE)</td>
<td>4</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>벤조(a)피렌</td>
<td>0.7</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

[표2.1.2-2] 토양오염우려기준 및 토양오염대책기준

비고

1. 지역: 「측량·수로조사 및 지적에 관한 법률」에 따른 지역이 공장용지·주차장·주유소용지·도로·철도용지·제방·잡종지(2지역에 해당하는 부지의 모든 잡종지를 말한다)인 지역과「국방·군사시설사업에 관한 법률」 제2조제1항제1호부터 제5호까지에서 규정한 국방·군사시설 부지

2. 지역: 「측량·수로조사 및 지적에 관한 법률」에 따른 지역이 공장용지·주차장·주유소용지·도로·철도용지·제방·잡종지(2지역에 해당하는 부지의 모든 잡종지를 말한다)인 지역과「국방·군사시설사업에 관한 법률」 제2조제1항제1호부터 제5호까지에서 규정한 국방·군사시설 부지

3. 지역: 「측량·수로조사 및 지적에 관한 법률」에 따른 지역이 공장용지·주차장·주유소용지·도로·철도용지·제방·잡종지(2지역에 해당하는 부지의 모든 잡종지를 말한다)인 지역과「국방·군사시설사업에 관한 법률」 제2조제1항제1호부터 제5호까지에서 규정한 국방·군사시설 부지

4. 「공익사업을 위한 토지 등의 취득 및 보상에 관한 법률」 제48조에 따라 취득한 토지를 반환하거나「주한미군 공영구역 주변지역 등 지원 특별법」 제12조에 따라 반환공여구역의 토양 오염 등을 제거하는 경우에 해당 토지의 반환 후 용도에 따른 지역 기준을 적용한다.

5. 벤조(a)피렌 항목은 유독물의 제조 및 저장시설과 폐침목을 사용한 지역(예: 철도용지, 공원, 공장용지 및 하천 등)에만 적용한다.
1) 토양정밀조사 체계분석

토양정밀조사는 기초조사, 개황조사, 정밀조사의 3단계로 구분하여 수행하며 [그림 2.1.2-1]에 각 단계별 조사내용을 정리하였다.

[그림 2.1.2-1] 토양정밀조사의 단계별 조사내용
기초조사 단계는 자료조사, 청취조사 및 현지조사 등을 통하여 토양오염 가능성 유무를 판단하기 위한 것으로 다음과 같은 조사활동이 포함된다.

- 토지사용 이력조사
  - 토지이용의 이력 및 과거의 사업활동 파악

- 시설 내역조사
  - 대상물을 포함한 원재료, 사용약품 등의 종류와 사용량, 보관장소, 보관 방법 및 보관량, 사용기간 등
  - 시설의 파손, 사고 등에 의한 대상물질의 누출유무 및 누출량
  - 관련시설의 설치내역(필요할 경우 항공사진 등 입수) 등

- 현지 확인조사
  - 토양오염물질의 성상(액상, 젤 상태의 고상 등)
  - 오염물질의 진행방향 및 오염범위의 추정(광산지역의 경우 폐석 및 폐미의 양)

- 기타
  - 대상지역의 지적도 및 지형도
  - 오염 영향권 내에 위치하는 시설의 종류 및 위치, 인구수, 식생상태, 연간 강수량 등
  - 폐수 및 폐기물 등의 발생경로(폐기물 매립이 있는 경우 그 매립장소 파악)
  - 기타 토양오염의 영향을 파악할 수 있는 관련자료

개황조사 단계는 오염토양개선대책이 요구되는 지역의 오염면적 및 오염범위를 파악하기 위한 사전 개략조사이며, 조사지역의 특성에 따라 크게 3개 지역으로 구분하여 시료채취밀도 및 채취방법 등을 정하고 있다.

- 조사지역 구분
  - 광산활동 관련지역(가행 또는 휴폐광산 및 재현소 지역)
  - 폐기물 매립지역
  - 기타 지역(유류배출 가능지역, 유해화학물질 저장시설지역, 산업지역)

- 시료채취밀도 및 채취방법
  - 조사지역구분에 따라 시료채취밀도를 달리하며, 시료채취는 표토와 심토로 구분하여 채취
정밀조사 단계는 개황조사 결과 토양오염우려기준을 초과하거나 이에 근접하는 지역을 대상으로 하여, 토양오염현황을 평가하는 것을 목적으로 한다.

조사지역 구분

• 개황조사와 동일

시료채취밀도 및 채취방법

• 개황조사결과를 고려하여 시료채취지점을 선정 후 시료의 채취밀도를 조정하여 보다 정밀한 오염원 및 오염물질의 종류·범위 등을 산정

시료채취 지점도 및 오염분포도 작성

• 총적 1/500(조사범위가 40,000m² 이상인 경우에는 1/5,000) 지도에 시료채취 지점을 표기
• 토양오염우려기준 초과 물질에 한해 오염지도 작성
• 오염등급을 4등급(1)으로 구분
• 오염지도 총적은 시료채취 지점도와 동일한 것 사용
  (기준조사 지역에 대해서는 오염지도에 지번, 지적자료 참부)

공통 사항

• 시료량, 시료의 운반 및 보관은 토양오염공정시험방법 제3장, 제1절, 제1항, 1, 나. 시료의 채취 및 보관에 준함

분석방법 : 항목별 분석방법 및 계산과정은 시험기록부에 기록

• 토양 : 토양오염공정시험방법
• 농업용수, 공업용수, 지하수 : 수질오염공정시험방법
• 수로저질, 광재 : 토양오염공정시험방법(필요시 폐기물공정시험방법의 함유량시험 방법에 준하여 실시)

기록유지를 위해 시료채취기록부 및 시험기록부는 3년간 보관

1) I등급 : 토양오염우려기준의 40% 미만인 지역(축색), II등급 : 토양오염우려기준의 40% 이상부터 토양오염우려기준 미만인 지역 (녹색), III등급 : 토양오염우려기준 이상부터 토양오염대책기준 미만인 지역(노란색), IV등급 : 토양오염대책기준 초과지역(빨간색)
나. 토양환경평가

“토양환경평가지침”은 토양환경평가를 실시하는데 필요한 세부 평가항목, 방법 및 절차 등을 규정함을 목적으로 하며, 법적 근거는 아래와 같다.

- 토양환경보전법 제10조의2제3항(토양환경평가의 항목, 방법 및 절차 그 밖의 필요한 사항은 환경부장관이 정하여 고시)
- 토양환경보전법 시행규칙 제1조의2의 규정에서 정한 토양오염물질에 의한 토양오염을 평가대상으로 하며, 그 외 오염물질에 의한 토양오염에 대해서는 필요한 경우 평가대상에서 추가할 수 있음

1) 토양환경평가 체계분석

토양환경평가는 토양오염관리대상시설, 공장 및 국방군사시설이 설치되어 있거나 설치되어 있었던 부지 및 그 주변지역에 대하여 실시하며, 대상부지의 상황에 따라 필요한 경우 평가항목, 방법 및 절차를 조정할 수 있다. 기본 평가 절차는 기초조사, 개황조사, 정밀조사로 구분할 수 있으며, 평가항목은 아래와 같다.

- 기초조사에서는 대상부지의 토양환경과 관련된 자료조사, 현장조사 및 청취조사를 통하여 토양오염의 개연성 여부를 평가하고, 오염의 개연성이 인정될 경우 오염물질의 종류 및 오염범위를 추정한다.

☐ 자료조사

일반현황
1) 위치 및 입지조건(대상부지 및 주변지역 지적도 및 지형도, 항공사진, 지하 장애물 등)
2) 연혁 및 토지이용 현황(토지대장, 건축물 대장, 인허가 서류, 토지이용이력 등)
3) 시설운영 현황(설비 및 운전 등 생산공정, 취급한 원재료 및 생산품, 사용된 화학약품, 토양오염을 유발할 수 있는 폐수·폐기물·대기·VOC·지하수·토양오염물질·오염가능물질의 배출자 신고필증 및 처리발생현황 등)
4) 대상 부지의 소유권에 대한 기록, 감정서 등

환경관리
1) 특정토양오염관리대상시설 설치신고서
2) 토양오염도검사 또는 누출검사 자료
3) 대상부지 및 주변지역 지하수 오염도 검사자료
4) 환경오염사고 관련자료(언론보도, 민원 발생기록 등)
5) 부지의 굴도 및 복도 등에 관한 자료
6) 오·폐수 및 우수 흐름도
7) 기타 토양오염 상태의 확인에 필요한 자료

[표 2.1.2-3] 기초조사 대상자료 목록

-fi 현장조사
• 현장을 방문하여 신체의 감각기관을 통하여 대상부지의 오염상태를 확인하는 과정으로 토양오염관리대상시설의 설치 장소 확인 및 오염물질의 보관 상태, 대상부지와 주변지역의 지형·지질, 식물 생장상태, 오염 예상지역의 누출흔적 및 변색 등을 조사

-fi 청취조사
• 대상부지의 소유자 및 관리자, 장기 근무자, 지역 공무원 및 주변지역 거주자 등과의 접촉을 통하여 토양오염상태를 확인하는 과정으로 대상부지의 주요 시설현황 및 폐쇄 또는 이전 사항, 오염물질관리상태, 외부로 알려지지 아니한 오염사고 사례 등을 조사

-fi 평가의견
• 자료조사, 현장조사 및 청취조사 등의 결과를 종합적으로 평가하여 토양오염의 개연성 여부를 평가하고, 오염의 개연성이 인정될 경우 오염물질의 종류 및 오염범위를 추정
※ 자료조사, 현장조사, 청취조사 이외에 필요한 경우 토양 시료채취 및 분석을 실시하여 오염여부를 직접 확인

2) 토양오염물질을 생산·운반·저장·취급·가공 또는 처리함으로써 토양물 오염시킬 우려가 있는 시설·장치·건물·건축물 및 장소 등을 말한다.
보고서 작성

1단계 기초조사가 완료되면 1단계 평가보고서를 작성하여야 하며, 이 보고서에는 평가의견 등과 객관화할 수 있는 자료(예: 참고문헌, 증거서류 등)를 첨부하는 것을 원칙으로 함

2) 개황조사에서는 기초조사 결과 오염개연성이 확인된 지역의 오염물질의 종류와 개략적인 오염범위 등을 확인하기 위해 시료채취 및 분석을 실시한다.

시료채취 방법

시료채취 밀도 및 심도

- 표토의 시료채취 지점수는 오염가능지역의 면적이 500㎡ 이하일 경우에는 5개 이상 지점으로 하고, 1,000㎡까지는 6개 이상의 지점, 1,000㎡을 초과할 때부터는 1,000㎡당 1개 이상의 지점을 추가로 선정한다.
- 심토의 경우 표토 시료 수 3개 지점 당 1개 지점 이상 비율로 채취(최소 1개 지점 이상)하며, 그 깊이는 원칙적으로 지표면에서 15m 깊이까지로 하여, 25m 이내 간격으로 1점 이상의 시료를 채취하되, 15m 이내에서 알반층이 나타나면 그 깊이까지로 한다.
- 유류 및 유독물 등 저장시설이 설치된 경우 지상저장시설과 지하저장시설별로 저장시설과 주변 오염예상 지역에 대해 시료를 추가로 채취한다.

시료채취 지점

- 심토의 시료채취 지점은 토양오염물질 저장 또는 사용시설 설치지역 등 토양오염의 우려가 큰 지점을 우선 대상으로 선정한다.
- 토양오염물질 저장시설에 저장조실벽이 있는 경우 저장조실벽 외부로의 누출을 고려하여 시료채취지점을 선정한다.
- 여러 개의 토양오염물질 저장시설 또는 토양오염물질 사용시설이 대상지역 내에 분산되어 있을 경우 각각의 시설 외곽 경계선을 기준으로 4방위에서 시료를 채취한다.
- 기타 일반사항은 토양오염공정시험기준을 따른다.

평가의견

시료채취 결과를 종합적으로 평가하여 토양오염의 여부를 평가한다. 토양오염우려기준을 초과하거나 오염이 우려되는 농도를 초과하는 등 오염이
있는 경우 오염이 있는 지역과 오염물질의 종류 등을 판단한다.

○ 보고서 작성
  • 토양환경평가기관은 토양환경평가지침 [별표 3]에서 예시한 양식에 따라 토양환경평가 개황조사보고서를 작성하여야 한다. 토양오염이 확인되어 정밀조사를 시행하는 경우 개황조사보고서를 별도로 작성하지 않을 수 있다.

③ 정밀조사에서는 대상부지에 대한 오염도(오염물질의 종류, 오염범위 등)를 분석ㆍ평가하여 토양오염도를 최종 평가하며, 필요한 경우, 대상부지 내의 지하수 오염도도 조사ㆍ분석한다.

○ 조사계획 수립
  • 대상부지와 주변지역의 특성을 확인하거나 잠재적인 오염물질의 분포를 파악하기 위해 1단계 보고서 및 기존 자료의 검토
  • 대상부지의 토양환경을 객관적으로 조사할 수 있도록 시료채취 및 시료의 운반ㆍ보관 등 시료채취계획 수립
  • 조사자 개인의 건강과 안전을 확보할 수 있는 작업계획 수립
  • 채취된 시료에 존재할 것으로 예상되는 오염물질을 검출할 수 있도록 시료 분석계획 수립
  • 분석된 자료의 신뢰성과 정확성을 보증할 수 있는 적정한 정도관리계획을 수립

○ 조사활동
  • 조사계획에 의거 사전조사, 시료채취, 시료운반ㆍ보관, 시료분석 및 정도관리 실시

○ 평가
  • 토양환경보전법상 토양오염물질인 경우 법에서 규정한 토양오염기준을 적용하며, 그 외의 오염물질인 경우에는 국제적 또는 외국 기준에 준하여 평가 (분석방법은 당해 기준 적용 시험방법에 따라야 함)
  • 조사계획에 따라 적절하게 조사가 수행되었는지 여부와 토양오염이 대상부지에서 기인된 것인지 여부를 평가

○ 조사결과 해석
  • 오염물질이 실제로 대상부지에서 폐기 또는 누출된 오염물질에 의한 것인지 아니면 자연적인 현상이나 그 밖에 원인에 의한 것인지로 평가
양도인 또는 양수인이 조사결과에 대한 추가적인 평가를 요구할 때 그 타당성 여부를 결정

○ 최종보고서 작성

• 토양평가기관은 토양환경평가지침 [별표 2]의 양식에 따라 최종평가보고서를 작성한다. 토양정화검증

“토양정화검증 제도”는 오염토양의 정화공사 수행시 전체 정화공사에 대한 진행과정과 정화완료 여부를 토양오염원인자 및 토양정화업자 이외의 제3의 토양오염조사기관(토양정화검증기관)이 객관적이고 독립적으로 확인토록 함으로써 토양정화결과의 신뢰성을 확보하고자 2006년부터 본격적으로 시행되었다.

본 제도가 시행됨에 따라 토양오염원인자는 부실한 정화로 인하여 발생할 수 있는 법적 논란과 경제적 손실을 줄일 수 있으며, 국가는 토양오염물질의 지정 및 기준설정, 전국적인 토양오염현황과의 특정토양오염관리대상시설의 관리 뿐만 아니라 오염토양의 정화체계 등 전반적인 국가 토양환경보전의 기틀을 마련하였다.

토양정화검증기관은 토양정화업자가 수행하는 토양정화공사에 대해서 법에 규정(토양정화 검증방법에 관한 고시<환경부 고시 제2009-173호>)된 검증의 절차·내용 및 방법에 따라야 한다.

토양 정화 세부검증항목 및 세부검증방법은 아래와 같다.

<table>
<thead>
<tr>
<th>검증항목</th>
<th>세부 검증항목</th>
<th>비고</th>
</tr>
</thead>
</table>
| 오염도 분석 | 시료채취 및 분석                                    | 세부방법 및 주기는 정화방법
| 환경 관리   | 2차 오염원의 발생 및 처리 현황                        | 해당사항에 대해서 실시    |
| 굴착작업   | 적정 굴착여부 현장확인, 오염토양 적정 분류 현장확인   | 위치의 방법               |
| 정화토양 처분 | 시료검토 및 현장확인                                 |                           |

[표 2.1.2-4] 세부검증항목
<table>
<thead>
<tr>
<th>구분</th>
<th>세부 항목</th>
<th>검증기준</th>
<th>세부 검증방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>오염도 분석</td>
<td>오염도 과정검증</td>
<td>오염도 저감정도</td>
<td>오염도 분석결과를 최초 오염도 및 정화목표와 비교하여 저감정도를 판정</td>
</tr>
<tr>
<td>완료검증</td>
<td>정화목표 미만</td>
<td>오염도 분석결과를 정화목표와 비교하여 판정</td>
<td></td>
</tr>
<tr>
<td>환경관리</td>
<td>환경의 적정 관리여부</td>
<td>폐기물 적정관리</td>
<td>발생 폐기물 관련 자료를 검토하여 적정 관리여부를 판정</td>
</tr>
<tr>
<td>폐수 적정관리</td>
<td>발생 폐수 관련 자료를 검토하여 적정 관리여부를 판정</td>
<td></td>
<td></td>
</tr>
<tr>
<td>폐가스 적정관리</td>
<td>발생 폐가스 관련 자료를 검토하여 적정 관리여부를 판정</td>
<td></td>
<td></td>
</tr>
<tr>
<td>굴착작업</td>
<td>굴착작업의 적정 진행여부</td>
<td>오염토양 적정굴착</td>
<td>굴착현장을 현장확인하여 오염토양이 적정하게 굴착되는지를 확인하고 비오염토양이 불필요하게 굴착되는 것을 방지</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>자료검토 및 육안검사를 통하여 굴착토양이 오염토양과 비오염토양으로 적정하게 분류되는지를 판정</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>육안검사를 통하여 오염토양이 현장에서 적정하게 야적 보관 이송되는지의 여부를 판정</td>
</tr>
<tr>
<td>정화토양 처분</td>
<td>정화토양의 적정 관리여부</td>
<td>정화토양 적정처분</td>
<td>자료검토 및 현장확인을 통하여 정화된 토양이 적법하게 처분되었는지를 판정</td>
</tr>
</tbody>
</table>

[표 2.1.2-5] 세부검증방법

시료채취지점 및 시료 수는 완료검증과 과정검증으로 구분하여 아래와 같이 산정한다.
- 완료검증 : 시료채취지점수의 산정은 토양환경평가지침의 기준을 준용한다. 시료는 채취지점의 깊이 1m 간격으로 1개씩 채취하여 오염이 확산되지 않은 깊이까지 채취한다. 굴착처리하는 경우 굴착 전의 오염분포에 따라서 지점 및 시료수를 산정한다.
- 과정검증 : 완료검증 시료수의 20%이상을 과정검증의 시료수로 산정하고 정화방법의 특성 및 기간을 고려하여 배분하여 검증한다.
1) 토양정화검증 체계분석

토양정화검증절차는 크게 토양정화공사 착공 전의 “검증계획 수립”단계, 정화공사 진행 중에 실시하는 “과정검증”단계, 그리고 정화공사 완료시 실시하는 “완료검증”단계 등 3단계로 구분할 수 있다.

① 검증계획 수립단계는 오염원인자가 제출한 토양정화검증신청서와 첨부서류 등을 검토하고 검증계획서를 작성하는 단계로서 수행내용은 아래와 같다.
○ 자료검토
  • 오염도 조사보고서(토양오염도 조사, 토양정밀조사, 토양환경평가 등)
  • 오염토양정화계획서
  • 그 밖의 관련자료
○ 자료검토 내용을 확인하기 위한 현장조사
○ 토양정화검증계획서 작성 및 통보(검증기관→오염원인자)

② 과정검증단계는 토양정화공사 진행 중에 실시하며 수행내용은 아래와 같다.
  단, 오염토양이 1,000㎥ 이하일 경우 과정검증은 생략할 수 있다.
  • 완료검증 시료수로의 20%이상을 과정검증의 시료수로 산정하고 정화방법의 특성 및 기간을 고려하여 검증
  • 오염토양정화계획의 이행여부를 확인
  • 주기적인 토양시료 채취·분석을 통해 오염농도의 저감을 확인

③ 완료검증단계는 토양정화공사 완료시점에서 실시하며 수행내용은 아래와 같다.
  • 정화목표까지 정화되었을 경우 검증기관은 오염원인자에게 토양정화 검증서를 발급하며, 정화되지 않았을 경우 재검증을 수행한다.
  • 시료채취지점수와 산정은 토양환경평가지침의 기준을 준용함. 시료는 채취지점의 깊이 1m 간격으로 1개씩 채취하여 오염이 확산되지 않은 깊이까지 채취하며 굴착처리하는 경우 굴착 전의 오염분포에 따라서 지점 및 시료수를 산정
  • 최종 시료채취·분석을 통해 오염농도가 정화목표까지 달성되었는지의 여부 확인
  • 토양정화검증 결과보고서 작성
  • 토양정화검증서 작성

3) 오염도 조사보고서, 오염토양정화계획서, 설계도서 등
4) 토양환경보전법 제11조의2(정화과정 검증의 생략) 법 제15조의6제1항 단서의 규정에 의하여 오염토양의 양이 1,000㎥ 미만(중금속에 의한 오염토양 중 토양오염도가 대책기준을 초과하는 것으로서 500㎥ 이상인 것을 제외)인 경우에는 정화과정에 대한 검증을 생략할 수 있다[문건신설 2005.6.30].
2.1.3 국내외 토양오염조사방법 비교 분석 및 문제점 도출

현행 토양환경보전법은 토양조사와 관련하여 토양정밀조사, 토양환경평가 및 토양정화검증에 대해 별도의 지침을 제정하여 시행하고 있다. 주요 토양오염조사지침내용을 간략하게 정리하면 [표 2.1.3-1]과 같다.

<table>
<thead>
<tr>
<th>주요 지침내용</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>토양정밀조사</strong></td>
</tr>
<tr>
<td>- 토양오염우려기준을 초과하는 지역이나 초과할 가능성이 있다하고 판단되는 지역에 대해 토양오염 실태를 조사하기 위한 구체적인 절차와 방법</td>
</tr>
<tr>
<td><strong>토양환경평가</strong></td>
</tr>
<tr>
<td>- 토양오염관리대상시설이 설치되어 있거나 설치되어 있었던 부지를 거래함에 있어 대상부지의 토양오염 여부와 그 범위를 사전에 조사·평가함으로써 거래 이후 발견될 수 있는 토양오염으로 인한 재산상의 불이익이나 정화의무와 관련된 법적 책임의 관계를 명확히 하기 위한 절차와 구체적인 수행방법</td>
</tr>
<tr>
<td><strong>토양정화검증</strong></td>
</tr>
<tr>
<td>- 오염토양의 정화공사 수행시 전체 정화공사에 대한 정화과정과 정화완료 여부를 토양오염원인자 및 토양정화업자 이외의 제3의 토양오염조사기관(토양정화검증기관)이 객관적이고 독립적으로 확인토록 함으로써 토양정화결과의 신뢰성을 확보</td>
</tr>
</tbody>
</table>

[표 2.1.3-1] 국내 토양오염조사 지침

토양환경평가와 토양정밀조사는 토양오염이 우려되는 지역에 대한 조사를 수행한다는 측면에서 공통점이 있다. 두 지침은 유사한 적용범위와 목적, 조사방법을 다루고 있으며, 토양환경평가의 조사절차(1단계 기초조사와 2단계 정밀조사)는 토양정밀조사지침의 조사절차(기초조사, 개황조사, 정밀조사)와 상당 부분에서 내용이 중복되고 있다. 또한 이들 지침 내에서 “정밀”이라는 용어가 중복 사용됨에 따라 토양조사의 진행에 혼란을 야기시킬 가능성이 있는 것으로 판단된다.

토양환경평가의 개황조사 내에 오염여부를 확인하기 위한 시료채취 및 분석(ASTM 지침에서는 Phase II ESA에 해당됨)이 선택사항으로 포함되어 있으며, 정밀조사에서는 토양정밀조사지침의 범위에 해당하는 오염범위 및 오염량 산정이 포함되어 있다. 토양환경평가 정밀조사에서 언급하고 있는 오염범위의 의미는 오
염 가능한 또는 오염개연성이 있는 토양의 범위로서 토양정밀조사를 통해 구해지는 실질적인 토양오염의 범위와 혼돈될 소지가 있는 상황이다.

2.1.1절의 해외 토양오염조사 지침에서 보았듯이 해외의 경우 일반적으로 토양조사의 단계를 조사의 목적에 따라 구분하고 각 단계에 맞는 조사방법을 제공하는 통합된 관리체계를 갖추고 있다. 이처럼 국내의 토양오염조사 지침 또한 혼란을 야기하는 부분을 수정하고 각 조사 단계에 명확한 조사관련 체계를 갖추어야 할 것이다.
2.2 토양오염조사 방법에 대한 개선방안 제시

2.2.1 채취방법, 조사밀도에 대한 개선방안 제시

본 절에서는 국내 토양오염지침과 관련한 토양오염정밀조사, 토양환경평가 및 토양정화검증에 관련하여 시료채취 방법 및 조사밀도에 대해 조사하고 개선방안을 제시하였다.

가. 토양정밀조사
토양정밀조사는 기초조사, 개황조사, 정밀조사의 3단계로 구분하여 수행하고있다.

① 개황조사 단계는 오염토양개선대책이 요구되는 지역의 오염면적 및 오염범위를 파악하기 위한 사전 개략조사이며, 조사지역의 특성에 따라 크게 3개 지역으로 구분하여 시료채취밀도 및 채취방법 등을 정하고 있다.

○ 조사지역 구분
  • 광산활동 관련지역(가행 또는 휴폐광산 및 제련소 지역)
  • 폐기물 매립지역
  • 기타 지역(유류배출 가능지역, 유해화학물질 저장시설지역, 산업지역)

○ 시료채취밀도 및 채취방법
  • 조사지역구분에 따라 시료채취밀도를 달리하며, 시료채취는 표토와 심토로 구분하여 채취[표 2.2.1-1]
조사지역 구분 (대상시료) | 시료채취 밀도 및 채취방법 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>광산활동 관련지역 (토양)</td>
<td>시료채취밀도</td>
</tr>
<tr>
<td>- 조사면적≤100,000㎡일 경우 : 10,000㎡ 당 1개 지점 추가</td>
<td>- 환경 : 장벽을 기점으로 하천에 인접한 농경지에 대해 조사자의 판단에 따라 거리별로 채취</td>
</tr>
<tr>
<td>- 조사면적&gt;100,000㎡일 경우 : 50,000㎡ 당 1개 지점 추가 ※ 심토시료(표토~30cm까지)</td>
<td></td>
</tr>
<tr>
<td>폐기물 매립지역 (토양, 필요시 하천수, 농업용수, 수로저질 포함)</td>
<td>- 조사면적≤10,000㎡일 경우 : 1,000㎡ 당 1개 지점 추가</td>
</tr>
<tr>
<td>- 조사면적&gt;10,000㎡일 경우 : 2,000㎡ 당 1개 지점 추가</td>
<td>- 산간계곡 : 오염확산 추정지역까지를 대상범위로 선정</td>
</tr>
<tr>
<td>기타 지역 (토양)</td>
<td>- 조사면적≤1,000㎡일 경우 : 500㎡ 당 1개 지점 추가</td>
</tr>
<tr>
<td>- 조사면적&gt;1,000㎡일 경우 : 1,000㎡ 당 1개 지점 추가</td>
<td>- 지정조심비 : 대상시설 4면에서 시료채취</td>
</tr>
<tr>
<td></td>
<td>- 대상시설 분산 : 각각의 시설 외곽 경계선을 기준으로 4방위에서 시료채취</td>
</tr>
</tbody>
</table>

[표 2.2.1-1] 개황조사 시료채취 밀도 및 채취방법

※ 공통 사항
- 표토 시료수 3개 지점당 1개 지점의 비율로 심토시료 채취
- 심토시료 채취깊이 : 매립지역과 기타 지역은 원칙적으로 지표면에서 15m까지로 하여 2.5m에 1지점씩 시료를 채취(총 5점)하나, 일반층이 나타나면 그 깊이까지 채취
- 대상지역에 대한 오염면적 및 상황에 따라 시료채취 밀도조정 가능

② 정밀조사 단계는 개황조사 결과 토양오염우려기준을 초과하거나 이에 근접하는 지역을 대상으로 하여, 토양오염현황을 평가하는 것을 목적으로 한다.

○ 조사지역 구분
  - 개황조사와 동일

○ 시료채취밀도 및 채취방법
  - 개황조사결과를 고려하여 시료채취지점 선정 후 시료의 채취밀도를 조정하여 보다 정밀한 오염원 및 오염물질의 종류, 범위 등을 산정

○ 시료채취 지점도 및 오염분포도 작성
• 축적 1/500(조사범위가 40,000㎡ 이상인 경우에는 1/5,000) 지도에 시료채취 지점 표기
• 토양오염우려기준 초과 물질에 한해 오염지도 작성
• 오염등급을 4등급으로 구분·작성
• 오염지도 축적은 시료체취 지점도와 동일한 것 사용

<table>
<thead>
<tr>
<th>조사지역 구분 (대상시료)</th>
<th>시료채취밀도</th>
<th>시료채취방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>광산활동 관련지역 (토양, 농업용수, 수로저질, 폐해, 잔해수)</td>
<td>500㎡당 1개지점 추가</td>
<td>- 조사지역 내 1,000㎡당 1개지점 추가</td>
</tr>
<tr>
<td></td>
<td>조사사항: 폐기물 매립지역 (토양, 지하수)</td>
<td>- 조사사항: 기타 지역 (토양, 지하수, 필요시 하천수 포함)</td>
</tr>
<tr>
<td></td>
<td>조사사항: 기타 지역 (토양, 지하수, 필요시 하천수 포함)</td>
<td></td>
</tr>
</tbody>
</table>

[표 2.2.1-2] 정밀조사 시료채취 밀도 및 채취방법

※ 공통 사항
- 대상지역에 대한 오염면적 및 상황에 따라 시료채취 밀도조정 가능

③ 공통 사항
◇ 시료생, 시료의 운반 및 보관은 토양오염공정시험방법 제3장, 제1절, 제1항, 1, 나, 시료의 채취 및 보관에 준함
◇ 분석방법: 항목별 분석방법 및 계산과정은 시험기록부에 기록
◇ 토양: 토양오염공정시험방법

※ 1등급: 토양오염우려기준의 40% 미만인 지역(청색), Ⅱ등급: 토양오염우려기준의 40% 이상부터 토양오염우려기준 미만인 지역 (녹색), Ⅲ등급: 토양오염우려기준 이상부터 토양오염대책기준 미만인 지역(노란색), Ⅳ등급: 토양오염대책기준 초과지역(빨간색)
농업용수, 공업용수, 지하수: 수질오염공정시험방법
수로저질, 광재: 토양오염공정시험방법(필요시 폐기물공정시험방법의 함유
량시험 방법에 준하여 실시)
○ 기록유지를 위해 시료채취기록부 및 시험기록부는 3년간 보관
나. 토양환경평가
토양환경평가는 기초조사, 개황조사, 정밀조사로 구분하여 단계별로 실시하며,
개황조사 및 정밀조사시 토양시료 채취방법 및 조사밀도는 다음과 같다.

1. 개황조사 단계는 기초조사 결과 오염개연성이 확인된 지역의 오염물질의 종류
와 개략적인 오염범위 등을 확인하기 위해 시료채취 및 분석을 포함하는 개황조
사를 실시한다. 필요한 경우, 오염가능 물질의 종류, 건물 등 지상물과 지질여건
등 객관적인 자료를 토대로 평가결과에 영향을 주지 아니하는 범위 내에서 토양
환경평가기관의 책임 하에 평가면적, 평가대상 오염물질의 종류, 시료채취 밀도
및 심도를 일부 조정하여 평가를 실시할 수 있다. 평가내용을 일부 조정하여 실시
한 경우 토양환경평가기관은 조정사유를 결과보고서에 포함하여 작성하여야 한다.

○ 시료채취 방법
• 시료채취 밀도 및 심도
- 표토 (비포장 지역 : 지표면 하부 15cm, 포장 지역 : 포장면 하부 15cm)
시료채취 지점수는 오염가능지역의 면적이 500㎡ 이하일 경우에는 5개 이상 지
점으로 하고, 1,000㎡까지는 6개 이상의 지점, 1,000㎡을 초과할 때부터는 1,000
㎡당 1개 이상의 지점을 추가로 선정한다.

<table>
<thead>
<tr>
<th>조 사 면 적</th>
<th>시료채취 지점 수 산정기준</th>
<th>최소지점 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>면적≤500㎡</td>
<td>최소 채취지점수 5개 이상</td>
<td>5</td>
</tr>
<tr>
<td>500㎡&lt; 면적≤1,000㎡</td>
<td>500㎡당 1개 이상</td>
<td>6</td>
</tr>
<tr>
<td>1,000㎡&lt; 면적≤2,000㎡</td>
<td>1,000㎡당 1개 이상</td>
<td>7</td>
</tr>
<tr>
<td>2,000㎡&lt; 면적≤3,000㎡</td>
<td>1,000㎡을 초과할 때부터는 1,000㎡당 1개 이상 추가</td>
<td>8</td>
</tr>
<tr>
<td>3,000㎡&lt; 면적≤4,000㎡</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>:</td>
<td></td>
<td>:</td>
</tr>
</tbody>
</table>

[표 2.2.1-3] 시료채취 지점 수 산정기준
심토: 표토시료 수 3개 지점 당 1개 지점 이상 비율로 채취(최소 1개 지점 이상)하며, 그 깊이는 원칙적으로 지표면에서 15m 깊이까지로 하여 2.5m 이내 간격으로 1점 이상의 시료를 채취하되, 15m 이내에서 암반층이 나타나면 그 깊이 까지로 한다. 다만, 기초조사 결과를 검토하여 지하저장시설이나 배관의 설치깊이 및 폐기물매립 가능성을 고려해 심도를 조정할 수 있다. 또한, 효과적인 조사를 위해 필요한 경우 트렌치조사 등을 시행할 수 있다.

유류 및 유독물 등 저장시설이 설치된 경우 지상저장시설과 지하저장시설별로 저장시설 주변 오염의 영역에 대해 시료를 추가로 채취한다.

• 지상저장시설
- 표토시료: 저장시설 별로 주변의 4방위 지점 및 일정거리 이격된 지점에서 채취
- 심토시료: 표토시료 채취지점중 오염우려가 큰 1개 이상의 지점 및 오염확산이 예상되는 일정거리 이격된 1개 이상의 지점에서 15m 깊이까지 채취. 15m 이내에서 암반층이 나타나면 그 깊이 까지로 함

• 지하저장시설
저장시설 별로 주변의 4방위 지점 및 일정거리 이격된 1개 이상의 지점에서 표토시료 및 15m 깊이까지의 심토시료를 채취한다. 15m 이내에서 암반층이 나타나면 그 깊이 까지로 한다. 저장시설의 바닥이 깊이 15m를 초과한 위치에 설치된 경우 저장시설 하부 5m 이상까지 하되, 2.5m 이내 간격으로 1점 이상의 시료를 추가로 채취한다.

○ 시료채취 지점
- 심토의 시료채취 지점은 토양오염물질 저장 또는 사용시설 설치지역 등 토양오염의 우려가 큰 지점을 우선 대상으로 선정한다.
- 토양오염물질 저장시설에 저장조실벽이 있는 경우 저장조실벽 외부로의 누출을 고려하여 시료채취지점을 선정한다.
- 여러 개의 토양오염물질 저장시설 또는 토양오염물질 사용시설이 대상지역 내에 분산되어 있을 경우 각각의 시설 외곽 경계선을 기준으로 4방위에서 시료를 채취한다.
- 기타 일반사항은 토양오염공정시험기준을 따른다.
정밀조사 단계는 개황조사결과 토양오염우려기준을 초과하거나 오염이 우려되는 농도(증금속과 불소는 우려기준의 70%, 그 밖의 오염물질은 우려기준의 40%를 초과하는 농도)를 초과하는 등 오염이 확인된 부지에 대해 오염물질의 종류 및 농도, 오염면적 및 범위를 평가하여 오염특성과 현황을 파악할 수 있도록 충분한 정보를 제시하도록 한다. 토양환경평가기관은 대상부지 및 오염물질의 특성과 확산 등을 고려하여 시료채취 밀도와 심도 및 방법을 조정할 수 있다. 필요한 경우 대상부지 내의 지하수 오염도를 조사・분석할 수 있다.

○ 시료채취 방법
대상부지의 토양환경을 객관적으로 조사할 수 있도록 시료채취 및 시료의 운반・보관 등 시료채취계획을 수립한다.

• 시료채취 밀도 및 심도

(1) 토양
- 조사대상 지역이 1,000㎡ 이하일 경우 100㎡에 1개 이상의 지점으로 하고, 1,000㎡를 초과하는 경우에는 1,000㎡까지는 100㎡당 1개 이상의 지점과 1,000㎡를 초과할 때부터 500㎡당 1개 이상의 지점을 선정한다.
- 개황조사 결과 토양오염도가 지하수의 흐름방향에 따라 일정하게 나타날 경우에는 대상지역을 중심으로 조사밀도를 높여 시료를 채취한다.
- 개황조사 결과 오염이 우려되는 농도의 깊이까지 1m 심도 간격으로 채취하며, 암반층이 나타나면 해당 지점에서는 그 깊이까지로 한다.
- 기타 일반사항은 토양오염공정시험기준 및 개황조사방법을 따른다.

(2) 지하수
지하수 구배를 확인하기 위해 오염이 예상되는 지역의 지하수 흐름방향 상류 쪽에 최소한 1개의 관측점을 설치하고, 하류에 2개 이상의 관측점을 설치한다. 관측점 사용 후에는 케이싱과 스크린을 제거하고 그라우트 실 등으로 되매우는 등 적절한 절차에 따라 폐공처리 한다.

○ 시료량, 시료의 운반 및 보관
토양오염공정시험기준과 수질오염공정시험기준 및 폐기물공정시험기준에서 규정한 시료채취 및 보관 방법 등을 따른다.
다. 토양정화검증
토양정화검증은 완료검증과 과정검증 그리고 재검증이 있으며, 시료채취 방법은 명시되어 있지 않다. 완료검증시 시료채취 지점수는 아래와 같다.

○ 완료검증의 시료채취 밀도
  - 시료채취 지점 수의 산정은 「토양환경평가지침」(환경부 고시 제2001-202호)의 기준을 준용한다.
  - 오염면적이 50,000㎡ 이상일 경우에는 면적을 50,000㎡ 이하로 나누고, 각각의 면적에 대해 상기의 기준을 적용한다.
  - 시료는 채취지점의 깊이 1m 간격으로 1개씩 채취하며 오염이 확산되지 않은 깊이까지 채취한다.
  - 굴착 처리하는 경우 굴착전의 오염분포에 따라서 지점 및 시료수를 산정한다.
  - 지하수 시료수는 오염지역의 지하수 현황에 따라서 별도 산정한다.

○ 과정검증의 시료채취 밀도
  - 완료검증 시료수의 20% 이상을 과정검증의 시료수로 산정하고 정화방법의 특성 및 기간을 고려·배분하여 검증한다.

○ 재검증의 시료채취 밀도
  - 시료채취지점을 토양오염우려기준을 초과한 지점수 이상으로 하여야 한다.
토양시료 채취지점을 선정하기 위해서는 오염지역의 특성에 맞도록 시료채취지점의 선정원칙을 결정한 후 오염원의 개별 특성에 맞는 시료채취지점 선정을 수행해야 할 것이다. 현행의 토양조사는 토양환경보전법에서 규정한 토양오염물질과 토양 pH에 대해 조사하도록 규정하고 있으며, 토양오염우려기준과 비교하여 이를 초과할 경우 정화명령 등의 조치를 내릴 수 있도록 하고 있다. 현재 토양오염의 기준이 설정된 물질은 카드뮴, 구리, 납 등의 중금속과 불소, 유기인화합물 등의 유·무기 유해화합물 및 유·무기 유해화합물 및 유류(BTEX, TPH)와 유기용제류(TCE, PCE)의 21개 항목이다. 이 물질들은 자연 상태의 토양에는 존재하지 않는 경우도 있으며 때로는 자연 상태에 배경농도로서 존재하는 물질도 있다. 토양오염이 “사업활동 기타 사람의 활동에 따라 토양이 오염되는 것으로서 사람의 건강·재산이나 환경에 피해를 주는 상태”로 정의된 것을 감안하면 자연 상태에 검출될 수 있는 농도는 토양오염에서 제외되어야 할 것으로 판단된다.

미국의 경우 토양은 단일한 오염물질에 의해 오염될 수도 있지만 두 개 이상의 복합적인 물질에 의해 오염될 가능성 또한 높다. 복합 오염물질이 유사한 특성을 가진 물질이라면 조사방법에 있어 큰 차이가 없을 수도 있지만 중금속과 유류 같이 물질의 특성과 오염원, 오염 확산경로 등이 확연히 다른 물질이라면 조사방법에 있어서도 이에 대한 충분한 고려가 필요할 것이다. 각 오염물질에 따른 오염분포 및 확산특성은 개별물질 특성과 오염원인 등에 따라 다양하므로 일률적인 조사방법을 제안하기보다는 각 현장특성에 맞도록 조사자가 판단하여야 할 것이며 이러한 경우 그 내용을 보고서에 기록하여야 할 것이다. 부지환경을 오염시키는 원인과 확산경로는 비산, 수계이동, 매립 관련 활동, 누출 등으로 크게 분류될 수 있다. 이 두분류 안에는 오염물질의 특성에 따라 부지를 오염시킨 후 지표수·지하수 등에 영향되는 경우, 지하수를 따라 확산하는 경우 (저밀도 비수용성 액체인 LNAPL의 경우 지하수면 상부, 고밀도 비수용성 액체인 DNAPL의 경우 지하수층의 하부), 오염된 그 자리에 고정되어 있는 경우가 있을 수 있는 등 다양한 오염경로가 존재할 수 있다. 평가자가 개별 부지의 오염특성에 대해 심도 있는 고려를 해야 할 것이다.

6) Light Nonaqueous-phase Liquids : 비중이 물보다 작아 수면 위로 부상하는 물질. 휘발유, 등유, 경유 등
7) Dense Nonaqueous-phase Liquids : 비중이 물보다 커 수중에서 가라앉는 물질. TCE, PCE, 윤활유 등
2.2.2 현행 토양오염조사에 대한 발전방안 제시

국내 외적으로 통용되는 토양관련 조사지침의 검토를 통해 살펴보았듯이 외국의 경우 일반적으로 토양조사의 단계를 조사의 목적에 따라 구분하고 각 단계에 맞는 조사방법을 제공하는 통합된 관리체계를 갖추고 있다.

국내 토양오염조사 지침 중 토양환경평가와 토양정밀조사는 우려되는 지역에 대한 조사를 수행한다는 측면에서 공통점이 있지만, 용어의 혼용 및 유사한 목적의 조사에 대해 별개의 조사방법을 규정하는 등 토양조사에 있어 혼란의 소지가 예상되므로 두 개의 지침을 단일 지침으로 통합하는 것이 타당할 것으로 판단된다. 단일화된 지침을 토양조사에 있어 각 단계의 목적에 맞게 사용할 수 있도록 재정할 경우 보다 효율적이고 실용적인 토양오염 조사에 도움이 될 것이다.

최근 들어 선진국에서는 토양의 관리를 위해 토양과 밀접한 관련이 있는 지하수, 지표수 및 부지 내의 폐기물에까지 그 범위를 확대시키는 추세이다. 국내의 경우 부지현황에 따라 선택적으로 지하수 또는 폐기물 등의 조사를 포함할 수 있도록 되어 있으나 그 규정이 모호한 상태로, 통합지침에서 이들에 대한 명확한 규정이 삽입되어야 할 것이다.

국제적인 표준 규약으로 활용되고 있는 미국 ASTM의 Phase I, II ESA 절차 등 해외의 사례에서 유사하게 사용되고 있는 방식을 실도있게 검토 및 반영하고 현행의 토양환경평가지침과 토양정밀조사지침 그리고 토양검증을 통합한다면 보다 효율적이고 표준화된 토양조사를 수행할 수 있을 것으로 판단된다.
2.3 토양오염조사 공정별 업무분석 및 예정원가 산출

2.3.1 업무내용 분석 및 평가

토양정밀조사, 토양환경평가, 토양정화검증 등 각 토양오염조사 공정별 업무내용은 다음과 같다.

![그림 2.3.1-1] 토양정밀조사의 공정별 업무내용
[그림 2.3.1-2] 토양환경평가의 공정별 업무내용
[그림 2.3.1-3] 토양환경검증의 공정별 업무내용

- 직접검사
- 현장조사
- 토양환경검증계획서 작성

과정 검증

- 오염토양정화계획서 이행 여부
- 토양사료 제취, 분석

완료 검증

- 시료채취, 분석
- 토양정화검증 결과보고서 작성
- 토양정화검증서 작성

결정결과 조치

- 결정결과 부적합사 재검증
- 결정결과보고서 및 결정서 통보
- 결정결과 보고
2.3.2 토양오염조사 공정별 세부 분석

각 토양오염조사 공정별 세부 분석을 통한 비용 산정을 위하여 우선 비용 산정 방법에 대한 국내 사례를 조사 및 분석함으로써 비용 산정에 적용 가능하다 적합한 방법을 제시하고자 한다. 국내 사례로는 (사)한국경제정책연구소에서 수행한 ‘토양 오염도검사 수수료 산정’에 대한 예정원가조사보고서 및 엔지니어링 사업대가의 기준, 건설사업 관리대가 산정기준, 건설공사 감리대가 기준, 토양정화검증 수수료 산정기준 등이 있다.

가. 예정원가조사

① 개 요
○ 조사기관 : (사)한국경제정책연구소(의뢰기관:토양오염조사기관 협의회)
○ 조사시점 : 2007년도 8월
○ 조사방법

② 비목별 산정기준
토양오염공정시험방법[환경부고시(제2007-26호)]에 의거하여 이화학적 분석비와 시료채취비용으로 구분하여 재정경제부 회계예규 예정가격 작성기준 제4절 학술연구용역 원가계산(2200.04-160-3, 2006.12.29)에 따라 산출
○ 직접인건비
  • 등급기준 : 책임연구원, 연구원, 연구보조원, 보조원
  • 단위(건)당 소요공수
    : 이화학적 분석 및 시료채취에 투입되는 단위(건)당 공정별 투입인원 산출
  • 시간당 임율(M/HR)
    : 재정경제부 공표 학술연구용역인건비 단가를 기준으로 예정가격 작성기준 (회계예규 2200.04-106-3, 2006.12.29) [별표 5] 학술연구용역인건비 적용
  • 인건비 : 단위(건)당 소요공수에 투입인원의 시간당 임율을 곱하여 산출
○ 간접재료비  
  • 시료채취 소모성 재료비 및 공구비  
  • 토양오염도조사기관의 구입단가 및 시중유통거래가격 적용  

○ 경비  
  • 이화학적 분석 및 시료채취에 대한 제반비용  
  • 시약·연구용역재료비, 전력비, 감가상각비, 기타경비(복리후생비 외)  

○ 일반관리비  
  • 기업 유지를 위한 관리활동부문에서 발생하는 제비용  
  • 직접인건비, 간접재료비 및 경비의 합계액의 5% 적용  

○ 배상책임보험료  
  • 연평균 시료채취건수에 대한 연간보험료를 나누어 산출  

나. 엔지니어링 사업대가의 기준  
① 엔지니어링기술진흥법 제10조제2항 규정에 따라 엔지니어링사업대가의 기준을 정함(지식경제부 고시 제2011-77호, 2011.04.27.)  
② 대가 산출방식  
○ 실비정액가산방식  
  • 직접인건비, 직접경비, 재경비, 기술료 및 부가가치세를 합산하여 산출  
  • 직접인건비  
    • 투입된 인원수에 엔지니어링기술자의 기술등급별 노임단가를 곱하여 계산  
    • 한국엔지니어링협회에서 매년 조사·공표한 임금 실태조사보고서 적용  
    • 등급기준: 기술사, 특급기술자, 고급기술자, 중급기술자, 초급기술자  
  • 직접경비  
    • 당해 업무 수행과 관련이 있는 경비  
    • 출장여비, 시험비 또는 조사비, 도서 인쇄 및 청사진비, 측량비 등  
  • 재경비  
    • 직접인건비 및 직접경비에 포함되지 아니하고 엔지니어링사업자의 행정운영을 위한 기획, 경영, 총무분야 등에서 발생하는 간접 경비  
    • 직접 인건비의 110~120%로 계산  
  • 기술료  
    • 엔지니어링사업자가 개발·보유한 기술의 사용 및 기술축적을 위한 대가
직접인건비와 제경비를 합한 금액의 20~40%로 계산

- 공사비 요율에 의한 방식
  - 공사비에 일정 요율을 곱하여 산출한 금액에 추가 업무비용과 부가가치세 합산

다. 건설사업 관리대가 산정기준

① 발주자가 건설사업관리자에게 건설사업관리를 위탁하여 시행하는 경우
② 대가 산출방식
  - 엔지니어링 사업대가의 기준 산정방식과 동일

라. 건설공사 감리대가 기준

① 건설기술관리법에 의해 감리전문회사가 국내에서 수주하는 건설공사의 책임 감리·시공감리 및 검측감리에 대한 대가기준
② 대가 산출방식
  - 정액적산방식
    - 직접인건비, 직접경비, 제경비(직접인건비의 110~120%), 기술료((직접인건비 +제경비)의 20~40%)추가업무비용, 부가가치세 및 보험료를 합산하여 산출
  - 일급방식
    - 추가업무에 대해 직접인건비에 직접경비를 포함하여 일당으로 지급

마. 토양정화검증 수수료 산정기준

① 토양환경조사법 시행규칙 별표 6의2 ‘검증수수료의 산정기준’ 참고
② 대가 산출방식
  - 실비정액가산방식
    - 직접인건비, 직접경비, 제경비, 기술료 및 부가가치세를 합산하여 산출
    - 직접인건비
      - 엔지니어링기술자 노임단가 중 건설 및 기타부문의 기술자 노임단가 적용
      - 오염토양의 양에 따라 1년간 투입되는 등급별 기술자 인원 제시
      - 정화기간에 따라 인건비 추가되는 인건비 적용요율 제시
    - 직접경비
      - 출장여비, 시료채취·분석비, 보고서 인쇄비 및 기타 비용 실비 적용
    - 제경비
      - 직접 인건비의 110%로 계산
기술료

직접인건비와 제경비를 합한 금액의 20%로 계산

국내 유사분야 수수료 산정기준의 비교·검토 결과 각 수수료 산정기준은 크게 실비정액가산방식과 공사비요율에 의한 방식으로 구분되며, 대가산정의 원칙은 사 업의 특성을 고려하여 발주자가 판단하나, 주로 실비정액가산방식을 적용하는 것으로 나타났다.

토양오염조사의 경우 조사의 특성 및 부지 이용현황, 오염물질과 정화공법의 특 성(토양정화검증에 해당), 지하수의 존재여부 등에 따라 조사의 내용 및 절차가 크게 달라질 수 있다. 또한, 공사비 또는 조사대상지역의 규모에 대해 일률적인 요율 또는 정해진 수수료를 적용할 경우 조사의 특성을 모두 반영하기 곤란하다. 따라서, 토양오염조사 비용산정의 기준은 엔지니어링사업대가의 기준에 의한 실비 정액가산방식이 타당한 것으로 여겨진다.

이에 따라 토양정밀조사, 토양환경평가, 토양정화검증 등 각 토양오염조사 공정 별 세부 분석 및 주요 항목 검토를 아래와 같이 실시하였다.

가. 토양정밀조사

①수행업무

: 사전준비(사업수행 협의 및 조사계획 수립) → 기초조사 → 현장조사(개황조사, 정밀조사) 관리 → 조사결과 분석 및 평가 → 보고서 작성 및 보고

②인건비 작성

- 수행업무별 산정단위 검토

- 기 수행한 토양정밀조사와 관련한 인건비 자료 활용

- 지하수 관측정 1공은 토양시료채취 3공으로 환산
<table>
<thead>
<tr>
<th>업무</th>
<th>산정단위</th>
<th>직접인건비 (인)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>사전준비</td>
<td>조사면적 (100㎡)</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>기초조사</td>
<td>조사면적 (100㎡)</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>현장조사 관리</td>
<td>지점수 (공)</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>조사결과 분석 및 평가</td>
<td>지점수 (공)</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>보고서 작성 및 보고</td>
<td>지점수 (공)</td>
<td>0.019</td>
<td></td>
</tr>
</tbody>
</table>

③ 직접경비 작성
구성항목: 시료 채취비 및 분석비, 출장여비, 측량, 보고서 인쇄비 등

체취비
토양시료 체취비: 토양환경보전법 시행규칙 별표 11, 토양오염검사수수료 참조

지하수 관측공 설치 및 폐공 비용: 단가계약 혹은 견적
지하수시료 체취비: 토양환경보전법 시행규칙 별표 11, 토양오염검사수수료 참조

지하수관측공이 설치되어 있는 지점에서 시료를 채취하는 경우에는 관측공 당 시료 채취비의 25%를 적용

분석비
토양시료 분석비: 토양환경보전법 시행규칙 별표 11, 토양오염검사수수료 참조

중금속 중 Cu, Cd, Pb, Zn, Ni의 5종은 전처리과정이 동일하므로 분석비용 중 전처리비용은 1종 분석비만 적용
시료수가 증가하여도 공통 적용되는 분석 과정이 있으므로, 21개 전체 분석항목에 대하여 시료수 증가에 따른 분석비 감소 요율 적용
지하수시료 분석비: 국립환경과학원 시행의뢰 규칙 별표 수질검사수수료 금액표 참조

출장여비: 공무원 여비규정 적용(운임, 일비, 식비, 숙박비)
보고서 인쇄: 단가계약 혹은 견적
측량: 단가계약 혹은 견적
나. 토양환경평가

토양환경평가의 경우 토양정밀조사와 마찬가지로 기초조사, 개황조사, 정밀조사로 구성되어 있고, 적용범위와 목적, 조사방법이 유사하므로 토양정밀조사를 준용한다.

다. 토양환경검증

토양환경보전법 시행규칙 별표 6의2 '검증수수료의 산정기준'을 적용한다.

2.3.3 현장조사 및 조사수행 절차 비교·분석

본 절에서는 각 토양오염조사별 현장조사 및 조사수행 절차를 비교·분석하고자 하며, 수행절차가 유사한 토양정밀조사와 토양환경평가에 대하여 제시하며, 전술한 바와 같이 토양환경검증의 경우 법에서 규정한 '검증수수료의 산정기준'을 적용하는 것으로 갈음하고자 한다.

[그림 2.3.3-1] 토양오염조사 수행절차
그림 2.3.3-1에서와 같이 토양정밀조사 및 토양환경평가의 조사수행 절차는 「사업수행 협의 → 기초조사 → 현장조사 → 토양환경평가 결과 조치」 순이며, 토양환경평가의 경우 기초조사에서 토양오염개연성 평가 및 토양환경평가 결과 조치에서 토양환경평가보고서 작성 부분이 추가된다. 여기에 엔지니어링 사업대가 기준 제14조의 건설 및 기타분야 단가(13년도)를 적용, 각 수행절차별 기술자 소요인력을 반영하면 인건비가 산출된다.

2.3.4 공정별 예정원가 산출

본 절에서는 토양시료 채취 및 분석, 지하수 관측정 설치 등 공정별 예정원가 산출(안)을 제시하고자 한다.

가. 토양시료 채취비

토양시료 채취비의 경우 토양환경보전법 시행규칙 별표 11 ‘토양오염검사수수료’에 공당 91,900원으로 명시되어 있으며, 이는 토양오염도검사 기준이 적용된 것으로 토양오염도검사의 경우 지점당 1개 시료를 채취하므로 공당 단가 적용이 타당하다. 그런데, 정밀조사시에는 보통 1공에서 다수의 시료를 채취하며, 이 경우에도 시료수에 비례한 수수료가 적용되는 것이 아니라, 공당 단가가 적용된다. 예를 들어 공당 1개 시료를 채취하든, 10개 시료를 채취하든 공당 단가인 91,900원이 적용된다. 따라서, 최초 심도 이후 심도 증가에 따른 추가 채취비를 반영한 개선(안)을 제시하고자 한다.

① 인건비

토양시료채취 절차는 ‘작업현장이동 → 시료채취준비 → 시료채취 → 되매우기 및 현장정리 → 시료채취기록부작성’ 순으로 이루어지며, 여기에서 작업현장이동, 시료채취준비는 실제 시료 채취 전 준비과정에 해당하며, 되매우기 및 현장정리, 시료채취기록부작성은 시료 채취 후 마무리과정에 해당한다. 그리고, 실제 채취 과정은 시료채취 및 분석시료샘플링에 해당하므로, 심도 증가에 따른 추가 채취 부분의 인건비는 시료채취 및 분석시료샘플링 공정만 적용하였다.([그림 2.3.4-1] 박스 표시 부분)
<table>
<thead>
<tr>
<th>구분</th>
<th>투입인원등급 및 노업</th>
<th>단위(건)당 소요공수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>투입인원</td>
<td>소요시간(분)</td>
<td>소요공수(회)</td>
</tr>
<tr>
<td>시료채취본업일정</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>작업장비등비</td>
<td>연구보조원</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>연구원</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>시료채취비</td>
<td>연구보조원</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>분석기밀정상</td>
<td>연구원</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>외대소모비 및 현장정리</td>
<td>연구보조원</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>시료채취기밀정상 (제면사항보고 및 시료검수)</td>
<td>연구원</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>110</td>
<td>65,586</td>
</tr>
</tbody>
</table>

[그림 2.3.4-1] 토양시료채취비(인건비)

② 재료비
재료비의 경우 시료 보관용기 및 liner는 1회 시료 채취당 1개씩 필요하므로 심도 증가에 따른 추가 채취시에도 추가 심도당 1개씩 소요되는 것으로 산정 하였다. ([그림 2.3.4-2] 박스 표시 부분) 나머지 항목의 경우 1회 시료 채취당 1개씩 소요되지는 않기 때문에(ex: 1회 채취시마다 장갑, 마스크, 작업복 등 을 교체하지는 않음) 최초 심도 소요량의 1/4를 적용하였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>재료명</th>
<th>재료 및 구분</th>
<th>개 별</th>
<th>단위별 비용</th>
<th>단위당 비용</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td>65,586</td>
<td></td>
</tr>
</tbody>
</table>

[그림 2.3.4-2] 토양시료채취비(재료비)
③ 깊이별 추가 심도 수수료 산정

인건비, 재료비 및 기타경비(경비+일반관리비+배상책임보험료)를 추가 심도 깊이별로 각각 적용하여 깊이별 비용을 산출한 후, 각 구간별 평균 단가를 산정하였다. 최초 심도(0m~1m)를 제외한 추가 심도 구간별 평균 단가의 경우 2m~5m 기준은 38,000원, 6m~10m 기준은 60,000원, 11m~15m 기준은 85,000원, 16m~20m 기준은 110,000원인 것으로 산정되었다.(천원미만 절사, 20m 이상 구간은 별도 협의)

<table>
<thead>
<tr>
<th>깊이 (m)</th>
<th>심도체취시간 (분)</th>
<th>분석심도체취시간 (분)</th>
<th>인건비</th>
<th>재료비</th>
<th>기타경비</th>
<th>합계</th>
<th>평균</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>0m</td>
<td>20</td>
<td>10</td>
<td>9,336</td>
<td>13,772</td>
<td>7,590</td>
<td>30,698</td>
<td>38,146</td>
<td></td>
</tr>
<tr>
<td>1m</td>
<td>5</td>
<td>10</td>
<td>12,488</td>
<td>14,238</td>
<td>8,502</td>
<td>35,228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2m</td>
<td>10</td>
<td>10</td>
<td>14,500</td>
<td>14,821</td>
<td>10,208</td>
<td>49,529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3m</td>
<td>10</td>
<td>10</td>
<td>16,714</td>
<td>15,346</td>
<td>11,509</td>
<td>45,569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4m</td>
<td>10</td>
<td>10</td>
<td>21,884</td>
<td>15,872</td>
<td>12,822</td>
<td>50,578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5m</td>
<td>10</td>
<td>10</td>
<td>24,976</td>
<td>16,395</td>
<td>14,127</td>
<td>55,498</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6m</td>
<td>10</td>
<td>10</td>
<td>28,090</td>
<td>16,919</td>
<td>15,428</td>
<td>60,437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7m</td>
<td>10</td>
<td>10</td>
<td>31,240</td>
<td>17,444</td>
<td>16,741</td>
<td>65,426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8m</td>
<td>10</td>
<td>10</td>
<td>34,364</td>
<td>17,967</td>
<td>18,048</td>
<td>70,369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9m</td>
<td>10</td>
<td>10</td>
<td>37,466</td>
<td>18,455</td>
<td>19,346</td>
<td>75,307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10m</td>
<td>10</td>
<td>10</td>
<td>40,518</td>
<td>19,018</td>
<td>20,659</td>
<td>80,295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11m</td>
<td>10</td>
<td>10</td>
<td>43,730</td>
<td>19,541</td>
<td>21,666</td>
<td>85,237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12m</td>
<td>10</td>
<td>10</td>
<td>46,842</td>
<td>20,065</td>
<td>22,686</td>
<td>90,593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13m</td>
<td>10</td>
<td>10</td>
<td>49,994</td>
<td>20,609</td>
<td>24,579</td>
<td>95,174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14m</td>
<td>10</td>
<td>10</td>
<td>53,106</td>
<td>21,114</td>
<td>26,984</td>
<td>100,104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15m</td>
<td>10</td>
<td>10</td>
<td>56,220</td>
<td>21,639</td>
<td>28,187</td>
<td>105,046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16m</td>
<td>10</td>
<td>10</td>
<td>59,320</td>
<td>22,155</td>
<td>30,031</td>
<td>110,006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17m</td>
<td>10</td>
<td>10</td>
<td>62,412</td>
<td>22,677</td>
<td>31,805</td>
<td>114,894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18m</td>
<td>10</td>
<td>10</td>
<td>65,516</td>
<td>23,212</td>
<td>32,915</td>
<td>119,997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19m</td>
<td>10</td>
<td>10</td>
<td>65,516</td>
<td>23,212</td>
<td>31,105</td>
<td>119,913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20m</td>
<td>10</td>
<td>10</td>
<td>65,516</td>
<td>23,212</td>
<td>31,105</td>
<td>119,913</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[그림 2.3.4-3] 깊이별 추가 심도 수수료 산정

[그림 2.3.4-4] 깊이별 추가 심도 토양시료체취비 산정 방안
나. 토양시료 분석비

전술한 바와 같이 중금속 5항목(Cu, Cd, Pb, Zn, Ni)의 경우 전처리과정이 동일 함에도 불구하고 항목별 중복 단가(44,200원/항목)가 적용되고 있어, 분석비용 중 전처리비용은 1종 분석비만 적용하는 개선(안)을 제시하고자 한다. 또한, 시료수가 증가하여도 공통 적용되는 분석 과정이 있으나, 시료수에 비례한 분석 단가가 적용되고 있어 시료수 증가에 따른 분석비 감소 요율을 적용하고자 하며, 이는 21개 전체 분석 항목에 해당한다.

1. 중금속 항목 전처리 중복 적용 배제

전체 분석비 중 전처리 및 분석 비용을 각각 산정하기 위하여 [그림 2.3.4-5]와 같이 각 공정별 소요시간을 구하였다.

<table>
<thead>
<tr>
<th>주</th>
<th>분</th>
<th>특성분석 및 노출</th>
<th>단위(단위 소요금액)</th>
<th>비용당 업력</th>
<th>종 액</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>이화약학분류품질</td>
<td>재화분석품질</td>
<td>국립단위시험법 포함</td>
<td>44,200원</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>토양조제</td>
<td>토양조제</td>
<td>토양조사</td>
<td>18,300원</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>토양회제</td>
<td>토양회제</td>
<td>토양회제</td>
<td>18,300원</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>전처리</td>
<td>전처리</td>
<td>전처리</td>
<td>18,300원</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>분석</td>
<td>분석</td>
<td>분석</td>
<td>18,300원</td>
</tr>
</tbody>
</table>

[그림 2.3.4-5] 중금속 항목 분석 각 공정별 소요시간

전체 분석에 총 210분이 소요되며, 이 중 전처리작업에 70분, 분석작업에 140 분 소요되는 것으로 각각 파악되었다. 이를 바탕으로 전처리 전·후 비용을 산출해 본 결과, 전체 비용 44,200원 중 전처리 비용 15,000원, 전처리 이후 비용 29,200원이 것으로 확인되었다.
다음으로 기존 수수료 및 전처리 중복 적용을 배제한 개선(안)을 비교하였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>항목수</th>
<th>1개</th>
<th>2개</th>
<th>3개</th>
<th>4개</th>
<th>5개</th>
</tr>
</thead>
<tbody>
<tr>
<td>기존(A)</td>
<td>44,200원</td>
<td>88,400원</td>
<td>132,600원</td>
<td>176,800원</td>
<td>221,000원</td>
<td></td>
</tr>
<tr>
<td>개선(안)(B)</td>
<td>44,200원</td>
<td>73,400원</td>
<td>102,600원</td>
<td>131,800원</td>
<td>161,000원</td>
<td></td>
</tr>
<tr>
<td>비율 (B/A)</td>
<td>100%</td>
<td>83%</td>
<td>78%</td>
<td>75%</td>
<td>73%</td>
<td></td>
</tr>
</tbody>
</table>

[표 2.3.4-2] 기존 수수료 및 개선(안) 비교

항목수 증가에 따라 개선(안) 비용 및 기존/개선(안) 비율이 점차 감소하는 것으로 나타났으며, 항목수 5개의 경우 개선(안) 비용은 161,000원, 기존/개선(안) 비율은 73%에 해당하였다.

② 시료수 증가에 따른 분석비 감소 요율 적용
시료수 증가에 따른 분석비 감소 요율은 [표 2.3.4-3]과 같다.
표 2.3.4-3 시료수 증가에 따른 분석비 감소 요율

표 2.3.4-3은 중금속 항목에 대한 예시로 가로축은 중금속 분석항목 증가, 세로축은 동일항목 분석시료수 증가를 나타낸다. 분석시료수 증가에 따른 감소요율 적용은 1~9개일 경우 100%, 10~29개일 경우 95%, 30~99개일 경우 90%, 100개 이상일 경우 85%를 각각 적용하였다.

다. 관측정 설치비

관측정 설치비의 경우 '13년 표준적산(토목-지반조사) 단가를 적용한 일위대가 기준으로 산정하였으며, 10m 기준으로 산정된 예시를 [그림 2.3.4-6]에 나타내었다.

[표 2.3.4-3] 시료수 증가에 따른 분석비 감소 요율

<table>
<thead>
<tr>
<th>종목</th>
<th>금격 및 재량</th>
<th>단가</th>
<th>수량</th>
<th>저료 비</th>
<th>돼구 비</th>
<th>경비</th>
<th>합계(10m)</th>
<th>1초당단가</th>
</tr>
</thead>
<tbody>
<tr>
<td>관측정 설치비</td>
<td>식</td>
<td>1</td>
<td>-</td>
<td>360,280</td>
<td>260,280</td>
<td>-</td>
<td>360,280</td>
<td>260,280</td>
</tr>
<tr>
<td>재료비(토목-지반조사)</td>
<td>a</td>
<td>3</td>
<td>22,275</td>
<td>67,128</td>
<td>24,335</td>
<td>73,589</td>
<td>27,945</td>
<td>89,885</td>
</tr>
<tr>
<td>재료비(토목-지반조사)</td>
<td>a</td>
<td>5</td>
<td>25,709</td>
<td>149,645</td>
<td>35,945</td>
<td>109,780</td>
<td>37,380</td>
<td>108,280</td>
</tr>
<tr>
<td>재료비(토목-지반조사)</td>
<td>a</td>
<td>2</td>
<td>40,524</td>
<td>81,042</td>
<td>47,179</td>
<td>94,358</td>
<td>50,560</td>
<td>101,336</td>
</tr>
<tr>
<td>관측정 설치비</td>
<td>a</td>
<td>10</td>
<td>3,253</td>
<td>22,590</td>
<td>5,455</td>
<td>54,549</td>
<td>-</td>
<td>77,079</td>
</tr>
<tr>
<td>유동점대</td>
<td>a</td>
<td>10</td>
<td>3,253</td>
<td>22,590</td>
<td>5,455</td>
<td>54,549</td>
<td>-</td>
<td>77,079</td>
</tr>
<tr>
<td>유동점대</td>
<td>a</td>
<td>5</td>
<td>26,780</td>
<td>143,580</td>
<td>-</td>
<td>-</td>
<td>143,580</td>
<td></td>
</tr>
<tr>
<td>유동점대</td>
<td>a</td>
<td>2</td>
<td>13,500</td>
<td>27,000</td>
<td>-</td>
<td>-</td>
<td>27,000</td>
<td></td>
</tr>
<tr>
<td>관측정비</td>
<td>a</td>
<td>1</td>
<td>18,600</td>
<td>18,600</td>
<td>-</td>
<td>-</td>
<td>18,600</td>
<td></td>
</tr>
<tr>
<td>관측정비</td>
<td>a</td>
<td>1</td>
<td>60,000</td>
<td>60,000</td>
<td>-</td>
<td>-</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>관측정비</td>
<td>a</td>
<td>1</td>
<td>1,757</td>
<td>1,757</td>
<td>-</td>
<td>-</td>
<td>1,757</td>
<td></td>
</tr>
<tr>
<td>관측정비</td>
<td>a</td>
<td>1</td>
<td>1,782</td>
<td>1,782</td>
<td>76,598</td>
<td>76,598</td>
<td>-</td>
<td>78,271</td>
</tr>
<tr>
<td>합계</td>
<td></td>
<td>592,564</td>
<td>783,812</td>
<td>371,271</td>
<td>1,747,567</td>
<td>174,755</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[그림 2.3.4-6] 관측정 설치비 산정 예시
### 2.4 토양오염조사 표준품셈 마련

#### 2.4.1 토양정밀조사 등 각종 토양오염조사방법별 표준품셈(안) 제시

토양시료 체취 및 분석, 지하수 관측정 설치 등 공정별 예정원가 산출(안)을 바탕으로 토양정밀조사 등 각종 토양오염조사방법별 표준품셈(안)을 제시하고자 한다. 오염지역별로 대상지역의 형태, 오염개연성이 있는 물질의 종류, 조사의뢰자의 의도 등이 달라 모든 경우를 특정하여 제시하기에는 어려움이 있기 때문에, 가장 일반적인 '유류 및 유독물 등 저장시설'과 '일반적 유류오염지역'의 두 가지 사례를 제시하고자 한다. 특별한 경우를 제외하면 이 두 가지 사례의 인건비 항목이 대부분의 정밀조사에 포함되므로 부지의 특성에 따라 수정하여 적용하면 될 것으로 사료된다.

가. 토양정밀조사 사례

- 오염지역 : 유독물 저장시설(오염면적 : 200㎡)
- 시료채취 : 8공 32시료(각 공별 최초 2심도 1회의 체취 + 추가심도 3회(3~5심도) 채취 가정)
- 시료분석 : 중금속 5종(Cd, Cu, Pb, Zn, Ni) 분석 가정
- 표준품셈(안)

<table>
<thead>
<tr>
<th>구분</th>
<th>금액(원)</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>직접인건비</td>
<td>2,298,395</td>
<td></td>
</tr>
<tr>
<td>토양시료 체취비</td>
<td>1,647,200</td>
<td></td>
</tr>
<tr>
<td>토양시료 분석비</td>
<td>4,636,800</td>
<td></td>
</tr>
<tr>
<td>출장여비</td>
<td>500,000</td>
<td></td>
</tr>
<tr>
<td>보고서 인쇄비</td>
<td>138,600</td>
<td></td>
</tr>
<tr>
<td>소 계</td>
<td>6,922,600</td>
<td></td>
</tr>
<tr>
<td>제경비(인건비×110%)</td>
<td>2,528,234</td>
<td></td>
</tr>
<tr>
<td>기술료([인건비]+제경비)×20%</td>
<td>965,326</td>
<td></td>
</tr>
<tr>
<td>총사업비</td>
<td>12,714,555</td>
<td></td>
</tr>
<tr>
<td>총사업비</td>
<td>12,700,000</td>
<td>심사원미만 절사</td>
</tr>
</tbody>
</table>

[표 2.4.1-1] 토양정밀조사(유독물 저장시설) 표준품셈(안)
항목별 비용산정

- 인건비: 토양오염조사 수행절차별 기술자 소요인력 산정 후 엔지니어링 사 업대가 기준 제14조(직접인건비)의 건설 및 기타비용 단가 적용

<table>
<thead>
<tr>
<th>항목</th>
<th>기술자 소요인력(일별)</th>
<th>계 과목</th>
</tr>
</thead>
<tbody>
<tr>
<td>인건비</td>
<td>0.00</td>
<td>234,952</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>지료조사 및 운송</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>청정장소조사 및 환해조사</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>지료조사</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>계 과목: 지료조사</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>시료채취비</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>시료채취 비</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>시료채취 비</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>시료채취 비</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>시료채취 비</td>
<td>0.25</td>
<td>2.00</td>
</tr>
<tr>
<td>시료채취 비</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>시료채취 비</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

[그림 2.4.1-1] 인건비 산정 내역(토양정밀조사)

- 토양시험체취비: 8공 32시료(각 공별 최초 2심도 1회 채취 + 추가심도 3회 (3~5심도) 채취 개정) → [91,900(최초 심도) + (38,000×3)(추가 심도)] × 8공 = 1,647,200원
- 토양시험분석비: 중금속 5종(Cd, Cu, Pb, Zn, Ni) 분석 개정 → 161,000(점처리 증폭 배제) × 32시료 × 0.9(감소 요율) = 4,636,800원
- 출장여비: 공무원 여비규정 적용(운임, 일비, 식비, 숙박비)
- 보고서 인쇄비: 일위대가 작성

나. 토양환경평가 사례

- 오염지역: 산단 유류오염지역(오염면적: 10,000㎡)
- 시료채취: 50공 200시료(각 공별 최초 6심도 1회 채취 + 추가심도 3회(7~9 심도) 채취 개정)
- 시료분석: BTEX, TPH 2종 분석 개정
- 관측정 설치: 10m 기준 4개 지점 설치 개정
표 2.4.1-2: 토양환경평가(산단 유류오염지역) 표준품셈(안)

항목별 비용산정

- 인건비: 토양오염조사 수행절차별 기술자 소요인력 산정 후 엔지니어링 사
업대가 기준 제14조(직접인건비)의 건설 및 기타분야 단가 적용

이하 표 2.4.1-2 내역(토양환경평가)
• 토양시료채취비 : 50공 200시료(각 공별 최초 6해 + 추가심도 3
회(7~9심) 채취 가정
→ [91,900(최초 심도) + (60,000×3)(추가 심도)] × 50공 = 13,595,000원
• 토양시료분석비 : BTEX, TPH 2종 분석 가정
→ (40,600(BTEX) + 62,700(TPH)) × 32시료 × 0.85(감소 요율) = 17,561,000원
• 관측정 설치비 : 10m 기준 4개 지점 설치 가정
→ 4개 지점 × 1,747,547(10m 일위대가 기준) = 6,990,188원
• 출장여비 : 공무원 여비규정 적용(운임, 일비, 식비, 숙박비)
• 보고서 인쇄비 : 일위대가 작성

마지막으로 표준품셈 개선(안) 및 현재 적용 기준을 비교하여 총 비용 변동 여부를 확인하기 위하여 앞서 제시한 두 가지 사례 및 두 번째 제시한 토양환경평가 사례에서 시료수를 추가한 사례를 하나 더 제시하고자 한다.

가. 토양정밀조사 사례

○ 오염지역 : 유독물 저장시설(오염면적 : 200㎡)
○ 시료채취 : 8공 32시료(각 공별 최초 2심도 1회 채취 + 추가심도 3회(3~5심
도) 채취 가정
○ 시료분석 : 중금속 5종(Cd, Cu, Pb, Zn, Ni) 분석 가정
○ 현행 및 개선(안) 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>금액(원)</th>
<th>증감 (현행-개선(안 ))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>현행</td>
<td>개선(안)</td>
</tr>
<tr>
<td>직접인건비</td>
<td>2,298,395</td>
<td>2,298,395</td>
</tr>
<tr>
<td>토양시료 채취비</td>
<td>735,200</td>
<td>1,647,200</td>
</tr>
<tr>
<td>토양시료 분석비</td>
<td>7,072,000</td>
<td>4,636,800</td>
</tr>
<tr>
<td>출장여비</td>
<td>500,000</td>
<td>500,000</td>
</tr>
<tr>
<td>보고서 인쇄비</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>소 계</td>
<td>8,445,800</td>
<td>6,922,600</td>
</tr>
<tr>
<td>제경비(인건비×110%)</td>
<td>2,528,234</td>
<td>2,528,234</td>
</tr>
<tr>
<td>기술료[(인건비+제경비)×20%]</td>
<td>965,326</td>
<td>965,326</td>
</tr>
<tr>
<td>총사업비</td>
<td>14,287,757</td>
<td>12,744,554</td>
</tr>
</tbody>
</table>
표 2.4.1-3 토양정밀조사(유독물 저장시설) 현행 및 개선(안) 비교

- 현행 대비 개선(안)의 경우 시료 채취비는 912,000원 증가, 시료 분석비는 2,435,200원 감소하여 전체 1,523,200원 감소

나. 토양환경평가 사례 I

○ 오염지역 : 산단 유류오염지역(오염면적 : 10,000m²)
○ 시료채취 : 50공 200시료(각 공별 최초 6심도 1회 채취 + 추가심도 3회(7~9심도) 채취 가정)
○ 시료분석 : BTEX, TPH 2종 분석 가정
○ 관측정 설치 : 10m 기준 4개 지점 설치 가정
○ 현행 및 개선(안) 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>현행</th>
<th>개선(안)</th>
<th>증감 (현행-개선(안))</th>
</tr>
</thead>
<tbody>
<tr>
<td>직접인건비</td>
<td>7,964,184</td>
<td>7,964,184</td>
<td>0</td>
</tr>
<tr>
<td>토양시료 채취비</td>
<td>4,595,000</td>
<td>13,585,000</td>
<td>▽9,000,000</td>
</tr>
<tr>
<td>토양시료 분석비</td>
<td>20,660,000</td>
<td>17,561,000</td>
<td>▽3,099,000</td>
</tr>
<tr>
<td>관측정 설치비</td>
<td>6,990,188</td>
<td>6,990,188</td>
<td>0</td>
</tr>
<tr>
<td>출장여비</td>
<td>1,480,000</td>
<td>1,480,000</td>
<td>0</td>
</tr>
<tr>
<td>보고서 인쇄비</td>
<td>233,200</td>
<td>233,200</td>
<td>0</td>
</tr>
<tr>
<td>소계</td>
<td>33,958,388</td>
<td>39,859,388</td>
<td>▽5,901,000</td>
</tr>
<tr>
<td>제경비(인건비×110%)</td>
<td>8,760,602</td>
<td>8,760,602</td>
<td>0</td>
</tr>
<tr>
<td>기술료[(인건비+제경비)×20]</td>
<td>3,344,957</td>
<td>3,344,957</td>
<td>0</td>
</tr>
<tr>
<td>총사업비</td>
<td>54,028,131</td>
<td>59,929,131</td>
<td>▽5,901,000</td>
</tr>
</tbody>
</table>

[표 2.4.1-4] 토양환경평가 I (산단 유류오염지역) 현행 및 개선(안) 비교

- 현행 대비 개선(안)의 경우 시료 채취비는 9,000,000원 증가, 시료 분석비는 3,099,000원 감소하여 전체 5,901,000원 증가

da. 토양환경평가 사례 II

○ 오염지역 : 산단 유류오염지역(오염면적 : 10,000m²)
○ 시료채취 : 50공 500시료(각 공별 최초 6심도 1회 채취 + 추가심도 9회(7~15심도) 채취 가정

- 75 -
○ 시료분석: BTEX, TPH 2종 분석 가정  
○ 관측정 설치: 15m 기준 4개 지점 설치 가정

○ 현행 및 개선(안) 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>현행</th>
<th>개선(안)</th>
<th>증감 (현행-개선(안))</th>
</tr>
</thead>
<tbody>
<tr>
<td>직접인건비</td>
<td>7,964,184</td>
<td>7,964,184</td>
<td>0</td>
</tr>
<tr>
<td>토양시료 채취비</td>
<td>4,595,000</td>
<td>37,845,000</td>
<td>▽33,250,000</td>
</tr>
<tr>
<td>토양시료 분석비</td>
<td>51,650,00</td>
<td>43,902,50</td>
<td>7,747,500</td>
</tr>
<tr>
<td>관측정 설치비</td>
<td>10,485,28</td>
<td>10,485,28</td>
<td>0</td>
</tr>
<tr>
<td>출장여비</td>
<td>1,480,000</td>
<td>1,480,000</td>
<td>0</td>
</tr>
<tr>
<td>보고서 인쇄비</td>
<td>233,200</td>
<td>233,200</td>
<td>0</td>
</tr>
<tr>
<td>소 계</td>
<td>68,443,48</td>
<td>93,945,98</td>
<td>▽25,502,500</td>
</tr>
<tr>
<td>제경비(인건비×110%)</td>
<td>8,760,602</td>
<td>8,760,602</td>
<td>0</td>
</tr>
<tr>
<td>기술료[(인건비+제경비)×20]</td>
<td>3,344,957</td>
<td>3,344,957</td>
<td>0</td>
</tr>
<tr>
<td>총사업비</td>
<td>88,513,225</td>
<td>114,015,725</td>
<td>▽25,502,500</td>
</tr>
</tbody>
</table>

[표 2.4.1-5] 토양환경평가Ⅱ(산단 유류오염지역) 현행 및 개선(안) 비교

- 현행 대비 개선(안)의 경우 시료 채취비는 33,250,000원 증가, 시료 분석비는 7,747,500원 감소하여 전체 25,502,500원 증가

세 가지 사례에서 보았듯이 현행 대비 개선(안)의 경우 시료수가 증가함수록 채취비 증가분이 분석비 감소분보다 커서 전체 금액이 증가하는 것을 알 수 있다.

본 연구에서는 그간 생🏀장에서 입양된 시료채취비 및 분석비 부분을 중심으로 표준품셈(예)을 제시하였으며, 실제 신규 단가 적용시에는 물가상승률 반영 및 토양조사기관, 토양분석기관의 의견을 청취하는 등 보다 면밀한 검토가 필요할 것으로 사료된다.
제 3 장
오염토양 정화업무 처리지침 마련

1. 토양정화관련 국내·외 현황조사
2. 토양정화 업무절차 및
   정화계획 분석 요령 제시
3. 오염토양 정화업무 처리지침 마련
제 3 장 오염토양 정화업무 처리지침 마련

3.1 토양정화 관련 국내・외 현황조사

3.1.1 해외 토양정화 현황조사

국외 29개국 360개 토양정화 관련 기업들의 정화 기술을 분석한 결과, 비원위치 기술로는 열탈착법, 토양세척법, 토양경작법을, 원위치 기술로는 생분해법, 토양 증기추출법을 주요 기술로 보유하고 있는 것으로 나타났다.

① 북미(미국)


In-situ 기술에 비하여 Ex-situ 기술이 많이 사용된 것은 생분해법의 경우 비용이 저렴한 장점이 있으나 정화기간이 길기 때문에 적용된 사례가 많지 않은 것으로 나타났다.
② 유럽
독일 162개사, 프랑스 38개사, 벨기에 30개사, 덴마크, 네덜란드, 이탈리아, 영국, 오스트리아, 포르투갈, 스페인, 록셀브르크 등 307개사의 보유 기술을 분석 결과, 원위치 생분해법이 65건, 원위치 토양증기추출법이 59건, 비원위치 토양세척이 50건, 비원위치 토양경작법이 44건으로 전체 보유기술 중 36%였고, 비원위치 기술이 53%로 미국의 경우와 비슷하였다. 특히 원위치 차폐 투수성반응벽체 기법이 42건으로 토양경작법 다음으로 많이 보유되어진 것으로 나타났다.

③ 동유럽
슬로바키아 15개사, 체코 10개사, 폴란드 9개사, 알바니아, 라트비아, 리투아니아, 러시아, 에스토니아, 벨라루스, 불가리아 등 총 63개사의 보유 기술을 분석 결과, 동유럽의 경우는 원위치 생분해법이 40건, 차폐/투수성반응벽체가 19건, 토양증기 추출법이 18건으로 전체 보유기술 중 35%를 나타내었으며, 원위치 기술이 54%로 북미, EU와는 다른 경향을 보였다.

④ 그 외 국가
그 밖에 멕시코 13개사, 브라질 8개사, 베트남 7개사의 경우, 주로 원위치 기술 중 생분해법을 많이 보유하고 있는 것으로 조사되었다.
3.1.2 국내 토양정화 현황조사

가. 토양정화 현황
오염된 부지에서의 정화기술은 매우 다양한 형태로 개발되어 현장에 적용되고 있으며 이를 크게 구분하면 처리대상 매체에 따라 토양 처리기술과 지하수 처리기술 또는 불포화대(Vadose zone) 처리기술과 포화대(Saturated zone)처리기술로 구분할 수 있다.

이들 기술들은 다시 오염 부지내에서 처리하는 지중처리(In-situ) 기술과 지상처리(Ex-situ) 기술로 구분되며 이러한 구분은 오염매체의 굴착(토양의 경우) 또는 양수(지하수의 경우) 공정이 포함되는지의 여부에 따라 결정된다. 즉, 지중처리 기술은 오염된 토양 및 지하수를 굴착 또는 양수하지 않고 지중에 관정을 삽입하여 원위치에서 직접 처리하는 기술이고 지상처리 기술은 오염된 토양 및 지하수를 굴착 및 양수 후 적절한 처리시설로 이동시켜 처리하는 기술을 말한다. 지상처리기술의 경우 오염토양 및 지하수의 처리과정을 직접 확인할 수 있기 때문에 오염물에 대한 처리공정 관리 및 처리효율 평가가 용이한 반면 굴착(또는 양수), 이송 등에 대한 추가비용이 소요되며 처리기간 동안 오염부지의 굴착으로 인하여 부지 사용성이 제한되는 단점이 있다.

[그림 3.1.2-1]는 총 1,046건의 정화 실적 중 처리위치가 확실하게 명시된 자료를 토대로 오염토양 정화 위치 현황을 나타내었다. 크게 부지내, 부지외, 부지내·외 (혼합) 3가지로 분류하였고, 이 외 항목과 명시되지 않은 자료는 기타로 분류하였다. 부지내처리가 578건(55.3%)으로 가장 많았고, 부지외처리가 427건(40.8%), 부지내처리와 부지외처리를 병행한 곳이 26건(2.5%), 기타가 15건(1.4%)로 나타났다.
오염토양 정화 사례의 처리위치 현황을 살펴보면, 2006년에는 부지내처리가 215건 (76.5%), 부지외처리 44건(21.6%)로 부지내처리가 많이 이루어졌으나, 2007년에는 부지내처리 246건(58.9%), 부지외처리 159건(38.0%), 2008년에는 부지내처리가 176 건(41.5%), 부지외처리 224건(52.8%)으로 부지내처리보다 부지외에서 처리하는 사례가 증가하는 것으로 나타났다([표 3.1.2-1], [그림 3.1.2-2]). 또한 부지내처리와 부지외처리를 병행하는 경우도 점차 증가하는 것으로 나타났다.

(단위: 건)

<table>
<thead>
<tr>
<th>구분</th>
<th>2006년</th>
<th>2007년</th>
<th>2008년</th>
<th>전체</th>
</tr>
</thead>
<tbody>
<tr>
<td>부지내</td>
<td>156</td>
<td>246</td>
<td>176</td>
<td>578</td>
</tr>
<tr>
<td>부지외</td>
<td>44</td>
<td>159</td>
<td>224</td>
<td>427</td>
</tr>
<tr>
<td>부지내/외</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>기타</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>합계</td>
<td>204</td>
<td>418</td>
<td>424</td>
<td>1,046</td>
</tr>
</tbody>
</table>

[표 3.1.2-1] 오염토양의 처리위치별 정화현황
그림 3.1.2-2 오염토양의 처리위치별 정화 현황(단위 : 건)

그림 3.1.2-3은 오염토양 정화사례 중 부지내와 부지외에서 처리된 사례의 비율을 연도별(2006-2008)로 나타낸 것으로 부지내 처리는 점차 감소하고 있으며, 부지외처리와 부지내/외 처리의 비율은 점차 증가하고 있는 것으로 나타났다. 이것은 오염토양 정화에 신속한 처리를 위하여 부지외처리를 선호하기 때문인 것으로 판단된다.

그림 3.1.2-3 연도별 오염토양 정화 사례의 처리위치별 비율(2006~2008)
나. 국내 토양정화방법별 공정 개요

오염된 부지에서의 정화기술은 매우 다양한 형태로 개발되어 현장에 적용되고 있으며 이를 크게 구분하면 [그림 3.1.2-4]와 같이 처리대상 매체에 따라 토양 처리 기술과 지하수 처리기술 또는 불포화대(Vadose zone) 처리기술과 포화대(Saturated zone) 처리기술로 구분할 수 있다.

이들 기술들은 다시 오염 부지 내에서 처리하는 지중처리(In-situ) 기술과 지상 처리(Ex-situ) 기술로 구분되며, 이러한 구분은 오염매체의 굴착(토양의 경우) 또는 양수(지하수의 경우) 공정이 포함되는지의 여부에 따라 결정된다. 즉, 지중처리기술은 오염된 토양 및 지하수를 굴착 또는 양수하지 않고 지중에 관정을 삽입하여 원위치에서 직접 처리하는 기술이고 지상처리기술은 오염된 토양 및 지하수를 굴착 및 양수 후 적절한 처리시설로 이동시켜 처리하는 기술을 말한다.

지상처리기술의 경우 오염토양 및 지하수의 처리과정을 직접 확인할 수 있기 때문에 오염물에 대한 처리과정 관리 및 처리효율 평가가 용이한 반면 굴착(또는 양수), 이송 등에 대한 추가 비용이 소요되며, 처리기간 동안 오염부지의 굴착으로 인하여 부지사용성이 제한되는 단점이 있다. 한편 지중처리기술의 경우 처리공정이 가시화되지 않으므로 처리효율을 확인하기가 어렵고, 비교적 긴 정화시간과 기술적용 이전 단계에서 면밀한 부지평가 등이 수행되어야 하는 단점이 있으나, 최근 들어 부지평가 및 모니터링 기술이 발달하고, 무엇보다도 처리매체 이송에 따른 비용을 절감할 수 있고 처리기간 중에 부지를 이용할 수 있는 장점으로 인해 지중처리기술이 활발히 적용되고 있는 추세이다.
<table>
<thead>
<tr>
<th>기준</th>
<th>분류</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>오염의 위치</td>
<td>불포화대 처리기술</td>
<td>지하수위 상부의 오염토양을 처리하는 기술</td>
</tr>
<tr>
<td></td>
<td>포화대 처리기술</td>
<td>지하수위 하부(대수층)의 오염토양과 지하수를 동시에 정화하는 기술</td>
</tr>
<tr>
<td>굴착의 유무</td>
<td>지중처리(in-situ) 기술</td>
<td>오염된 토양 및 지하수를 굴착 또는 양수하지 않고 지중에 관注을 삽입하여 원위치에서 직접 처리하는 기술</td>
</tr>
<tr>
<td></td>
<td>지상처리(ex-situ) 기술</td>
<td>오염된 토양 및 지하수를 굴착 및 양수 후 적절한 처리시설로 이동시켜 처리하는 기술</td>
</tr>
<tr>
<td>공정원리</td>
<td>생물학적 처리기술</td>
<td>미생물의 분해 작용 및 식물의 흡수 작용과 같이 생물학적인 원리를 활용하여 오염토양을 처리하는 기술</td>
</tr>
<tr>
<td></td>
<td>물리·화학적 처리기술</td>
<td>흡착, 화학적 분해 등의 물리·화학적 원리를 이용하여 오염토양을 처리하는 기술</td>
</tr>
<tr>
<td></td>
<td>열적 처리 기술</td>
<td>오염토양에 열을 가하여 오염물질을 분리 또는 분해하거나 고정화시키는 기술</td>
</tr>
</tbody>
</table>

[표 3.1.2-2] 오염토양 정화기술의 분류

오염토양 정화기술은 처리공정에 따라 생물학적 처리기술, 물리·화학적 처리기술, 열적 처리 기술로도 분류할 수 있으며 오염물질의 특성 및 부지 특성에 따라 단일 기술로 적용되거나 여러 가지 기술을 복합적으로 사용하기도 한다. [표 3.1.2-3]에서는 미국 연방정화기술회의(Federal Remediation Technology Roundtable, FRTR)에서 작성한 오염부지 정화기술에 대한 분류 중 오염토양 정화기술을 정리하였으며, 처리대상 매체별, 처리 위치별, 처리방법별로 59개 기술로 세분화하고 있는 반면 국내의 경우 ‘특정토양오염관리대상시설의 방지시설 등에 관한 고시’에서 처리방법별로 18개 기술로 구분하고 있다[표 3.1.2-4].
<table>
<thead>
<tr>
<th>분류</th>
<th>처리기술의 종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>지상 처리 (Ex-situ)</td>
<td></td>
</tr>
<tr>
<td>물리</td>
<td></td>
</tr>
<tr>
<td>화학적</td>
<td>- Chemical Extraction</td>
</tr>
<tr>
<td></td>
<td>- Chemical Reduction/Oxidation</td>
</tr>
<tr>
<td></td>
<td>- Dehalogenation</td>
</tr>
<tr>
<td></td>
<td>- Separation</td>
</tr>
<tr>
<td></td>
<td>- Soil Washing</td>
</tr>
<tr>
<td></td>
<td>- Solidification/Stabilization</td>
</tr>
<tr>
<td>생물학적</td>
<td>- Biopiles</td>
</tr>
<tr>
<td></td>
<td>- Composting</td>
</tr>
<tr>
<td></td>
<td>- Landfarming</td>
</tr>
<tr>
<td></td>
<td>- Slurry Phase Biological Treatment</td>
</tr>
<tr>
<td>열적</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hot Gas Decontamination</td>
</tr>
<tr>
<td></td>
<td>- Incineration</td>
</tr>
<tr>
<td></td>
<td>- Open Burn/Open Detonation</td>
</tr>
<tr>
<td></td>
<td>- Pyrolysis</td>
</tr>
<tr>
<td></td>
<td>- Thermal Desorption</td>
</tr>
<tr>
<td>차폐</td>
<td>- Landfill Cap - Landfill Cap Enhancements</td>
</tr>
<tr>
<td>기타 처리기술</td>
<td>- Excavation, Retrieval, and Off-Site Disposal</td>
</tr>
</tbody>
</table>

[표 3.1.2-3] 오염토양 정화기술의 종류[FRTR, 2002]
<table>
<thead>
<tr>
<th>기술명</th>
<th>공정개요</th>
</tr>
</thead>
<tbody>
<tr>
<td>생물학적 분해법 (Biodegradation)</td>
<td>영양분과 수분(필요시 미생물)을 오염토양내로 순환시킴으로써 미생물의 활성을 자극하여 유기물 분해능을 증대시키는 방법</td>
</tr>
<tr>
<td>생물학적통풍법 (Bioventing)</td>
<td>오염된 토양에 대하여 강제적으로 공기를 주입하여 산소농도를 증대시킴으로써, 미생물의 생분해능을 증대시키는 방법</td>
</tr>
<tr>
<td>토양경작법 (Landfarming)</td>
<td>오염토양을 곡물후지로 지표면에 깔아 놓고 정기적으로 퇴적용으로써 공기중의 산소를 공급해 주는 효과성 생분해 공정법</td>
</tr>
<tr>
<td>바이오파일법 (Biopile)</td>
<td>오염토양을 곡물후지로 영양분 및 수분 등을 혼합한 파일을 만들고 공기를 공급하여 오염물질에 대한 미생물의 생분해능을 증진시키는 방법</td>
</tr>
<tr>
<td>식물제배 정화법 (Phytoremediation)</td>
<td>식물제의 성장에 따라 토양내의 오염물질을 분해・흡착・침전 등을 통하여 오염토양을 정화하는 방법</td>
</tr>
<tr>
<td>폐비화법 (Composting)</td>
<td>오염토양을 곡물후지로 폐비화(bulking agent)로 나무조각, 동식물, 폐기물과 같은 유기성 물질을 혼합하여 공극과 유기물 함량을 증대시킨 후 공기를 주입하여 오염물질을 분해시키는 방법</td>
</tr>
<tr>
<td>자연저감법 (Natural attenuation)</td>
<td>토양 또는 지중에서 자연적으로 일어나는 희석, 흐양, 생분해, 흡착 그리고 지중물질과의 화학반응 등에 의해 오염물질 농도가 허용가능한 수준으로 저감되도록 유도하는 방법</td>
</tr>
<tr>
<td>토양세정법 (Soil Flushing)</td>
<td>오염물 용해도를 증대시키기 위하여 첨가제를 함유한 물 또는 순수한 물을 토양 및 지하수에 주입하여 오염물질을 침출, 처리하는 방법</td>
</tr>
<tr>
<td>토양증기추출법 (Soil Vapor Extraction)</td>
<td>압력구매를 형성하기 위하여 추출액을 곡물하여 진공상태로 만들어 토양내의 휘발성 오염물질을 추출・추출하는 방법</td>
</tr>
<tr>
<td>토양세척법 (Soil Washing)</td>
<td>오염토양을 곡물하여 토양입자 표면에 부착된 유・무기성 오염물질을 세척액으로 분리시켜 이를 토양내에서 농축・처치하거나, 재배식 폐수처리방법으로 처리</td>
</tr>
<tr>
<td>용제추출법 (Solvent Extraction)</td>
<td>오염토양을 추출기내에서 solvent와 혼합시켜 용해시킨 후 분리기에서 분리하여 처리하는 방법</td>
</tr>
<tr>
<td>화학적 산화/환원법 (Chemical Oxidation/Reduction)</td>
<td>오염된 토양에 오존, 과산화수소 등의 화합물을 첨가하여 산화/환원반응을 통해 오염물질을 무독성화 또는 저독성화 시키는 방법</td>
</tr>
<tr>
<td>고형화/안정화법 (Solidification/ Stabilization)</td>
<td>오염토양에 첨가제(시멘트, 석회, 슬래그 등)를 혼합하여 오염성분의 이동성을 물리적으로 저하시키거나, 화학적으로 용해도를 낮추거나 무해한 형태로 변화시키는 방법</td>
</tr>
<tr>
<td>동전기법 (Electrokinetic Separation)</td>
<td>투수계수가 낮은 호화토양에서 이온상태의 오염물(유아운, 양이온, 중금속 등)을 양극과 음극의 전기장에 의하여 이동속도를 촉진시켜 포화오염토양을 처리하는 방법</td>
</tr>
<tr>
<td>기술명</td>
<td>공정개요</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>열적 처리 방법</td>
<td>열탈착법 (Thermal Desorption) : 오염토양내의 유기오염물질을 휘발·탈착 시키는 기법이며, 배기가스는 가스처리 시스템으로 이송하여 처리하는 방법</td>
</tr>
<tr>
<td></td>
<td>소각법 (Incineration) : 산소가 존재하는 상태에서 800-1200℃의 고온으로 유해성 폐기물내의 유기오염물질을 소각·분해시키는 방법</td>
</tr>
<tr>
<td></td>
<td>유리화법 (Vitrification) : 굳착된 오염토양 및 슬러지를 전기적으로 용융시키므로써 용융특성이 매우 적은 결정구조로 만드는 방법</td>
</tr>
<tr>
<td></td>
<td>열분해법 (Pyrolysis) : 산소가 없는 혐기성 상태에서 열을 가하여 오염토양중의 유기물을 분해시키는 방법</td>
</tr>
</tbody>
</table>

생물학적 분해법(Biodegradation)

- 공정개요

생물학적 분해법은 지중에 존재하는 미생물을 이용하여 유기성 오염물질을 이산화탄소(CO₂)와 물(H₂O)과 같은 무독한 생성물로 만드는 자연친화적인 기술이다. 생물학적 분해법에서 오염물질을 분해하는 생분해과정은 호기성 생분해과정과 혐기성 생분해과정으로 구분되며, 일반적으로 호기성 생분해 과정이란 미생물이 대사작용에 산소를 전자수용체로 이용하여 유기오염물질을 이산화탄소, 물, 그리고 미생물세포 등으로 변화시키는 과정을 말하며, 이와는 달리 혐기성 생분해 과정이란 산소가 충분하지 않은 경우 산소 이외에 다른 물질을 미생물 대사작용의 전자수용체로 이용하여 메탄, 이산화탄소, 수소 등으로 변화시키는 과정을 말한다.

호기성 및 혐기성 생분해 과정이 오염물질의 분해를 위해 모두 사용될 수 있지만 보통 호기성 생분해 과정에 의한 오염물질의 처리가 용이하기 때문에 일반적으로 오염토양 정화에서는 호기성 생분해를 이용한 생물학적 분해법이 대부분 활용된다. 따라서 지중의 오염물질의 분해속도를 높이기 위해서는 미생물의 호기성 생분해를 촉진시킬 필요가 있으며, 이를 위하여 필수적인 요건인 산소 및 영양물질을 적절히 공급해야 한다.

생물학적 분해법은 지중처리(In-situ)기술로서 지중에 관정을 삽입하여 산소 및 영양물질 등을 공급하기 때문에 굴착 및 이송 등에 비용이 소요되지 않고 오염된 토양 및 지하수를 동시에 처리할 수 있으며, 또한 생분해 과정에서 무독한 부산물을 생성시키기 위해서 후처리시설이 필요치 않아 타 기술에 비하여 비교적 경제적인 장점이 있다. 그러나, 본 기술과 같이 생분해를 이용하는 기술은 물리/화학적인 기술에 비하여 처리기간이 긴 단점을 가지고 있기 때문에 긴급한 오염지역을 정화해야 하는 경우에는 적용이 용이하지 않다. 또한 미생물에 의한 분해가 가능한 유기물 외에 분해되지 않는 무기물질의 경우에는 본 기술을 사용할 수 없으며, 유기물이라도 난분해성인 물질의 경우 분해하는데 수년이 걸리거나 때때로 오염물질이 초기 오염물질보다 독성이 증가된 중간생성물질을 생성하여 지하수까지 오염을 확산시키기도 한다. 예를 들어 TCE(trichloroethylene)는 혐기성 생분해 과정에서 지속성과 독성이 강한 VC(vinylchloride) 같은 중간생성물을 생성한다. 따라서 본 기술의 효과적인 적용을 위해서는 오염물질 및 부지에 대한 정확한 이해가 필요하다.
생물학적 분해법은 다음과 같은 공정으로 이루어진다. 오염토양의 지층 생분해 공정은 오염부지에 적절한 수의 판정을 오염깊이까지 삽입, 설치 후 오염되지 않은 물에 산소 및 질소, 인과 같은 영양물질을 서서 토양에 주입함으로써 이루어진다. 일반적인 생물학적 분해법은 지층에 존재하는 토착미생물의 활성을 증가시켜 오염물질의 분해를 촉진시키는 방법이지만 오염물질을 분해할 수 있는 토착미생물이 존재하지 않거나 그 수가 부족한 경우 산소, 영양분 외에 인위적인 미생물을 동시에 공급함으로써 오염물질의 분해가 원활히 진행되도록 한다. 또한 효과적인 산소공급을 위하여 공기를 주입하는 대신 순산소 또는 산소발생물질인 과산화수소, 오존 등을 주입하기도 한다. 산소의 농도와 오염물질 분해공정의 산화/환원력은 오염물질의 생분해에 많은 영향을 미치기 때문에 오염물질에 따라 호기성 혹은 혐기성 상태를 적절히 유지시켜 주어야 한다.

비합로겐 방향측물질, 다환 방향측물질 그리고 비합로겐 유기물질과 같은 수많은 유기 오염물질은 혐기성 상태보다 호기성 상태에서 빨리 분해되지만 일부 할로겐 지방족 물질이나 합로젠 방향측물질들(특히 할로겐화가 심하게 되어 있는 경우)은 호기성보다는 혐기성 상태에서 더 잘 분해되는 경우도 있다. 전형적인 생물학적 분해법의 공정원리는 [그림 3.1.2-5]과 같다.

[그림 3.1.2-5] 생물학적 분해법의 처리공정도
생물학적통풍법(Bioventing)

• 공정개요
생물학적통풍법은 지하 불포화대에 존재하는 생분해성 유기물을 토착미생물을 활용하여 제거하는 원칙적 토양정화 기술로 주입정 또는 추출정을 이용하여 불포화대로 공기를 주입하거나 영양염류를 공급하여 토양미생물에 의한 오염물질의 분해를 유도하는 기술이다. 생물학적통풍법은 토양증기추출법(SVE)과 유사하나 토양증기추출법은 오염물질을 주로 휘발시켜 제거하는 반면 생물학적통풍법은 오염물질의 증발을 최소화하고 생분해를 촉진시키는 기술이다.[그림 3.1.2-6]. 따라서 일반적으로 생물학적통풍법에서는 토양증기추출법에 비해 공기의 흐름을 약 10배 정도 낮게 유지한다. 그러나, 실제 현장 적용시 두 기술 모두 어느 정도의 생분해와 휘발이 동시에 발생하게 된다.

생물학적통풍법으로 처리 가능한 오염물질은 주로 휘발유, 항공유, 동유, 경유 등의 석유계 물질이며, 특히 경유나 동유와 같은 중간 정도의 분자량을 갖는 물질로 오염된 토양을 정화하는데 매우 효과적이다. 휘발유를 비롯한 저분자량 유류의 경우는 생물학적통풍법을 적용하기 보다는 토양증기추출법(SVE)이 더 효과적이다. 또한 윤활유와 같은 고분자 유류로 오염된 지역에 생물학적통풍법을 적용할 경우에는 토양미생물에 의한 생분해 과정에 긴 시간이 소요되기 때문에 정화기간이 비교적 장시간 요구되기도 한다.

[그림 3.1.2-6] 생물학적통풍법 모식도
토양경작법(Landfarming)

- 공정개요

토양경작법은 오염토양을 굴착하여 지표면에 깔아 놓고 정기적으로 뒤집어줌으로써 공기를 공급하여 미생물에 호기성 생분해 조건을 제공함으로써 토양에 전류되어 있는 유기성 오염물질을 제거하는 생물학적 정화기술이다. 또한 오염된 토양과 공기와의 접촉을 최대로 증가시킴으로써 토양에 흡착되어 있는 휘발성유기화합물질의 휘발을 촉진시키는 물리/화학적 공정도 포함되어 있다.

본 기술은 생물학적통풍법과 적용원리는 유사하지만 생물학적통풍법이 지중처리 기술인 반면 본 기술은 지상처리기술이라는 점이 기본적으로 다르다. [그림 3.1.2-7]은 일반적인 토양경작법의 시스템을 보여주고 있다.

[그림 3.1.2-7] 토양경작 시스템

토양경작법은 오염부지의 범위 및 깊이를 정확히 조사한 후 오염토양을 굴착하여 준비된 경작지역으로 옮겨 처리하는 방법이므로 지중처리기술에 비하여 공기의 접촉량을 최대화 시킬 수 있다. 따라서 지중처리기술에 비하여 처리기간을 단축시킬 수 있으며, 또한 별도의 시설 없이 부지가 충분히 확보될 경우 적용 가능하다. 그러나 처리부지가 확보되지 않을 경우에는 토양경작법을 적용하기 어려울 뿐만 아니라 오염토양의 굴착, 하우스 등의 부대시설 설치, 이송 비용 등으로 인하여 오염토양 처리비용이 증가되는 단점도 가지고 있다. 또한 오염물질의 휘발에 의하여 공기 중으로 휘발성유기화합물질(VOCs)이 확산될 수 있기 때문에 배기가스처리장치가 설치되어야 함이 필요할 수도 있으며, 겨울철과 같이 대기의 온도가 낮아질 경우 미생물의 활성이 급격히 감소하기 때문에 효과적인 처리가 불가능한 단점도 있다.
바이오파일 공정은 Biocells, Bioheaps, Biomounds, Compost Piles 이라고도 불리우며, 생물학적 반응을 통해 토양의 유기성 오염물질을 처리하는 공정이다. 본 기술은 지상처리(Ex-situ)기술로서 오염된 지역의 토양을 굴착하여 파일(piles)을 쌓은 후 배관을 통하여 공기 및 영양물질을 주입하고, 수분함량 등을 조절하여 미생물의 활성을 극대화시키는 과정을 포함한다.

바이오파일 공정은 토양경작법과 같이 지상처리기술로서 오염토양을 굴착, 이송하여 처리하며, 공기주입을 통해 미생물의 활성을 증대시켜 처리효율을 증가시키는 공정이라는 점에서 매우 유사하다. 그러나 토양경작법은 토양을 넓은 지역에 얇게 떠고 경작을 하거나 이물을 만들 어 통기시키는 과정을 거치지만 바이오파일법은 토양경작법보다 좁은 지역에 더미를 만들고 더미 안으로 통하는 배관을 통하여 강제적으로 공기를 주입하는 것이 특징이다. 바이오파일법은 토양경작법과 매우 유사하기 때문에 일반적으로 토양경작법이 가지는 특성을 비교적 비슷하게 나타낸다. 예를 들어 생분해를 이용하기 때문에 처리비용이 적게 소요되고 넓은 범위의 오염물질을 처리할 수 있으며, 특히 유료로 오염된 지역의 경우 탁월한 효과를 나타낸다. 굴착 및 이송비용이 높을 경우 처리단가가 증가할 수 있고 발생되는 배가스의 처리를 위한 후처리 시설이 필요할 수 있으며, 강우를 배제하지 않거나 겨울철과 같이 온도가 낮을 경우 미생물의 활성이 감소하여 처리효율이 낮아질 수 있다.

바이오파일법은 토양경작법과 마찬가지로 오염토양으로부터 유기화합물, 유류물질의 농도를 효과적으로 감소시킬 수 있다. 반면 공기를 주입하는 과정에서 유기물질이 대기중으로 휘발되지 않도록 적절한 전처리 및 후처리 시설을 설치하기도 한다. 예를 들어 휘발성이 강한 유류물질은 공기를 주입하는 과정에서 휘발되며, 일부분은 미생물 분해작용에 의해 처리된다. 반면 중간단계의 유류물질(예: 경유, 등유)인 경우 휘발보다는 생물학적 분해에 의한 반응이 많다. 비휘발성 물질은 통기과정 중에 대기로 휘발되지 않고 대부분이 생물학적 반응을 통해 저분자 생성물로 변형되거나 처리되며, 고분자 형태의 오염물질이 많음을수록 처리기간이 증가하게 된다. [그림 3.1.2-8]은 전형적인 바이오파일 공정을 보여준다.
바이오파일 공정은 오염토양을 적절한 높이까지 쌓아 배관을 통하여 공기를 비롯한 영양물질 등을 주입하는 과정으로서 바이오파일의 일반적인 높이는 1~3m 범위이고 부지 요구량은 파일의 높이에 대한 오염토양의 비에 따라 결정되어진다. 추가적인 부지 넓이는 파일면의 경사도, 접근용이성 등에 따라 달라진다. 바이오파일 설계시에는 부지정비, 공기주입/추출공 배열, 영양물질과 수분의 주입관 배열, 침출수 수집 및 처리공정, 토양 전처리 공정, 덮개 및 배출가스 처리설비 등이 적절히 고려되어야 한다.
식물재배 정화법(Phytoremediation)

• 공정개요

식물재배 정화법은 식물을 이용하여 오염토양 및 지하수를 포함한 수질을 정화시키는 새로운 자연친화적인 토양정화기술이다. 식물재배 정화법은 오염지역에 정화에 필요한 식물을 식재 후 식물에 의해 발생되는 오염물질의 추출, 안정화 등의 원리를 이용하는 방법으로서 뿌리가 접촉하는 면에 한정되어 일어나기 때문에 오염원의 깊이가 중요한 고려요소이며, 식물종, 식물의 생장속도, 오염물질의농도, 주변 생태계 및 환경과의 관계 등도 기본적으로 고려해야 할 사항들이다.

식물재배 정화법은 기타 물리/화학적 기술에 비해 확실히 경제적인 방법이고, 2차 부산물 발생이 적은 자연친화적인 기술이라는 장점을 가지고 있다. 그러나 얕은 토양, 수변, 지하수에 한정적으로 적용 가능하고 고농도 유기물질인 경우 독성으로 인해 처리의 한계가 있으며, 기타 물리화학적 처리공정에 비해 처리기간이 오래 소요된다. 또한 유기성 오염원인 경우 적절히 소수성인 오염원에만 효과적이며, 분해생성물의 독성여부 및 생분해도의 규명이 불명확하다는 단점을 가지고 있다. 식물재배 정화법은 아직 개척 분야에 속하지만 식물재배 정화법의 개발에 관한 많은 연구가 현재 국내외에서 진행되고 있는 상태이다.

식물재배 정화법의 활용분야는 크게 하천, 토양 및 지하수의 오염정화이며 토양 오염정화에는 식물추출(phytoextraction), 식물안정화(phytostabilization), 식물휘발화(phytovolatilization), 식물변형(phytotransformation) 등이 있고, 하천 및 지하수 오염정화에는 근권여과(rhizofiltration), 수리적 조절(hydraulic control), 인공습지(constructed wetlands) 등이 활용되고 있다.

식물재배 정화법에 활용되고 있는 식물들은 해바라기, 민들레 및 꽃을 비롯한 일부 1년생 초본류와 계피나무와 포플러, 미루나무, 버드나무 등 넓은 잎을 가지는 다양한 식물과 대상 지역의 고유한 토착 식물 등 매우 다양하고, 이러한 식물을 오염지역에 식재하여 오염정화 후 수확하여 적절히 처리하는 과정을 거친다. [그림 3.1.2-9]는 일반적인 식물재배 정화법의 처리공정을 보여주고 있다.
식물추출(phytoextraction)
식물추출은 오염물질을 식물체내로 흡수, 농축시킨 후 식물체를 제거하는 방법으로서 주로 토양, 퇴적층 및 폐기물을 대상으로 중금속, 비금속원소, 방사성 동위원소의 제거에 효과적으로 적용될 수 있다. 그러나 중금속을 고농도로 축적할 수 있는 식물은 대부분 생장이 느리며, 수확된 식물체는 고농도의 오염물을 함유하므로 이를 적절히 처리해야 하고, 중금속에 의하여 식물독성이 나타나는 경우에는 적용이 어려운 단점이 있다. 또한 실험실 규모에서의 자료를 실제 부지에 그대로 적용할 수 없는 경우가 많다. 일반적으로 식물추출 방법은 일차적으로 식물체의 뿌리를 통하여 오염물질이 흡수되어야 하므로 뿌리의 깊이에 따라 제거의 정도가 결정된다고 할 수 있다.

근권여과(rhizofiltration)
이는 수용성 오염물질이 생물 또는 비생물적인 과정에 의하여 뿌리 주변에 축적되거나 식물체로 흡수되어지는 과정을 말하며, 일반 토양보다는 포화대를 대상으로 한다. 적용대상 오염물질로는 납, 카드뮴 등의 중금속과 우라늄, 세슘 등의 방사성원소 등이 포함된다. 이용 가능한 식물은 여러 종이 있으나 대개 수생식물보다는 육성식물이 더 효과적인 것으로 나타나고 있으며, 부유식물 및 습지식물도 이용될 수 있다.
식물안정화(phytostabilization)

식물안정화는 오염물질이 뿌리 주변에 피활성의 상태로 축적되거나 식물체에 의하여 이동이 차단되는 원리를 이용한 처리법이며, 뿌리 주변에서의 미생물학적, 화학적 과정을 동반한다. 즉, 뿌리 주변 토양의 pH 변화 등에 의하여 중금속의 산화도가 바뀌어 불용성의 상태로 되는 원리에 기초하는 것이다. 이 방법은 토양, 퇴적층 및 폐기물 등을 대상으로 하며, 토양 및 식물체를 제거할 필요가 없고 저렴한 비용으로 처리가 가능하며, 생태계 정화가 비교적 쉬운 장점이 있으나 오염 물질이 대상지역에 그대로 남아 있어 장기간 관리가 필요하고 식생을 돕기 위해 토양을 처리해야 할 필요가 있으며, 오염물질이 식물체로 흡수되거나 지상으로 운반, 확산되는 것에 대한 방지책을 마련해야 한다.

근권분해(rhizodegradation)

뿌리부근에서 미생물 군집이 식물체의 도움으로 유기 오염물질을 분해하는 과정이다. 뿌리 분비물에는 다양한 영양분이 함유되어 있고 뿌리 자체가 서식처를 제공하고 있어 이 부근의 미생물의 활성은 크게 증가되며, 이에 따라 유기 오염물의 분해가 촉진되는 것이다. 이 방법은 오염물이 현장에서 분해되므로 따로 처리할 필요가 없으며, 다른 방법에 비하여 적은 경비가 소요되는 장점이 있으나 근권이 발달하기 위해 상당한 시간이 소요되고 비료의 투여가 필요하며 미생물간의 상호작용, 즉 오염물질의 분해에 관여하는 미생물군과 기타 미생물 군집과의 경쟁 등을 고려하여야 한다. 근권분해를 이용한 식물재배 정화법의 경우 보통 다른 정화 방법 이후에 최종 처리법으로 이용된다.

식물분해(phytodegradation)

식물분해는 오염물질이 식물체에 흡수되어 그 안에서 대사에 의해 분해되거나 식물체 밖으로 분비되는 효소 등에 의하여 분해되는 과정을 말한다. 식물체가 직접 분해에 관여한다는 점에서 위의 근권분해와 구별이 된다. 오염물의 용해도 및 극성에 따라 흡수정도가 달라지만, 예를 들어 적당한 소수성인 가진 물질은 비교적 흡수가 잘 되고 식물체내에서의 이동이 용이하지만, 수용성인 물질은 확산되기 쉬우므로 오히려 뿌리로부터 흡수되기가 쉽지 않다. 이 방법은 토양, 퇴적층, 폐기물 및 지하수 등의 처리에 이용 가능하며, 일반적으로 오염의 깊이가 얇은 광범위한 지역에 적합하다.
(6) 식물휘발화(phytovolatilization)

식물휘발화는 오염물질이 식물체에 의하여 흡수, 대사되고 휘발성 산물로 변형되어 대기로 방출되는 과정이며, 특성상 식물분해와 같이 일어나는 경우가 많다. 대부분 지하수에 적용되고 있으나 도양, 퇴적층, 폐기물 등에도 이용될 수 있다. 생성된 휘발성 산물은 대개 독성이 약화되거나 없는 형태이지만 경우에 따라 유독한 산물이 생성되기도 하고 식물체에 축적되기도 한다.

(7) 수리적 조절(hydraulic control)

이 방법은 식물에 의하여 환경의 물을 제거함으로서 수용성 오염물질의 이동 및 확산을 차단하는 원리에 기초한다. 따라서 지하수, 지표수 및 수분이 많은 토양을 대상으로 한다. 수분의 제거를 전적으로 식물체에 의존하므로 잔프 등 다른 장비를 필요로 하지 않으나 제거량 및 속도는 기후조건에 영향을 많이 받게 된다.

(8) 완충수로(riparian corridors/buffer strips)

이 방법은 일반적으로 하천으로 유입되는 지표 및 지하수의 처리에 이용되며 수리적 조절, 식물분해, 근권분해, 식물증발 및 식물추출 등 여러 기작이 포함된다. 유기질, 농약 등 수용성 오염물질의 제거에 이용되며 포플라를 이용한 절산염 제거 사례가 많이 연구되고 있다. 충분한 넓이의 지면을 필요로 하며, 오염물의 농도 및 깊이 등이 고려되어야 한다.
퇴비화법(Composting)

- 공정개요

퇴비화법은 지상처리(Ex-situ)기술로서 폐슬러지 등의 폐기물 및 오염토양을 굴착하여 파일을 만들어 유기오염물질을 인위적으로 퇴적 분해시키는 방법을 말한다. 본 기술은 바이오파일과 같이 미생물에 의한 생분해를 이용하지만 오염물질은 물과 이산화탄소로 완전분해하지 않고 일부 무독성의 유기물로 안정화시켜 토양 개량제 등으로 활용할 수 있다는 점이 다르다.

퇴비화법은 호기성 상태에서 미생물에 의해 분해 가능한 오염물질을 50~55℃의 온도에서 생물학적으로 분해·안정화시키고 병원균을 사멸시킨다. 퇴비화법에 있어서 온도를 적절히 조절하는 것은 매우 중요하기 때문에 호기성 상태의 유지를 위해 다양한 공기를 과잉으로 주입하는 것은 파일안의 온도를 낮출 수 있기 때문에 유의하여야 한다. 반면 유기물질이 분해될 때 발생하는 열을 이용하면 적절한 온도를 유지시킬 수 있다. 퇴비화법의 최대 처리 효율은 수분함량, pH, 산소, 온도, 그리고 탄소/ 질소비가 적절할 경우 얻을 수 있다.

퇴비화법은 일반적으로 하수슬러지의 처리와 같은 폐기물 처리에 주로 활용되며, 이는 기술로서 폐기물 처리에 있어서는 경제성 및 적용성이 입증된 처리기술이라고 할 수 있다. 그러나 본 기술은 폐기물의 점가로 인해 처리해야 할 오염토양의 부피가 증가할 수 있고 악취 등이 발생되며, 이는 높은 조건으로 인하여 국내 오염토양 처리에는 거의 활용되지 못하고 있다.

퇴비화 공정은 바이오파일 공정과 대체적으로 비슷하다. 다만, 바이오파일 공정의 최적온도는 약 30℃인 반면 퇴비화 공정의 경우 온도를 50~55℃로 유지해야 한다는 점이 다르다. 퇴비화 공정을 적용하기 위한 전처리공정은 오염토양의 굴착, 선별 및 큰 입자를 작은 입자로 분쇄하는 과정이 필요하다. 작은 입자로 만드는 이유는 오염토양의 표면에 미생물에 의한 반응성을 높여주고 토양의 공극율, 투수성 및 용적비중을 높여주기 위함이다. 공정의 효율성을 향상시키기 위해 통기개량제(bulking agent) 또는 유기물질을 공급해주 수도 있으며, 토착미생물의 활성도가 높지 않은 경우에는 외부에서 배양된 미생물을 참가하여 공정의 효율성을 높이기도 한다.
송풍시스템은 오염토양 퇴비화 공정의 효율적인 설계 및 운전에 있어 매우 중요하며, 적절한 양의 공기를 주입시켜 주어야 한다. 그러나 외부로부터의 강제적인 공기주입은 휘발성 유기화합물의 방출에 영향을 줄 수 있으므로 휘발성 오염물질의 수집과 처리를 할 수 있는 시설을 이용해야 한다. 적절한 수분함량을 유지하기 위해 물을 공급해야 하며, 영양원의 부족시에는 외부에서 질소 및 인을 추가공급하여 처리효율을 높여야 한다. 퇴비화공정이 완료되면 퇴비화물질로부터 팽화제가 분리되고, 퇴비는 다른 토양의 접종에 이용될 수 있다.

[그림 3.1.2-10] 퇴비화법의 처리공정도
자연저감법 (Natural Attenuation)

공정개요
자연저감법이란 자연적인 지중 프로세스, 즉 희석, 흘러내리기, 생분해, 흡착 그리고 지중물질과의 화학반응 등에 의하여 불포화지역 및 포화지역의 오염물질 농도가 허용 가능한 수준으로 저감되도록 유도하는 방법이다. 자연저감법은 다른 기술과는 달리 적극적인 오염토양 정화기술은 아니지만 현재 인체 및 생태계에 대한 위 해도가 그리 높지 않고 부지활용이 제한되어 처리기간에 제한을 받지 않는 지역 에서는 충분히 활용 가능한 경제적인 방법이라 할 수 있다. 또한 자연저감법은 단 일 공정뿐만 아니라 다른 기술과 함께 후속공정으로서 활용가치가 높은 기술로서 이 공정을 적용하기 위해서는 지중에서 발생되는 각종 물리/화학/생물학적인 반 응에 대한 평가가 필수적이며, 따라서 지속적인 모니터링이 진행되어야 한다.

제한요인으로는 지중에 오염원이 존재하여 지속적인 오염이 일어나는 경우에는 우선적으로 오염원을 제거해야 하고 지중에서 발생되는 여러 기작에 의하여 본래 물질보다 유동성이 크거나 독성이 강한 중간 분해 산물이 발생되어 비오염지역으로 확산될 수 있다. 따라서 자연저감법의 효과적인 적용을 위해서는 각종 모델링을 통 한 처리효율 및 처리기간의 정확한 산정이 매우 필요하다.

자연저감법은 오염물질의 정화를 위해서 아무런 조치를 취하지 않는다는 것이 아니라 처리대상 부지의 환경조건 하에서는 자연정화법의 적용만으로도 법적 요구조건을 만족시킬 수 있는 경우를 말한다. 자연저감법을 채택하는 경우에는 현부지의 상태, 용도, 오염물질, 처리기간, 경제성 등을 다른 채택 가능한 방법과 면밀히 비교 평가하여 채택되어야 한다. 예를 들어 PCBs와 같은 고밀도비수용액체상 (Dense Non-Aqueous Phase Liquids : DNAPLs)이 지하 깊은 곳에 흡착되어 유 동성이 없다면 이를 제거하여 처리하는 공정은 비용이 많이 소요되고 오염물질의 농도를 효과적으로 감소시키지 못하기 때문에 기술적으로 현실성이 떨어진다. 이런 경우 자연적으로 오염물질이 분해되도록 유도함으로써 오염물질을 정화할 수 있으며, 자연적인 정화를 돕기 위해 인위적인 조작을 가하여 자연정화의 시간 을 줄일 수도 있다. 면밀한 검토과정을 통하여 자연저감법이 채택될 경우 종합적인 부지적성 조사, 위해성평가, 오염원을 제거할 조치, 모니터링 계획 등이 마련되어야 한다. 이 공정은 미국의 수퍼펀드 부지(Superfund site)에서 다수 적용되었으며, 전형적인 자연분해법의 모니터링 관리시공도는 [그림 3.1.2-11]과 같다.
[그림 3.1.2-11] 자연저감법의 모니터링 관정 시공도
⑧ 토양세정법(Soil Flushing)

• 공정개요

토양세정법은 물 또는 오염물질 용해도를 증대시키기 위한 첨가제(계면활성제 등)가 함유된 물을 관정을 통하여 토양 공극 내에 주입함으로써 토양에 흡착된 오염물질을 탈착시키는 지중처리(In-situ) 기술 중에 물리/화학적 처리기술에 속한다. 주입관정을 통하여 유입된 세정용액은 지하의 오염지역을 통과하면서 토양입자에 흡착된 오염물질의 용해도를 높여 토양입자로부터 탈착시키고 이를 추출정을 통하여 양수함으로써 오염지역의 토양을 정화한다. 본기술은 처리과정에서 세정액으로서 알코올, 착염물질 또는 계면활성제를 사용하기도 하며, 양수된 물은 지상에서 배출허용기준치까지 후처리하여 배출 또는 다시 지중으로 주입하는 등 재이용한다.

토양세정법은 생분해 과정이 불가능한 중금속의 경우 활용도가 높지만 살충제, 휘발성 유기화합물, 준휘발성 유기화합물의 처리시 높은 세정액 비용으로 인해 타공정에 비하여 경제성이 떨어지는 단점을 가지고 있다. 또한 투수성이 낮은 토양의 경우 세정액의 이동에 제약을 받기 때문에 처리효율이 떨어지며 개면활성제와 같은 세정액에 의해 2차 오염이 발생될 가능성이 있을 뿐만 아니라 오염물질의 이동성을 증가시켜 비오염지역 특히 포화지역으로의 오염물질 확산을 초래하기도 한다.

토양세정법은 세정용액을 주입 및 추출공정을 통해서 이동시킴으로써 수행되며, 추출된 세정액은 공공 하수처리장이나 저류조로 보내지기 전에 자체 폐수처리장치를 통하여 적절히 처리한다. 본기술의 경제성에 가장 큰 영향을 주는 인자로는 세정액의 높은 비용을 들 수 있으므로 경제성을 최대한 증가시키기 위해 재생된 세정액은 세정공정에 재사용하게 된다. 따라서 세정액에 계면활성제를 첨가하였을 경우 처리수에서 계면활성제를 재생하는 과정은 토양세정공정의 비용을 절감하는 데 있어서 매우 중요한 요소이다. 미생물의 생분해를 활용하는 생물학적 처리방법과는 달리 토양세정법을 적용하는데 있어서 처리효율의 차이는 오염물질의 성분보다는 수리전도도, 고유투수계수, 공극률 등 토양의 수리지질학적인 요소에 더 많이 좌우된다. 즉, 토양세정법의 처리효율은 각각의 토양입자에 흡착된 유기오염물질과 세정용액의 접촉이 완전한지에 따라 그 결과에 따라 오염물질의 이동이 방해받는다. 또한 토양의 경우 세정액의 이동을 방해할 뿐만 아니라 편류현상(channeling)을 일으켜 오염물질의 처리효율을 감소시킨다.
실제 현장의 수리지질학적인 요소를 실험실에서 모두 모사하기 불가능하기 때문에 실험실 수준(lab-scale)의 연구에서는 제거효율이 높지만 실제 현장에서는 그렇지 않은 경우가 많다. 따라서 지중의 유체흐름을 정확히 이해하는 것이 매우 중요하다. 일반적인 토양세정의 처리공정도는 [그림 3.1.2-12]와 같다.

[그림 3.1.2-12] 토양세정법 처리공정도
토양증기추출법(Soil vapor extraction, SVE)

- 공정개요

토양증기추출법(Soil vapor extraction, SVE)은 진공추출이라고도 하며, 불포화수층 위에 가스 추출기를 설치하여 토양을 진공상태로 만들어 줌으로서 토양으로부터 휘발성과 준휘발성유기화합물질을 제거하는 지중처리기법이다. 본 기법은 지하저장탱크 지역에서 석유계 화합물질과 휘발성유기화합물질과 일부 준휘발성 유기화합물질의 농도를 줄이는데 효과적인 것으로 알려져 있다. 토양증기추출법은 일반적으로 휘발성이 높은 휘발유, 항공유 등으로 오염된 토양을 처리하는데 효율이 높은 반면 휘발성이 낮은 난방유, 운활유 등으로 오염된 토양을 처리하기에는 효율이 낮은 것으로 보고되고 있다. 전형적인 토양증기추출법의 시스템은 [그림 3.1.2-13]과 같다.

[그림 3.1.2-13] 토양증기추출법의 모식도
토양세척법(Soil Washing)

- 공정개요

토양세척법은 적절한 세척제를 사용하여 토양입자에 결합되어 있는 유해한 유기오염물질의 표면장력을 약화시키거나 중금속을 액상으로 변화시켜 토양입자로부터 유해한 유기오염물질 및 중금속을 분리시키는 지상처리(Ex-situ) 기술이다. 기본적으로 토양세척법은 토양세정법(soil flushing)과 비슷한 공정원리를 활용한다. 즉, 토양세척법은 토양세정법과 같이 세정제를 활용하여 오염물질을 용해도를 높여 추출한 후 후처리를 통하여 오염물질을 제거하고 세정용액을 다시 재활용하는 기법을 사용하고 있다. 그러나, 토양세정법은 지중처리기술로서 오염지역에 직접 관통을 설치하여 세정용액의 흐름을 유도하는 반면 토양세척법은 오염토양을 굴착 후 최적화된 토양 세척장치를 통하여 처리하는 지상처리기술이라는 점이 다르다. 또한 토양세척법은 오염물질의 추출 이외에 선별과정을 통하여 오염된 토양의 부피를 효과적으로 감소시키는 기능을 한다는 점에서 토양세정법과는 다르다고 할 수 있다.

토양세척법에 이용되는 세척제는 오염물질을 토양으로부터 분리·용해시키는 역할을 하는 물질로 계면의 자유에너지의 낮추고 계면의 성질을 현격히 변화시키며, 오염물질을 열역학적으로 안정한 상태로 용해시키는 중요한 화학물질이다. 그리고 이렇게 분리된 폐액은 농축·처분하거나 폐수처리 방법으로 처리하며, 폐액 내의 중금속을 회수할 수도 있다.

토양세척법은 현재 미국 및 유럽 등지에서 활용도가 높은 기술로서 생물학적 분해가 어려운 유해화학물질이나 중금속을 빠른 시간 안에 처리할 수 있는 장점을 가지고 있다. 또한 사용하는 세척제의 종류에 따라 광범위한 유기 및 무기오염물질을 제거할 수 있으며, 선별과정을 통하여 효과적으로 오염토양의 부피를 감소시킬 수 있기 때문에 타 공정과 복합적으로 사용할 경우 그 활용도가 더 높아질 수 있다. 그러나 오염토양의 굴착 및 이송 비용, 토양세척장치의 제작비용, 세척제 비용 및 폐수/폐기물 처리비용 등이 높게 소요될 수 있기 때문에 타 공정에 비하여 비교적 경제성이 낮고, 오염물질이 복합적으로 존재할 경우 적정한 세척제의 선정 및 제조하기가 용이하지 않은 단점이 있다. 따라서 토양세척법은 중금속 오염과 같이 타 공정의 적용이 어려운 오염지역일 경우, 빠른 시간 안에 간급히 처리해야 할 경우에 유용하게 사용될 수 있는 기술이라 할 수 있다.
토양세척의 기본 원리는 다음의 가정에 근거를 두고 있다. 첫째, 오염물질은 입자가 작은 미세토양에 많이 흡착되어 있기 때문에 미세토양만을 분리하면 오염토양의 부피가 현저히 감소한다는 점과 둘째, 토양입자와 화학적으로 강하게 결합되지 않은 오염물질은 물리적인 방법으로 쉽게 분리될 수 있다는 점이다. 따라서 토양세척법은 물리적인 선별 및 마찰작용을 활용하여 미세토양의 원토양으로부터 분리시키는 기능과 필요할 경우 적절한 세척제를 이용하여 화학적으로 결합된 오염물질을 용출시키는 기능을 목적으로 하고 있다. 토양세척법의 일반적인 처리공정도는 [그림 3.1.2-14]와 같다.

[그림 3.1.2-14] 토양세척법의 일반적인 처리공정도
용제추출법(Solvent Extraction)

공정개요
용제추출법은 오염토양을 추출기내에서 유기용매와 혼합시켜 용해시킨 후 분리기에서 오염물질을 분리하여 처리하는 물리·화학적 지상처리(Ex-situ)기술이다. 본 기술은 토양세척법과 같이 토양에 흡착되어 있는 오염물질을 추출하여 처리하는 면에서 공통적인 공정원리를 가지고 있지만 오염물질을 용해시키기 위한 세척제로서 물이 아닌 유기용매를 사용한다는 점이 다르다.

용제추출법은 오염물질을 분해하는 기술이기보다는 토양, 슬러지 및 퇴적물로부터 오염물질을 분리시킴으로써 전제적인 오염토양의 부피를 감소시키는 방법이라 할 수 있다. 용제추출법을 적용할 경우 추출공정의 효율을 높이기 위해 오염토양과 추출용매의 접촉을 극대화시킬 수 있는 회전 교반 장치가 필요하며, 오염물질 및 토양의 상태에 따라 고형화/안정화, 소각, 혹은 토양세척과 같은 다른 기술과 병합하여 사용할 수 있다. 주로 이용되는 추출용매는 triethylamine, kerosene, 그리고 탄화수소 용매 등을 들 수 있으며, 추출과정을 통하여 오염물질을 흡수한 용매는 상분리에 의해 토양으로부터 분리되고, 오염된 용매는 휘발장치에서 휘발된 후 다시 용착시키켜 공정에 재이용한다. 그러나, 오염된 용매가 재이용이 불가능한 경우에는 매립하거나 다른 처리법을 이용하여 처분하여야 한다.

용제추출법은 PAHs, PCB와 같은 난분해성 물질을 단기간에 정화하는데 매우 효과적인 기술이지만 수분함량이 높거나 유화제와 같은 물질이 오염토양에 존재할 경우 공정에 방해가 되며, 공정에서 사용된 추출용매가 토양에 잔류하여 2차오염물질로서 작용할 수도 있는 단점을 가지고 있다. 또한 용제추출법은 일반적으로 고분자 유기물질이나 친수성 물질에는 정화효율이 높고, 유기오염물질과 중금속이 결합되어 있을 경우 중금속이 함께 추출될 수 있으므로 공정설계시 유의하여야 한다. 추출공정에 있어서 기본과정은 ①토양의 선별 ②추출용매와 혼합 ③액상과 고상의 분리 ④정화된 토양의 처리 ⑤추출용액정화 및 슬러지 처리로 이루어져 있다. 본 기술은 실질적인 추출 이외에도 입자분리기술(입자의 크기나 밀도에 의한 분리), 화학적 처리(주로 산화) 및 부유기술 등 다른 여러 기술과 결합하여 이용되고 있다. 용매추출 장치에 대한 처리공정도는 [그림 3.1.2-15]와 같다.
[그림 3.1.2-15] 용제추출법의 처리공정도
화학적산화법(Chemical Oxidation)

- 공정개요

화학적산화법은 타 기술에 비하여 유류 오염물질을 빠른 시간 내에 분해하여 처리할 수 있으며, 현재 다양한 산화제 및 오염물질을 효과적으로 접촉시키기 위한 다양한 방법이 개발되어 적용되고 있다. 화학적산화법의 적용을 통하여 산화제와 접촉한 유류 오염물질은 지중에서 이산화탄소와 물로 분해되고 결과적으로 오염물질의 농도가 감소하게 된다. 화학적산화법은 수십 년 동안 폐수처리 공정에서 효과적으로 사용되어 왔으며, 최근에는 원위치 토양 및 지하수 오염 정화 분야에서도 활용되고 있다.

화학적산화법은 주로 포화지역과 모세관대(capillary fringe)의 오염원(source area)을 정화하기 위하여 사용되지만, 범위가 넓고 지료로 오염된 지역에 적용하는 것은 비용적인 면에서 경제적이지 않다. 또한 오염물질의 농도가 매우 높거나 비수용액체상(Non Aqueous Phase Liquids : NAPL)이 다량 존재할 경우에는 공정 운영의 안전성 또는 경제성 측면에서 화학적 산화법을 적용하기 전에 ‘유동 유분 회수법(free product recovery)’과 같은 타 기술을 적용하는 것을 고려하여야 한다. 포화지역과 불포화지역의 오염원을 동시에 정화하기 위해서는 일반적으로 토양증기추출법과 같은 불포화지역 정화기술과 화학적산화법을 연계하여 적용하기도 한다. 종종 토양증기추출법은 불포화지역의 오염원을 정화할 필요가 없다 할지라도 화학적산화법과 연계되어 사용되기도 하는데 이는 화학적 산화공정 중 지중에서 발생되는 배기가스를 회수하거나 조절하는데 도움을 주기 때문이다.

화학적산화법에 사용되는 산화제 및 적용방법들은 각각의 장점과 단점을 가지고 있다. 일부 산화제는 다른 산화제들보다 산화력이 강하고 지중에서 오염물질과의 접촉시간이 길어 효과적으로 오염물질을 분해할 수 있다. 다양한 산화제 중 적절한 산화제를 선택하기 위해서는 오염물질의 특성에 대한 구체적인 이해가 필요하다. 예를 들어 유류오염 지역에서 대표적으로 발견되는 벤젠과 같은 오염물질은 괴양산염을 이용한 원위치 화학적산화법을 적용할 경우 쉽게 분해되지 않을 수도 있기 때문이다. 오염부지의 수리지질학적 특성을 이해하는 것은 화학적산화법을 적용하는데 있어서 매우 중요하다. 이는 수리지질학적 특성이 지중에 주입되는 산화제와 오염물질이 접촉할 수 있는 범위를 결정하기 때문이다. 예를 들어 산화제는 투수성이 낮은 균질한 토양 또는 다양의 유류 오염물질이 포함되어 있고 수평으로 불균질한 토양이 분포하고 있을 경우 쉽게 침투하지 못한다.
산화제와 토양 중 구성물질과의 반응성 또한 화학적산화법의 비용적인 측면을 고려할 때 매우 중요하다. 즉, 지층에 주입된 산화제는 오염물질뿐만 아니라 토양 중 유기물질과도 반응하여 소모되기 때문에 산화제의 사용량이 증가하고 따라서 전체 경화비용이 증가하게 된다. 또한 각각의 화학적 산화제는 수리지질학적 특성에 따라 적용 가능 여부가 결정되기도 한다. 즉, 폼턴 산화제의 반응을 통하여 생성되는 수산화 라디칼은 오염물질과 반응하기 전에 탄산염이 먼저 소모되기 때문에 폼턴 산화제는 탄산염의 농도가 높은 보화지역정화에는 효과적이지 못하다. 이와 반대로 과망간산염을 이용한 화학적 산화는 토양 내 다량의 탄산염을 포함하고 있더라도 비교적 높은 처리 효율을 나타낼 수 있다. 대부분의 화학적산화법은 오염물질의 분해와 동시에 생물학적 분해를 위하여 호기성 미생물에 활용되는 용존산소를 생성하여 제공하기도 하고, 환원된 전자수용체인 질소/황을 질산염/황산염으로 산화시켜 압기성 미생물이 오염물질을 분해할 수 있도록 하기도 한다. 따라서 화학적산화법은 오염원에서의 오염물질 분해와 함께 오염원 주변 오염물의 생물학적 분해를 유도함으로써 자연정화법과 연계되어 사용되기도 한다.

[그림 3.1.2-16] 화학적산화법 모식도
고형화/안정화(Solidification/Stabilization)

공정개요

고형화 및 안정화법은 오염토양에 시멘트, 석회, 슬래그 등의 고형화제를 첨가하여 오염물질의 이동성을 물리적으로 저감시키고 화학적으로 용해도를 낮추거나 무해한 형태로 변화시키는 처리기술을 말한다. 고형화/안정화법 또한 화학적 산화/환원법과 같이 지상처리(Ex-situ) 및 지중처리(In-situ)로 모두 활용 가능한 기술로서 중금속 등 무기물질을 고정시키는데 효과가 매우 높다. 다양한 고형화/안정화법 중 가장 많이 활용되는 것은 시멘트법에 의한 고형화 및 안정화 처리기술로서 포틀랜드 시멘트(portland cement), 석회 등의 고형화제를 첨가하여 오염물질을 포함한 토양을 고형물질로 변화시켜 오염물질의 이동을 방지하기 위한 방법을 말한다. 고형화 및 안정화를 위한 첨가제로는 폴리에스테르, 에폭시, 아스팔트 등 유기성 접합제와 시멘트, 포졸란 등의 무기성 접합제로 나누어 볼 수 있으며, 이 중 포틀랜드 시멘트가 가장 널리 사용되고 있다.

고형화/안정화법은 중금속으로 오염된 지역에 적용시 타기술에 비하여 처리효과가 높으며, 처리비용 또한 저렴한 장점이 있다. 그러나 일반적으로 오염물질을 제거하는 것이 아닌 오염물질의 용해도 및 이동성만을 감소시키는 처리기술이기 때문에 향후에 오염물질의 용출이 발생할 가능성이 잠재되어 있으며, 장기간의 모니터링 과정이 필요한 단점이 있다. 또한 환경유해물질의 경우 고형화가 어렵고 일반적으로 고형화제의 첨가로 인하여 오염토양의 부피가 증가할 수 있으며, 처리 후고형화된 물질에 대한 처분작업이 필요할 수도 있다. 고형화만 액상이나 슬리지와 같은 오염물질에 접합제를 첨가하여 고장의 형태로 만드는 것을 말하며 안정화된 오염물질을 불용해성으로 변화시키는 것을 의미한다.

무기접합제: 시멘트, 석회, 비산재(Kiln dust, fly ash), 규산, 점토, 지올라이트
유기접합제: 아스팔트, 폴리에테릴렌, 레지, 에폭시, 우레아 폴리알데하이드, 폴리에스테르

무기성 접합제는 비용이 저렴하고 장기적인 안정성이 있으며, 구입이 용이하고 독성이 없기 때문에 다양하게 적용되고 있다. 유기성 접합제는 용해도가 높은 오염물질이나 유기성 오염물질을 화학적으로 접합시켜 안정화시키는 능력이 무기성 접합제보다 크지만 가격이 비싸고 고도의 기술을 요하기 때문에 핵폐기물이나 독성이 강한 오염물질 등에 유리한 특성이 있어서 사용되고 있다. 고형화/안정화법의 처리공정도는 [그림 3.1.2-17]과 같다.
지중처리 고형화/안정화 처리공정

지상처리 고형화/안정화 처리공정

[그림 3.1.2-17] 고형화/안정화법의 처리공정도
동전기법(Electrokinetic Separation)

- 공정개요

동전기 정화(electrokinetic remediation : ER)법은 투수계수가 낮은 포화토양에서 이온상태의 오염물(음이온, 양이온, 중금속 등)을 양극과 음극의 전기장에 의하여 이동속도를 촉진시켜 포화지역의 오염토양을 처리하는 방법이다. 동전기법은 지중처리(In-situ)토양 정화 기술로서 오염지역에 전극을 연결하고 낮은 강도의 전류를 흐르게 함으로써 투수계수가 낮은 토양, 점토, 슬러지 그리고 해양준설토로부터 오염물을 제거한다. 일반적으로 오염토양 처리기술 중 미세토양이 다량으로 혼합되어 투수계수가 낮은 토양의 경우 통기성 및 유체의 이동성이 낮아 토양오염 처리기술의 적응이 용이하지 않지만 동전기법은 투수계수가 낮은 토양의 경우에도 높은 처리효율을 기대할 수 있다. 그러나 동전기법은 소요되는 전기량이 많아 운영비가 높게 소요되어 경제성이 낮고, 산화/환원 반응에 의해 불필요한 부산물이 생성될 수도 있으며, 토양 내 수분함량이 10% 미만인 경우 오염물질 정화효율이 급격하게 감소하기 때문에 다시 수분을 공급해 주어야 하는 단점을 가지고 있다.

동전기법은 오염지역의 토양에 양극과 음극의 세라믹 전극들을 설치하고 낮은 강도의 전류를 흐르게 함으로써 양이온은 음극방향으로 음이온은 양극방향으로의 이동을 촉진시켜 제거하는 방법이다. 일반적으로 중금속 이온, 암모니아 이온 그리고 양으로 대전된 유기물질은 음극을 향하여 움직이고 음이온인 염소이온, 시안, 불소이온, 질산, 그리고 음으로 대전된 유기물질은 양극을 향해 움직이다. 전류는 양극에서 산성극, 음극에서 염기성극을 생성하며, 이러한 산성 조건의 생성은 중금속의 이동성을 증가시키고 음극으로부터 오염물질 수집 장치로 중금속이 이동하는데 도움이 된다. [그림 3.1.2-18]은 대표적인 지중 동전기법 처리공정도이다.
[그림 3.1.2-18] 동전기법의 처리공정도
열탈착법(Thermal Desorption)

- 공정개요

열탈착법은 통제된 환경에서 토양을 일정온도로 가열하여 토양에 흡착된 오염물질을 휘발 및 탈착시키는 지상처리기술로서 오염지역의 굴착된 오염토양을 열탈착장치에 투입하여 처리하는 방법이다. 열적 처리는 직접 연소에 의한 열처리(소각)와 산소가 없는 혐기성 상태에서 열을 가해 유기물질을 분해하는 열처리(열분해)의 두 가지 형태로 구분되며, 다시 열분해 형태는 오염물질을 제거하기 위한 운전 온도에 의해 고온열탈착법(400~800℃)과 저온열탈착법(약 400℃ 이하)으로 구분된다. 열탈착법은 보통 유기물 성분을 분해하지 않고 오염물질을 열을 이용하여 토양으로부터 분리하지만 시스템의 온도와 특정유기물 존재에 따라 가스상의 2차 생성물을 발생시킨다. 이런 가스상의 물질은 대기로 방출되기 전에 2차 처리장치(후연소장치, 촉매산화탑, 응축기, 또는 흡수탑)에 의해 처리된다.

또한 저온열탈착법을 적용하기 위해서는 일부 사전 또는 사후 공정이 필요하다. 예를 들어 굴착된 오염토양 중 입경이 큰 자갈(2인치 직경이상)은 선별을 통해 먼저 제거하고, 선별된 토양은 다시 탈착기로 유입되기 전에 분쇄 및 파쇄 과정을 거치게 된다. 또한 탈착기에서 처리된 토양은 냉각과정에서 분진 등을 저감하기 위해 살수작업 및 안정화 작업 등을 수행한다.

저온열탈착은 휘발유, 항공유, 중유, 경유, 난방유 및 윤활유를 포함하는 석유계 화합물의 농도를 감소시키는 데에 매우 효과가 있는 것으로 알려져 있다.

![그림 3.1.2-19 저온열탈착 시스템 호름도](image-url)
소각법(Incineration)

• 공정개요

이 공정은 적당량의 산소를 공급하여 유기물질을 연소시켜 분해하는 열적 파괴 공정이다. 오염토양의 유기물질을 871~1,204℃의 고온으로 토양 내의 유기오염물질을 소각하여 이산화탄소, 수증기, 황화수소, 그리고 할로겐화 수소로 분해한다. 독성 유기오염물질은 고온 산화로 분해할 수 있지만 불완전 연소가 될 경우 중금속을 함유한 독성의 소각재가 생성될 수 있다.

일반적인 소각로의 오염물질 제거효율은 99.99% 이상이고, PCB나 다이옥신(dioxins)에 대해서는 99% 정도의 효율을 나타낸다. 보통 소각법은 오염토양 처리방법이라기 보다는 폐기물 처리에 주로 활용되고 있는 기술로서 다양한 오염물질을 매우 높은 수준까지 효과적으로 정화할 수 있는 기술 중의 하나이다. 그러나 처리비용이 타기술에 비하여 매우 높고 중금속으로 오염된 토양을 소각하는 경우 중금속을 포함한 소각재가 발생되므로 소각 후 다시 처분해야 하는 단점을 가지고 있다. 또한 납, 카드뮴, 수은, 비소 등의 휘발성 중금속은 연소 시 유해성 가스를 발생시키며, 이외에 분진, 에어로졸, 염산, 화산화물, 기타 가스 등을 발생시키므로 이를 처리하기 위하여 배기가스처리장치를 설치하여야 한다. 소각법은 토양 중의 오염물질뿐만 아니라 토양 미생물 및 유기물질까지 모두 분해시키기 때문에 이로인한 소각된 토양은 토양으로서의 기능을 상실하게 되므로 친환경적이지 않다.

소각법은 염소계탄화수소, PCBs, 다이옥신으로 오염된 토양을 정화하는데 주로 이용되는 지상처리(Ex-situ)기술이다. 소각로를 이용하여 오염토양을 정화하는 경우 대기로 방출되는 유해성 가스를 고려해야 한다. 소각법의 전형적인 처리공정도는 아래 [그림 3.1.2-20]과 같으며, 상업용 공정은 일반적으로 후 연소버너와 배기 가스처리장치가 장착된 대용량의 회전식 소각로로 이루어져 있다.

[그림 3.1.2-20] 소각법의 처리공정도
유리화법(Vitrification)

유리화 공정은 굴착한 오염토양을 전기적으로 용융시킴으로써 용출특성이 매우 적은 결정구조로 만드는 기법으로써 이 기술은 오염물질의 농도를 감소시키기 보다는 오염물질을 둘러싸 고립화시키는 지중처리(In-situ) 기술이다. 유리화법은 전극을 지중에 연결하여 전류를 흐르게 함으로써 열을 발생시켜 오염토양을 결정구조로 만드는 공정이기 때문에 열을 이용한다는 면에서 열적처리방법에 속하기도 하지만 결정구조 안에 오염물질을 포함하여 이동성을 감소시키는 점에서 일종의 고형화/안정화법이라 할 수 있다. 따라서 본 기술은 공정 운영 중 발생하는 열을 이용하여 오염토양에 존재하는 유기오염물질을 정화할 수 있을 뿐만 아니라 고형화 원리를 이용하여 중금속 등의 무기물질을 처리할 수도 있다. 유리화법은 중금속을 비롯한 다양한 오염물질을 처리할 수 있다는 점에서 활용도가 높은 기술이지만 소요되는 에너지 비용이 높고 유리화 공정 중 발생하는 방출가스를 처리해야 하며, 유리화된 슬래그를 다시 처분해야 하는 단점을 가지고 있다.

유리화법은 전극을 지중에 연결하여 전류를 흐르게 함으로써 열을 발생시켜 오염토양을 결정구조로 만드는 공정이다. 본 공정은 토양 내에 존재하는 오염물질의 이동성을 감소시키는 데 효과적인 기술로서 유리화된 토양은 고밀도이며 용해성이 매우 낮다. 유리화법의 전형적인 처리공정도는 [그림 3.1.2-21]과 같다.

[그림 3.1.2-21] 유리화법의 처리공정도
열분해법 (Pyrolysis)

- 공정개요

열분해는 산소가 없는 혐기성 상태에서 열을 가해 유기물질을 분해시키는 화학적 분해방법이다. 유기물질은 가스상 물질과 고정탄소 및 재(ash)로 전환되며, 특히 유해성 유기물질을 이산화탄소 및 수소, 메탄, 탄화수소와 같은 연소 가능한 가스상태로 변환시킨다. 휘발성유물질이나 증류발성유물질이 포함되어 있을 경우 열탈착이 일어나기도 하며 방출가스는 2차 연소실에서 일부는 연소되고, 일부는 농축된다.

열분해법은 열탈착법 및 소각법과 같은 열적처리기술이기 때문에 이러한 기술들과 비슷한 장점 및 제한요인을 가지고 있다. 열분해는 오염물질을 단기간에 처리 할 수 있는 공정이다. 열분해의 개념은 널리 알려져 있지만 처리 현장에 따라 다양한 결과를 나타내며, 전형적인 처리공정도는 [그림 3.1.2-22]와 같다.

[그림 3.1.2-22] 열분해법의 처리공정도
3.1.3 국내·외 토양정화방법·오염원별 비용 및 기간에 관한 비교 분석

토양 정화방법별로 정화기간 및 소요 정화 비용이 다르게 적용된다. 본 장에서는 국내·외 토양정화방법과 오염원별에 따른 비용 및 기간에 관한 비교 분석 자료를 제시하였다.

가. 국외
2001년부터 2005년까지 유럽에서 주로 사용되는 15개의 정화기술별 처리단가를 [그림 3.1.3-1] 및 [표 3.1.3-1]과 같이 나타냈다. [그림 3.1.3-1]을 살펴보면, 부지 외 처리 비용 중 소각법이 제일 높은 평균비용(885Euro/m³, 약 1,240,000원/m³) 소요하는 것으로 나타났으며, 자연저감법이 제일 낮은 비용(20Euro/m³, 약 28,000원/m³)으로 나타났다. 또한 유리화법은 정화처리 시 에너지 비용이 높고 정화작업 후 가스 및 슬래그의 후처리비용이 소요되어 최소 처리비용이 518Euro/m³(약 725,000원/m³)로 가장 높게 나타났다.

[그림 3.1.3-1] 유럽 오염토양정화기술 처리비용 비교
<table>
<thead>
<tr>
<th>Technique</th>
<th>MIN</th>
<th>MAX</th>
<th>AVE. MIN. MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Site Incineration</td>
<td>148</td>
<td>2650</td>
<td>685</td>
</tr>
<tr>
<td>In-situ Vitrification</td>
<td>518</td>
<td>814</td>
<td>666</td>
</tr>
<tr>
<td>On-site Thermal Treatment</td>
<td>10</td>
<td>979</td>
<td>231</td>
</tr>
<tr>
<td>Off-Site Landfilling</td>
<td>15</td>
<td>600</td>
<td>229</td>
</tr>
<tr>
<td>Off-Site Soil Washing</td>
<td>30</td>
<td>608</td>
<td>226</td>
</tr>
<tr>
<td>Ex-situ Vitrification</td>
<td>44</td>
<td>380</td>
<td>220</td>
</tr>
<tr>
<td>In-Situ Steam Injection</td>
<td>50</td>
<td>300</td>
<td>175</td>
</tr>
<tr>
<td>Off-Site Biological Treatment</td>
<td>20</td>
<td>665</td>
<td>167</td>
</tr>
<tr>
<td>On-site Biopiling</td>
<td>10</td>
<td>570</td>
<td>142</td>
</tr>
<tr>
<td>On-site Immobilization</td>
<td>15</td>
<td>400</td>
<td>139</td>
</tr>
<tr>
<td>In-situ Immobilization</td>
<td>25</td>
<td>270</td>
<td>128</td>
</tr>
<tr>
<td>In-Situ Electro Reclamation</td>
<td>44</td>
<td>207</td>
<td>126</td>
</tr>
<tr>
<td>On-site Phytoremediation</td>
<td>22</td>
<td>222</td>
<td>122</td>
</tr>
<tr>
<td>On-site Bioslurry Reactor</td>
<td>89</td>
<td>222</td>
<td>122</td>
</tr>
<tr>
<td>On-site Soil Washing</td>
<td>15</td>
<td>466</td>
<td>116</td>
</tr>
<tr>
<td>Off-Site Immobilization</td>
<td>50</td>
<td>270</td>
<td>112</td>
</tr>
<tr>
<td>Encapsulation (sqm)</td>
<td>30</td>
<td>178</td>
<td>104</td>
</tr>
<tr>
<td>In-Situ Biosurping</td>
<td>20</td>
<td>162</td>
<td>92</td>
</tr>
<tr>
<td>In-Situ Air Sparging</td>
<td>11</td>
<td>360</td>
<td>91</td>
</tr>
<tr>
<td>On-site Biological Treatment</td>
<td>11</td>
<td>222</td>
<td>75</td>
</tr>
<tr>
<td>In-Situ Bioremediation</td>
<td>15</td>
<td>200</td>
<td>73</td>
</tr>
<tr>
<td>Pump and Treat</td>
<td>10</td>
<td>228</td>
<td>71</td>
</tr>
<tr>
<td>Chemical Oxidation</td>
<td>30</td>
<td>126</td>
<td>69</td>
</tr>
<tr>
<td>On-site Landfarming</td>
<td>15</td>
<td>114</td>
<td>62</td>
</tr>
<tr>
<td>Reactive Walls</td>
<td>40</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td>In-Situ Soil Venting</td>
<td>10</td>
<td>152</td>
<td>54</td>
</tr>
<tr>
<td>Containment Walls</td>
<td>40</td>
<td>80</td>
<td>52</td>
</tr>
<tr>
<td>Hydrogeological Containment</td>
<td>22</td>
<td>80</td>
<td>49</td>
</tr>
<tr>
<td>DVE (Dual Vapour Extraction)</td>
<td>20</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>Confinement</td>
<td>20</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>Free Product Recovery</td>
<td>10</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>On-site Windrows</td>
<td>7</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>In-Situ Natural Attenuation</td>
<td>15</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

[표 3.1.3-1] 유럽 오염토양정화기술 평균 처리비용 순위
[그림 3.1.3-2]는 연도별 평균 정화기간으로 2006년 17.8개월, 2007년 17.7개월, 2008년 13.9개월로 오염토양 정화에 소요되는 기간이 점차 짧아지는 것으로 조사되었다.
<table>
<thead>
<tr>
<th>처리위치</th>
<th>총 오염토양량 대비 소요 정화비용 (천원/㎥)</th>
<th>정화기간(월)</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체평균</td>
<td>212.0 16.4</td>
<td></td>
</tr>
<tr>
<td>부지내</td>
<td>189.5 21.6</td>
<td></td>
</tr>
<tr>
<td>부지외</td>
<td>242.2 9.2</td>
<td></td>
</tr>
<tr>
<td>토양경작법 (Landfarming)</td>
<td>234.8 10.8</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>189.8</td>
<td>-</td>
</tr>
<tr>
<td>부지내</td>
<td>244.2</td>
<td>-</td>
</tr>
<tr>
<td>토양증기추출법 (Soil Vapor Extraction)</td>
<td>177.2 30.6</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>174.8</td>
<td>-</td>
</tr>
<tr>
<td>부지내</td>
<td>180.6</td>
<td>-</td>
</tr>
<tr>
<td>생물학적통풍법 (Bioventing)</td>
<td>189.6 31.3</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>189.0</td>
<td>-</td>
</tr>
<tr>
<td>부지내</td>
<td>192.6</td>
<td>-</td>
</tr>
<tr>
<td>화학적산화/환원법 (Chemical Oxidation/Reduction)</td>
<td>212.4 15.9</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>199.1</td>
<td>-</td>
</tr>
<tr>
<td>부지내</td>
<td>255.3</td>
<td>-</td>
</tr>
<tr>
<td>토양세정법 (Soil Flushing)</td>
<td>189.3 27.4</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>281.7 23.5</td>
<td></td>
</tr>
<tr>
<td>부지내</td>
<td>274.5</td>
<td>-</td>
</tr>
<tr>
<td>부지외</td>
<td>255.3 31.7</td>
<td></td>
</tr>
<tr>
<td>생물학적분해법 (Bioremediation)</td>
<td>240.7 22.8</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>255.3</td>
<td>-</td>
</tr>
<tr>
<td>부지내</td>
<td>252.4</td>
<td>-</td>
</tr>
<tr>
<td>토양세척법 (Soil Washing)</td>
<td>240.7 22.8</td>
<td></td>
</tr>
<tr>
<td>평균</td>
<td>111.4</td>
<td>-</td>
</tr>
<tr>
<td>부지외</td>
<td>199.9</td>
<td>-</td>
</tr>
</tbody>
</table>

[표 3.1.3-2] 오염정화방법별 정화기간, 정화효율, 정화비용
주) 단순히 총 정화사업비를 총 오염토양량으로 나눈 값으로 정화공법별 단가가 아님

[표 3.1.3-2]에는 각 오염토양 정화방법별 정화기간을 나타냈는데, 전체적인 평균은 16.4개월 (부지내 : 21.6개월, 부지외 : 9.2개월)로 토양경작법(Landfarming)과 화학적 산화/환원법(Chemical Oxidation/Reduction)이 상대적으로 짧은 10.8개월 (부지내 : 16.4개월, 부지외 : 8.5개월), 15.9개월(부지내 : 17.8개월, 부지외 : 7.1개월)로 나타났으며, 생물학적분해법(Bioremediation), 토양세척법(Soil washing), 토양세정법(Soil flushing)이 17.9개월(부지내 : 20.1개월, 부지외 : 5.8개월), 23.5개월 (부지내 : 25.6개월, 부지외 : 6.3개월), 27.4개월 순으로 나타났다.
전반적으로 부지 내 처리의 경우 오염토양량 대비 정화비용이 상대적으로 낮으나
정화기간이 길어지는 것으로 나타났으며, 부지 외 처리의 경우 부지 내 처리와 반대의 경향을 나타내었다. 단순 비교값으로 토양정화에 소요된 총 비용을 오염 토양량으로 나눈 값은 평균 212.0천원/㎥이었다. 토양세척법이 281.7천원/㎥으로 가장 비쌌으며, 토양증기추출법이 177.2천원/㎥으로 가장 저렴한 것으로 나타났다. 특히 물리 생물학적인 방법을 사용하는 경우 정화비용이 저렴하나, 정화기간이 길어지는 것으로 나타났다.

2006년에서 2008년까지 각 년도별 오염토양량(㎥)을 총 소요 정화사업비로 나누어 년도별 오염토양량(㎥)당 정화비용을 계산하였다. 2006년에는 159.5천원/㎥에서 2007년 204.0천원/㎥, 2008년 253.2천원/㎥으로 점차 증가하는 경향을 나타냈다. 이것은 토양오염의 정화에 필요한 비용이 증가하고 있다는 것으로 앞에서 나타낸 자료를 토대로 유추하면 비용이 많이 소요되더라도 신속한 처리가 이루어지는 정화방법을 더 선호하기 때문인 것으로 판단된다.

[그림 3.1.3-3] 2006~2008년 총 오염토양량 대비 총 토양정화 소요 비용의 평균값 (단위:천원)
3.2 토양정화 업무절차 및 정화계획 분석 요령 제시

3.2.1 토양정화 관련규정 및 업무절차 분석

가. 토양정화 관련규정

현행 국내 토양환경관리체계는 토양오염 조사 및 정화를 적극적으로 유인할 수 있도록 환경부에서 토양환경보전법에 의해 관리하고 있다. 토양환경보전법에 의해 정해져 있는 기관 및 해당요건을 갖추어 환경부로부터 지정된 토양관련전문기관이 토양오염 조사업무를 담당하도록 하고 있으며, 최근 제도화 된 토양정화업 등록제를 통하여 일정한 등록요건을 갖추어 환경부에 등록한 업체만이 토양오염 정화사업을 수행할 수 있도록 하고 있다.

❍ 오염토양의 정화(법 제15조의3)

오염토양은 토양정화업자에게 위탁하여 정화하여야 한다. 오염토양은 토양정화업의 등록을 한 자에게 위탁하여 정화하여야 하며, 오염토양을 정화하는 자는 오염토양에 다른 토양을 섞어서 오염농도를 낮추는 행위를 하여서는 아니 된다.

❍ 오염토양의 정화기준 및 정화방법(시행령 제10조)

- 미생물을 이용한 오염물질의 분해 등 생물학적 처리
- 오염물질의 차단·분리추출·세척처리 등 물리·화학적 처리
- 오염물질의 소각·분해 등 열적 처리

❍ 오염토양정화계획의 제출(시행규칙 제19조의6)

오염원인자는 다음 각 호의 내용을 포함하는 오염토양정화계획서를 작성하여 정화공사 7일 전에 관할 시장·군수·구청장에게 제출

- 오염토양의 양 및 오염범위(도면을 포함한다)
- 토양오염물질 및 오염정도
- 정화방법 및 정화일정
- 시공할 토양정화업자
- 검증할 토양관련전문기관
- 그 밖에 오염토양의 정화에 필요한 사항

※ 단 다음 각 호의 어느 하나에 해당하는 사유가 발생한 날부터 7일 이내에 오염토양계획(변경)을 관할 시장·군수·구청장에게 제출.
- 오염토양의 양 또는 오염범위의 20퍼센트 이상의 증감
- 토양오염물질 오염정도의 20퍼센트 이상의 증감 또는 토양오염물질 종류

○ 반출정화대상 (시행규칙 제19조)
- 「국토의 계획 및 이용에 관한 법률」에 의한 도시지역안의 건설공사 현장 등 환경부장관이 정하여 고시하는 경우
- 토양오염물질 운송차량의 전복 등 긴급한 사고로 인한 오염토양으로서 즉시 처리하여야 하는 경우
- 오염토양의 양이 5세제곱미터 미만으로서 현장에서 정화하는 때에는 정화효율이 현저하게 저하되는 경우
- 오염토양의 정화 조치명령을 받은 자가 오염토양 정화공사를 시행하였으나 오염물질의 종류, 오염정도 및 기술적 한계 등으로 최초 조치명령기간 내에 이를 완료하지 못한 경우로서 토양오염조사기관의 정화과정 검증결과 반출하여 정화할 필요가 있다고 인정한 경우
- 토양오염이 발생한 부지가 같은 시·군·구내에 흩어져 있는 경우로서 오염부지의 소유자 또는 오염원인자가 알고 각각의 오염부지에 토양정화시설을 모두 설치하기 곤란하여 토양정화업자가 오염부지 중 어느 한 곳에 설치한 시설을 이용하여 한꺼번에 정화하는 경우(정화 대상 오염토양 전부를 하나의 토양정화업자에게 위탁한 경우만 해당)

○ 오염토양의 반출정화대상 고시(환경부고시 제2010-30호)
- 「국토의 계획 및 이용에 관한 법률」제6조제1호에 따른 도시지역 안의 건설공사 과정에서 발생된 부지 안에서의 정화가 곤란한 오염토양
- 비소, 폴리클로로네이티드비폐닐, 유기인화합물, 범커 시유(C중유) 및 윤활유로 오염되어 열적처리방법으로 처리하여야 하는 오염토양
- 정화부지가 100제곱미터 이내로 협소하여 부지 안에서 정화가 곤란한 오염토양
- 지하수보전구역, 상수원보호구역, 수질 및 수생태계 보전과 관련한 특별대책지역에서 발생한 오염토양
- 「국토의 계획 및 이용에 관한 법률」제6조제4호에 따른 자연환경보전지역 안에서 발생된 오염토양 중 수질 및 수자원보호를 위하여 줄기 처리가 필요하다고 관할 시장·군수·구청장이 인정한 경우
- 석유계충탄화수소(THP)가 20,000mg/kg 이상으로 오염된 토양을 열적처리방법으로 처리하고자 하는 오염토양(THP가 20,000mg/kg 미만으로 오염된 부분 제외)
오염토양의 반출절차 및 방법 등(시행규칙 제19조의2)

- 오염토양을 반출하여 정화하고자 하는 자는 오염토양반출정화(변경)계획서에 다음 각 호의 서류를 첨부하여 관할 시장·군수·구청장에게 제출
  - 운반위탁계약서 사본(운반을 위탁하는 경우만 해당한다)
  - 정화검증계약서 사본

- 오염토양반출정화계획을 변경하려는 자는 오염토양반출정화(변경)계획서에 변경내용과 관련된 서류를 첨부하여 시장·군수·구청장에게 제출
- 반출 오염토양의 양 또는 오염범위(20퍼센트 이상 증감하는 경우만 해당)
- 반출 오염토양의 오염정도(20퍼센트 이상 증감하는 경우만 해당) 또는 토양 오염물질의 종류
- 정화방법, 정화소요기간, 토양정화업자 또는 검증할 토양관련전문기관
- 반출정화계획의 적정통보를 받은 자는 반출·운반·반입 및 정화과정과 정화된 토양의 처리과정을 서면 또는 전산처리시스템을 통하여 시장·군수·구청장 및 오염토양이 반입되는 토양정화업자의 관할 지방환경관서의 장에게 제출

오염원인자에 의한 직접 정화(시행령 제11조)

다음 각 호에 해당하는 오염토양에 대해서는 오염원인자가 직접 정화
- 「국방·군사시설 사업에 관한 법률」에 의한 군부대 시설안의 오염토양 또는 군사활동으로 인한 오염토양으로서 그 액이 50세제곱미터 미만인 것
- 유기용제 또는 유류에 의한 오염토양으로서 그 액이 5세제곱미터 미만인 것
나. 토양정화 업무절차 분석

오염토양의 정화 절차는 오염현황 파악을 위한 정밀조사와 조사결과에 따른 정화설계, 시공, 정화공정 운영 및 관리 등이 일정한 기준에 따라 일관성 있게 수행되어야만 궁극적인 정화목적을 달성할 수 있는 기술적 특성을 가지고 있다. 정화제도 운영을 위한 기본절차는 아래와 같으며, [그림 3.2.1-1]에 국내 토양정화제도 운영의 기본절차를 도시하였다.

- 오염도조사 및 정밀조사 : 토양오염조사기관
- 정화계획수립 : 오염원인자, 토양정화업체
- 오염토양 정화계획서 제출 : 오염원인자
- 정화 및 검증의 신청 : 오염원인자
- 검증계획서 제출 : 검증기관
- 오염토양정화 : 오염원인자, 토양정화업체
- 정화과정검증 : 검증기관
- 정화완료검증 : 검증기관
- 검증보고서/검증서 제출 : 검증기관
- 이행보고서 제출(정화완료) : 오염원인자
- 관할지역 내 토양정화 및 검증실적보고 : 관할시·군·구청
[그림 3.2.1-1] 국내 토양정화제도 운영의 기본절차
3.2.2 토양정화계획 세부내용 분석

본 장에서는 오염도가 확인되었을 경우 정밀조사부터 최종 정화검증까지의 정화 사업 추진절차를 설명하고, 정화사업을 추진하기 위한 각 단계별 세부 업무범위를 소개하고자 한다. [그림 3.2.2-1]은 토양 정밀조사부터 정화검증까지 전반적인 업무추진 흐름도를 보여준다.

[그림 3.2.2-1] 오염토양 정화사업관련 업무추진 흐름도
최초 특정토양오염관리대상시설 설치자는 토양오염도 검사를 통해 오염물질이 토양환경보전법상의 우려기준을 초과할 때에는 정밀조사를 수행하여야 한다. 정화사업 추진절차에 따른 세부업무범위를 정리하면 [표 3.2.2-1]과 같다.

<table>
<thead>
<tr>
<th>1. 토양오염검사</th>
<th>특정토양오염관리대상시설 설치자가 토양관련전문기관을 통해 실시하는 법정검사</th>
</tr>
</thead>
<tbody>
<tr>
<td>기초조사</td>
<td>자료조사, 정취조사 및 현지조사 등을 통하여 토양오염 가능성 유무를 판단</td>
</tr>
<tr>
<td>개황조사</td>
<td>조사지역의 오염면적 및 오염범위를 파악하기 위한 사전 개략조사</td>
</tr>
<tr>
<td>정밀조사</td>
<td>정밀조사의 오염물질성 확인된 오염물질을 대상으로 토양오염 현황을 평가하는 것을 목적으로 하며, 작업의 범위를 고려하여 조사계획 수립, 조사 활동, 조사 자료의 분석/평가, 조사결과 해석 및 오염량 산출, 그리고 최종보고서 작성과 같이 5단계 작업으로 수행함</td>
</tr>
</tbody>
</table>

| 2. 정밀조사 | 정밀조사의 정밀조사를 통한 오염물질체 집계 및 이를 바탕으로 기초설계 및 설계의 상호식 |

| 3. 적용성 평가 및 설계 | 적용성 평가는 오염물질체 집계 및 이를 바탕으로 기초설계 및 설계의 상호식 |

| 4. 정화공사 | 정화공사는 타당성 평가 및 설계를 바탕으로 토양정화업에 등록된 업체를 통하여 정화공사를 수행함 |

| 5. 정화검증 | 토양정화의 검증은 오염물질체 집계 및 이를 바탕으로 기초설계 및 설계의 상호식 |

[표 3.2.2-1] 정화사업 추진절차에 따른 세부업무범위
토양오염검사
특정토양오염관리대상시설의 설치자는 토양관련전문기관으로부터 그 시설의 부지와 그 주변지역에 대하여 정기적으로 토양오염검사를 받아야 하며, 토양오염검사는 토양오염도검사와 누출검사가 있다.

정밀조사
정밀조사를 통하여 조사부지의 오염물질 종류 및 오염범위 등을 분석·평가하여 대상부지의 토양오염 현황을 평가한다.

적용성 평가 및 설계
정밀조사를 통한 토양오염 현황 평가결과를 바탕으로 대상부지에 적용가능한 정화기술을 선정하기 위하여 적용성 평가(RI/FS : Remedial Investigation/Feasibility Study)를 실시하게 되며, 특히 적용성 평가 에서는 대상부지의 지질학적특성, 토양 및 오염물질의 성상을 조사한 후 처리물질, 최종처리방법, 대상부지의 활용방안, 처리기간 등을 복합적으로 고려하여 현 부지에 적용 가능한 최적의 정화기술을 선정하게 된다. 최종기술이 선정되면 처리에 필요한 설계인자 및 재원인자들을 바탕으로 실시설계를 실시하게 된다.

정화공사
실시설계가 완료되면 토양정화업에 등록된 업체를 대상으로 하여 정화공사가 시행된다. 이 과정에서 정화가 적정하게 진행되고 있는지, 정화공사가 완료되어 오염토양의 정화기준을 만족하는지에 대한 정화검증단계를 거쳐야 한다.

정화검증
정화검증은 정화된 오염토양이 정화기준을 만족하는지를 확인하는 동시에 토양환경 보전법, 폐기물관리법, 수질 및 수생태계 보전에 관한 법률, 대기환경보전법, 기타관련법 및 환경부에 의해 제정된 관련 규정들에 따라 적법하게 이루어지면서 토양정화가 진행되었는지를 검증한다. 토양정화검증 수행체계는 [그림 3.2.2-2]에 나타내었다.
토양정화검증절차는 크게 토양정화공사 착공 전의 “검증계획 수립” 단계, 정화공사 진행 중에 실시하는 “과정검증” 단계 그리고 정화공사 완료시 실시하는 “완료검증” 단계 등 3단계로 구분할 수 있다.

그림 3.2.2-2 토양정화검증 수행체계

- 검증계획 수립은 오염원인자가 제출한 토양정화검증신청서와 첨부서류 8) 등을 검토하고 검증계획서를 작성하는 단계로서 수행내용은 아래와 같다.
  - 자료검토
    - 오염도 조사보고서(토양오염도 조사, 토양정밀조사, 토양환경평가 등)
    - 오염토양정화계획서
    - 그 밖의 관련자료
  - 자료검토 내용을 확인하기 위한 현장조사
  - 토양정화검증계획서 작성 및 통보(검증기관→오염원인자)

8) 오염도 조사보고서, 오염토양정화계획서, 설계도서 등
과정검증은 토양정화공사 진행 중에 실시하며 수행내용은 아래와 같다.
단, 오염토양이 1,000㎥ 이하일 경우 과정검증은 생략할 수 있다9).

- 완료검증 시료수의 20%이상을 과정검증의 시료수로 산정하고 정화방법의 특성 및 기간을 고려·배분하여 검증
- 오염토양정화계획의 이행여부를 확인
- 주기적인 토양시료 채취·분석을 통해 오염농도의 저감을 확인

완료검증은 토양정화공사 완료시점에서 실시하며 수행내용은 아래와 같다.
정화목표까지 정화되었을 경우 검증기관은 오염원인자에게 토양정화 검증서를 발급하며, 정화되지 않았을 경우 재검증을 수행한다.

- 시료채취지점수의 산정은 토양환경평가지침의 기준을 준용함. 시료는 채취지점의 깊이 1m 간격으로 1개씩 채취하여 오염이 확산되지 않은 깊이까지 채취하며 굴착 처리하는 경우 굴착 전의 오염분포에 따라서 지점 및 시료수를 산정
- 최종 시료채취·분석을 통해 오염농도가 정화목표까지 달성되었는지의 여부확인
- 토양정화검증 결과보고서 작성
- 토양정화검증서 작성

[표 3.2.2-2]에 토양정화검증에 대해 요약하였다.

9) 토양환경보전법 제11조의2(정화과정 검증의 생략) 법 제15조의6제1항 단서의 규정에 의하여 오염토양의 양이 1,000㎥ 미만[중금속에 의한 오염토양 중 토양오염도가 대책기준을 초과하는 것으로서 500㎥ 이상인 것을 제외]인 경우에는 정화과정에 대한 검증을 생략할 수 있다[법률공포 2005.6.30].
<table>
<thead>
<tr>
<th>구분</th>
<th>토양정화검증 요약</th>
</tr>
</thead>
<tbody>
<tr>
<td>시행목적</td>
<td>- 토양정화공사 수행시 정화공사에 대한 진행과정과 정화완료를 제3 의 토양정화검증기관이 객관적이고 독립적으로 확인토록 함으로써 토양정화결과의 신뢰성을 확보</td>
</tr>
</tbody>
</table>
| 법적근거     | - 토양환경보전법 제15조의6  
- 토양정화 검증방법에 관한 고시 (환경부 고시 제2009-173호) |
| 조사지점     | - 굴착지역, 공정단계별 모니터링 및 정화완료 토양 |
| 조사방법     | - 검증계획수립단계에서는 오염원인자가 제출한 자료검토 및 확인을 위한 현장조사 수행  
- 과정검증단계에서는 정화공사 진행 중에 실시하며, 오염토양정화계획 의 이행여부 확인 및 주기적인 토양시료 채취·분석을 통해 오염농도 저감을 확인  
- 완료검증단계에서는 정화공사 완료시점에 실시하며, 최종 정화토양의 채취·분석을 통해 오염농도가 정화목표까지 달성되었는지 여부를 확인  
- 이 외 공사과정 중 환경의 적정관리여부를 확인 |
| 시료채취     | - 완료검증: 시료채취 지점수는 토양환경평가지침을 준용, 시료는 채취지점의 깊이 1m 간격으로 1개씩 채취하여 오염이 확산되지 않은 깊이까지 채취  
- 과정검증: 완료검증 시료수의 20%이상을 과정검증 시료수로 산정하고 정화방법의 특성 및 기간을 고려하여 배분 |
| 조사항목     | - 정화검증서신청서에 명시된 토양오염물질 |

[표 3.2.2-2] 토양정화검증 요약
토양정화 세부 검증항목 및 세부 검증방법은 아래와 같다.

<table>
<thead>
<tr>
<th>검증항목</th>
<th>세부 검증항목</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>오염도 분석</td>
<td>시료채취 및 분석</td>
<td>세부방법 및 주기는 정화방법 특성에 따른</td>
</tr>
<tr>
<td>환경 관리</td>
<td>2차 오염원의 발생 및 처리 현황</td>
<td>해당사항에 대해서 실시</td>
</tr>
<tr>
<td>굴착작업</td>
<td>적정 굴착여부 현장확인 오염토양 적정 분류 현장확인</td>
<td>위치의 방법</td>
</tr>
<tr>
<td>정화토양 처분</td>
<td>서류검토 및 현장확인</td>
<td></td>
</tr>
</tbody>
</table>

[표 3.2.2-3] 토양정화 세부 검증항목

<table>
<thead>
<tr>
<th>구분</th>
<th>세부 항목</th>
<th>검증기준</th>
<th>세부 검증방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>오염도 분석</td>
<td>과정검증</td>
<td>오염도 저감정도</td>
<td>- 오염도 분석결과를 최초 오염도 및 정화목표와 비교하여 저감정도를 판정</td>
</tr>
<tr>
<td></td>
<td>완료검증</td>
<td>정화목표 미만</td>
<td>- 오염도 분석결과를 정화목표와 비교하여 판정</td>
</tr>
<tr>
<td>환경관리</td>
<td>환경의 적정 관리여부</td>
<td>폐기물 적정관리</td>
<td>- 발생 폐기물 관련 자료를 검토하여 적정 관리여부를 판정</td>
</tr>
<tr>
<td></td>
<td>폐수 적정관리</td>
<td>폐수가 발생</td>
<td>- 발생 폐수 관련 자료를 검토하여 적정 관리여부를 판정</td>
</tr>
<tr>
<td></td>
<td>폐가스 적정관리</td>
<td>폐가스 발생</td>
<td>- 발생 폐가스 관련 자료를 검토하여 적정 관리여부를 판정</td>
</tr>
<tr>
<td>굴착작업</td>
<td>굴착작업의 적정 진행여부</td>
<td>오염토양 적정굴착</td>
<td>- 굴착현장을 현장 확인하여 오염토양이 적정하게 굴착되는지를 확인하고 비오염토양이 불필요하게 굴착되는 것을 방지</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 자료검토 및 유휴검사를 통하여 굴착토양이 오염토양과 비오염토양으로 적정하게 분류되는지를 판정</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 유휴검사를 통하여 오염토양이 현장에서 적정하게 야적・보관・이송되는지의 여부를 판정</td>
</tr>
<tr>
<td>정화토양 처분</td>
<td>정화토양의 적정 관리여부</td>
<td>정화토양 적정처분</td>
<td>- 자료검토 및 현장확인을 통하여 정화된 토양이 적법하게 처분되었는지를 판정</td>
</tr>
</tbody>
</table>

[표 3.2.2-4] 토양정화 세부 검증방법

- 137 -
3.3 토양정화 업무지침 마련

3.3.1 토양정화계획 적정성 판단기준 수립

국내·외에서 개발된 다양한 오염토양 정화기술을 실제 부지오염에 효과적으로 적용하기 위해서는 오염부지의 환경적 특성과 오염물질의 물리·화학적 특성 및 기타 부지의 특이적인 상황을 고려하여 대상부지에 적절한 정화기술을 선택하는 것이 매우 중요하다. 일반적으로 오염의 형태 및 거동은 오염물질의 종류 및 성질에 따라 매우 다른 형상을 나타내고, 같은 오염물질이라 할지라도 매체의 특성에 따라 또는 부지의 지질학적 특성에 따라 다르게 나타난다. 따라서 각각의 정화기술은 이러한 특성에 따라 단일 기술로 또는 복합적으로 부지의 오염 특성에 맞게 적용되어야 하며, 이러한 특성을 분석하여 적절한 정화기술을 선정하여야 한다.

실제 현장에서 수행되는 정화사업의 적정성을 평가하는데 있어서의 기준은 기술의 효용성 및 적용성 평가이며, 오염토양의 정화를 위한 기술을 선정하는 기본적인 진행방법은 다음과 같다. 기본적으로 정화기술의 선정을 위해서는 오염지역의 정밀조사 등 오염도조사를 통하여 오염물질 및 오염부지의 특성을 구체적으로 파악하는 과정이 선행되어야 한다. 이러한 조사를 통하여 오염지역의 문제점을 전반적으로 평가하고 본 부지에 필요한 정화작업의 범위를 수집한다.

<table>
<thead>
<tr>
<th>선정 기준</th>
<th>세부 검토 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>부지특성</td>
<td>토성, 부지특성, 향후 개발계획</td>
</tr>
<tr>
<td>오염물질 및 농도특성</td>
<td>오염종류, 오염규모, 심도 및 농도분포</td>
</tr>
<tr>
<td>지하수오염 특성</td>
<td>오염현황, 유동방향, 확산가능성</td>
</tr>
<tr>
<td>정화의 신속성</td>
<td>공기 준수 가능 여부</td>
</tr>
<tr>
<td>현장적용성</td>
<td>정화지역의 지형적 특성 고려</td>
</tr>
<tr>
<td></td>
<td>선정된 공법의 현장 적용 가능 여부</td>
</tr>
<tr>
<td></td>
<td>부지 내 시설물 철거 및 이전일정 고려</td>
</tr>
<tr>
<td>정화공법의 효율성</td>
<td>오염물질별 처리 효율성</td>
</tr>
<tr>
<td></td>
<td>향후 부지활용을 감안한 정화목표 달성 여부</td>
</tr>
<tr>
<td></td>
<td>2차 오염물질의 발생여부</td>
</tr>
<tr>
<td>시공의 경제성</td>
<td>선정된 공법의 경제성 분석</td>
</tr>
</tbody>
</table>

[표 3.3.1-1] 정화공법 선정기준
선정 기준 | 세부 검토 사항
--- | ---
1단계 : 기본안 검토 | ◦ 정화목표 설정
◦ 처리위치(In/Ex-situ)별 적용 가능성 검토
◦ 정화공법별 적용가능성 평가
◦ 기술적 타당성 평가

2단계 : 정화공법 선정 | ◦ 오염물질에 대한 특성별 적용 정화기술 검토
◦ 시공성, 경제성, 적용가능성 등 평가기준별 대안기술
◦ 평가기준별 우선순위별 선별 및 대안기술 검토

[표 3.3.1-2] 정화공법 선정절차

① 적정성 판단기준 : 1단계
오염도 조사를 바탕으로 적정성 평가의 1단계에서는 오염지역 및 매체에 따라 정화범위를 구분한다. 즉, 오염이 불포화지역에 국한되었는지 아니면 포화지역까지 침투하여 지하수의 유동에 의한 확산이 발생되었는지를 파악한다. 오염이 불포화지역에만 국한된 경우에는 오염토양 정화기술만 고려하더라도, 포화지역까지 오염이 확산되었다면, 지하수 정화기술 또는 비수용성액체화 NAPL(Non-aqueous Phase Liquid)의 회수기술까지 고려해야 한다.

② 적정성 판단기준 : 2단계
• 1단계 정화기술 선별(공법의 적용성)
1단계 정화기술 선별에서는 2단계 조사결과를 바탕으로 평가항목을 고려하여 조사지역 오염토양 정화에 적합한 단위 정화공정을 선별한다([표 3.3.1-3] 참고).

• 2단계 정화기술 선별(공법의 효율성 및 시공성)
1단계 기술단계, 기술 상업화 정도, 공법신뢰성, 소요비용, 소요시간, 오염물질의 처리 가능성, 현장 적용성 등과 같은 1단계 정화기술 선별과정을 통하여 일차적으로 적용가능 공법들을 선정하였다. 적용가능공법으로 선별된 경우에 기술적 타당성, 공법의 효율성, 시공성 및 비용 등 각 기술별 세부평가를 통해 2단계 정화기술을 결정한다([표 3.3.1-4] 참고).
<table>
<thead>
<tr>
<th>평가기호</th>
<th>비</th>
<th>양호</th>
<th>나쁨</th>
<th>평가불가</th>
<th>비염소계</th>
<th>화발성물질</th>
<th>방산능물질</th>
<th>독발물</th>
<th>결과</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ - 처리잘됨(3)</td>
<td>■ 3</td>
<td>2</td>
<td>■ 3</td>
<td>△ 1</td>
<td>■ 3</td>
<td>△ 1</td>
<td>△ 0</td>
<td>△ 1</td>
<td>3.0</td>
<td>-정화기간 느림</td>
</tr>
<tr>
<td>◯ - 양호(2)</td>
<td>◯ 2</td>
<td>2</td>
<td>◯ X 0</td>
<td>◯ 2</td>
<td>◯ 2</td>
<td>△ 1</td>
<td>△ 1</td>
<td>2.0</td>
<td>-정화기간 느림 -투수사례 적음</td>
<td></td>
</tr>
<tr>
<td>△ - 나쁨(1)</td>
<td>△ 2</td>
<td>2</td>
<td>△ X 0</td>
<td>△ 2</td>
<td>△ 2</td>
<td>△ 1</td>
<td>△ 1</td>
<td>2.0</td>
<td>-금 정화기간 필요 -오염 위해도 낮은 지역에서 용이함</td>
<td></td>
</tr>
<tr>
<td>X - 평가불가(0)</td>
<td>X 0</td>
<td>◯ 2</td>
<td>X 2</td>
<td>△ 3</td>
<td>△ 3</td>
<td>△ 1</td>
<td>△ 1</td>
<td>3.0</td>
<td>-정화 후 재수처리에 대한 2차 공정이 필요함</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>원위치 생물학적 처리(In-Situ Biological Treatment)</th>
<th>원위치 물리/화학적 처리(In-Situ Physical/Chemical Treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>생명학적 분해법 (Biodegradation)</td>
<td>화학적 산화법 (Chemical Oxidation)</td>
</tr>
<tr>
<td>□ 2</td>
<td>□ 2</td>
</tr>
<tr>
<td>화학적 산화법 (Chemical Oxidation)</td>
<td>토양 세정법 (Soil Flushing)</td>
</tr>
<tr>
<td>◯ 2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>위치외 생물학적 처리(Ex-Situ Biological Treatment(assuming excavation))</th>
<th>위치외 물리/화학적 처리(Ex-Situ Physical/Chemical Treatment(assuming excavation))</th>
</tr>
</thead>
<tbody>
<tr>
<td>휘비처리법(Composting)</td>
<td>토양 세정법(Soil Washing)</td>
</tr>
<tr>
<td>◯ 2</td>
<td>2</td>
</tr>
<tr>
<td>토양 세정법(Soil Washing)</td>
<td>휘비처리법(Composting)</td>
</tr>
<tr>
<td>◯ 2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>위치외 물리/화학적 처리(Ex-Situ Physical/Chemical Treatment(assuming excavation))</th>
<th>위치외 열적 처리(Ex-Situ Thermal Treatment(assuming excavation))</th>
</tr>
</thead>
<tbody>
<tr>
<td>토양 세척법(Soil Washing)</td>
<td>소각법(Incineration)</td>
</tr>
<tr>
<td>◯ 2</td>
<td>2</td>
</tr>
<tr>
<td>소각법(Incineration)</td>
<td>용제추출법(Solvent Extraction)</td>
</tr>
<tr>
<td>◯ 2</td>
<td>2</td>
</tr>
</tbody>
</table>

| 표 3.3.1-3 오염물질에 따른 1단계 오염토양 정화기술 선별 |
|-------------------------------------------------|-------------------------------------------------|
| ![표 3.3.1-3 오염물질에 따른 1단계 오염토양 정화기술 선별](image-url) | ![표 3.3.1-3 오염물질에 따른 1단계 오염토양 정화기술 선별](image-url) |

- 140 -
항 목 | 세부 평가 항목
---|---
기술적 타당성 | 오염 종류 및 오염특성 고려
공법의 효율성 | 중금속 오염토양에 대한 국내외 실규모 적용사례 및 공법의 신뢰성 자료 검토
| 항후 기지 활용을 감안한 정화목표 달성여부
| 2차 오염물질의 발생여부(인체나 환경에 잠재적인 위해성 유무검토)
현장 시공성 | 관련허가 취득 가능성
| 정화지역의 지형적 특성 고려
| 설치 및 운영공간 고려
| 시설물 현황 고려
경제성(비용) | 정화공법의 경제성 평가(필요한 시설비 및 운영경비)

[표 3.3.1-4] 2단계 정화기술 선별 평가항목

3) 기술적 타당성
현장조사 자료에 근거하여 공법 및 관련공정기술이 오염물질을 효과적으로 처리할 수 있는지를 검토하고, 부지특성조사 결과를 검토하여 각 공법의 조사지역에서의 시행가능 여부를 검토하여야 한다. 검토된 공법들 중 기술적 타당성이 결여되어 있거나 부지특성상 적용이 어려운 공법은 제외하는 방식으로 정화공법 선별 작업을 진행한다. 공법적용의 타당성이 인정되는 것에 한하여 효율성, 시공성 및 비용 측면을 비교·검토한다.

<table>
<thead>
<tr>
<th>구분</th>
<th>평가항목</th>
<th>조사/평가 결과</th>
<th>식물 재배</th>
<th>자연 구조</th>
<th>고형화도 안정화</th>
</tr>
</thead>
<tbody>
<tr>
<td>오염 특성</td>
<td>오염농도 (최고농도)</td>
<td>2008.066mg/kg</td>
<td>△</td>
<td>△</td>
<td>○</td>
</tr>
<tr>
<td>물리적 특성</td>
<td>토성</td>
<td>사질양토(Sandy loam)</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

[표 3.3.1-5] 2단계 선정 정화기술에 대한 기술적 타당성 평가 결과(예시)
(○ : 적용성 양호, △ : 보통(조건부 적용), × : 적용불가, - : 상관관계 없음)
④ 공법의 효율성 및 현장 시공성 평가
기술적 타당성 평가 과정을 통해 선별된 3개 오염토양 정화기술 대한 효율성 및 현장 시공성 평가를 실시한다. 효율성 측면에서는 실규모 정화현장에 대한 해당기술의 국내적 적용사례, 정화목표 달성 가능성 여부와 정화기간의 용이성 등 정화기술의 신뢰도를 우선적으로 평가하며, 현장 시공성 평가에서는 조사지역의 현장특성을 고려한 단위 정화기술의 시공성을 우선적으로 고려하여 평가를 실시한다.

<table>
<thead>
<tr>
<th>평가기호</th>
<th>양호(2)</th>
<th>보통(1)</th>
<th>불량(0)</th>
<th>원위치</th>
<th>위치외</th>
<th>결과</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y- 예(0)</td>
<td>N- 아니오(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>항목별 가중치</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>원위치(In-Situ) 처리</td>
<td>▲</td>
<td>○</td>
<td>■</td>
<td>▲</td>
<td>▲</td>
<td>■</td>
</tr>
<tr>
<td>식물재배 정화법</td>
<td></td>
<td>1</td>
<td>2</td>
<td>N</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>자연분해법</td>
<td>▲</td>
<td>○</td>
<td>■</td>
<td>N</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>위치외(Ex-Situ) 처리</td>
<td>▲</td>
<td>▲</td>
<td>■</td>
<td>▲</td>
<td>▲</td>
<td>■</td>
</tr>
<tr>
<td>고형화/안정화법</td>
<td>■</td>
<td>2</td>
<td>2</td>
<td>▲</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

[표 3.3.1-6] 토양정화기술에 대한 효율성 및 현장시공성 평가 결과(예시)

(1) 국내 현장실험 도 적용사례(상용화유무) (2) 정화목표 달성 가능성
(3) 현장 시공성 (4) 2차오염물질 및 간류물질 발생여부
(5) 정화유용기간(정화의 시급성) (6) 정화완료검증의 용이성

⑤ 3단계 정화기술 선별
기술적 타당성, 공법의 효율성 평가를 통하여 선별된 공법들에 대한 공정기술들의 효율성, 시공성, 정화기간, 소요비용 등을 비교 평가하며, 공법선정은 정화기간 및 정화효율성 등을 고려한 결과 최적의 정화공법을 선정한다.
3.3.2 토양정화업무 처리지침(안) 마련

보고서 2.1 절의 토양오염조사 지침 관련 국내외 사례조사 부분에서 토양정화업무의 처리지침 토양조사와 관련하여 국제적으로 사용되고 있거나 국내외에서 실행하고 있는 지침들에 대해서 검토하였으며, 대표적으로 국제 표준화 기구와 미국의 표준협회, 그리고 호주의 지침을 대상으로 선정하였다. 이들의 경우 토양조사의 구체적인 실행방법을 제공한다는 조사절차를 목적으로, 단계별로 규정한 후 각 단계에 필요한 일반적인 조사방법과 고려사항을 제시하여 개별 상황에 맞는 최적의 방법을 조사자가 결정할 수 있도록 도움을 주는 경우가 대부분이었으나 호주의 일부 지침에서는 시료채취지점의 수와 지하수 관측지 설치지점의 수 등을 구체적으로 규정한 사례도 있었다.

장기적으로 토양환경평가, 토양정밀조사 등 현재의 토양조사체계를 통합하는 안을 제시하였다. 미국, 호주 등 외국의 경우 토양조사와 관련한 지침체계가 통합되어 있고 국내처럼 조사 대상지역을 구분하여 지침을 제공하는 경우는 드물며, 조사의 목적, 오염원의 특성 등에 따른 고려사항을 상세히 제시하여 조사지역의 특성에 맞는 조사가 되도록 유도하고 있다.

조사대상지역의 분류에 있어 가장 상세한 지침을 보유하고 있는 호주의 경우도 토양조사에 대한 일반적인 절차와 지침을 제시한 후 별도 지침이 필요한 개별 부지, 즉 주유소나 농장, 과수원 부지 등에 대한 지침을 하나씩 갖추어가고 있는 상황이다. 따라서 국내의 경우도 대상부지에 따른 작업절차, 시료 채취방법 등 가이드라인 개념의 기본적인 내용을 제공하고 개별 부지의 특성에 보다 구체적인 작업절차는 별도의 참고자료를 작성·제공하는 것이 타당하다고 판단된다.

상기의 내용을 종합적으로 검토하였을 때 오염토양 정화업무 처리지침(안)의 적용을 통해, 세분화된 조사 대상지역의 특성에 보다 적합한, 객관적이고 표준화된 정화업무가 이루어질 것이다.
제 4 장
반출정화 현황파악 및 반출정화대상 확대여부 검토

1. 해외 토양정화 정책방향 조사 (미국, 일본, 호주, 네덜란드 등)
2. 국내 반출정화 현황파악 및 분석
3. 반출정화대상 관련 규정 개선안 제시
4. 반출정화토양의 재사용 촉진방안 제시
제 4 장 반출정화 현황파악 및 반출정화대상 확대여부 검토

4.1 해외 토양정화 정책방향 조사(미국, 일본, 호주, 네덜란드 등)

4.1.1 토양정화관련 현황조사

수퍼펀드 정화기술 적용 현황(1982~2002)

특히 지중처리기술 중 토양증기추출법이 전체 863개 프로젝트 중에 213개(25%) 프로젝트에서 적용되어 가장 사용빈도가 높은 것으로 조사되었으며, 그 다음으로 생물학적 처리법과 고형화/안정화법이 각각 48개(6%) 프로젝트에 적용된 것으로 조사되었다. 여기에서 생물학적 처리법은 생물학적 분해법과 생물학적 통풍법을 포함하는 방법으로 토양미생물을 이용하여 오염물질을 분해하는 기술을 의미한다.

지상처리기술의 경우에는 전체 863개 프로젝트 중에 고형화/안정화법이 157개(18%) 프로젝트에서 적용되어 가장 사용빈도가 높은 것으로 조사되었으며, 그 다음으로 열탈착법이 69개(8%), 생물학적처리법이 54개(6%) 프로젝트에 적용된 것으로 조사되었다. 여기에서 생물학적처리법은 토양경작법과 바이오파일법을 포함하는 방법으로 토양미생물을 이용하여 오염물질을 분해하는 기술을 말한다.

며, 지상처리기술은 56개(52%) 프로젝트에 적용되어 지상처리기술이 좀 더 많이 적용된 것으로 조사되었다.

세부적인 기술 종류를 살펴보면 지중처리기술 중에서는 토양증기추출법과 생물학적 처리법이, 지상처리기술 중에서는 고형화/안정화법과 소각법, 열분해법 등이 많이 사용되어 1982년부터의 누적빈도수와 유사한 경향을 보이고 있다. 특히 지중처리기술 중 화학적 산화/환원법의 경우 총 12개 프로젝트 중 7개의 프로젝트가 2000년 이후에 적용되었으며, 이는 최근에 화학적 처리기술의 적용이 선호되고 있다는 사실을 보여주고 있다. 반면 과거에 높은 비율로 사용되었던 소각법이나 고형화/안정화법(지중, 지상), 토양 증기추출법등의 적용사례는 점차 줄어들고 있으며, 생물학적 처리법과 열탈착법의 적용사례는 증가하는 경향을 보여주고 있다.

수퍼펀드 복원기술 적용 현황(2000~2002)

**Total Project = 107**

<table>
<thead>
<tr>
<th>Ex-Situ 기술(56) 52%</th>
<th>In-Situ 기술(51) 48%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incineration (off-site) (9) (소각법) 8%</td>
<td>Soil Vapor Extraction (61) (토양증기추출법) 17%</td>
</tr>
<tr>
<td>Thermal Desorption (12) (열탈착법) 11%</td>
<td>Bioremediation (9) (생물학적처리법) 8%</td>
</tr>
<tr>
<td>Physical Separation (14) (물리적분리법) 13%</td>
<td>Chemical Treatment (7) (화학적처리법) 7%</td>
</tr>
<tr>
<td>Solidification/Stabilization (14) (고형화/안정화법) 13%</td>
<td>Multi-Phase Extraction (다중상추출법) (6)</td>
</tr>
<tr>
<td>그외 공법(ex situ) (7) 7%</td>
<td>Bioremediation (생물학적처리법) (3)</td>
</tr>
<tr>
<td>Chemical Treatment(화학적처리법) (2)</td>
<td>Chemical Treatment(화학적처리법) (2)</td>
</tr>
<tr>
<td>Neutralization(중합처리법) (1)</td>
<td>Neutralization(중합처리법) (4)</td>
</tr>
<tr>
<td>Open Burn/Open Detonation(소각소각법) (1)</td>
<td>Flushing(토양배양법) (3)</td>
</tr>
<tr>
<td>Bioremediation(생물학적처리법) (3)</td>
<td>Phytoremediation(식물배양처리법) (1)</td>
</tr>
<tr>
<td>Solidification/Stabilization(고형화/안정화법) (1)</td>
<td>In Situ Thermal Treatment(열탈착법) (1)</td>
</tr>
<tr>
<td>In Situ Thermal Treatment(열탈착법) (1)</td>
<td>Vitrification(유리화법) (1)</td>
</tr>
</tbody>
</table>

수퍼펀드 부지의 In-situ 기술 적용 추세 (1982~2002)

[그림 4.1.1-3] 수퍼펀드 부지에서의 지상처리기술 적용 추세


수퍼펀드부지에 적용되는 기술들은 소각법 및 고형화/안정화법과 같이 전통적으로 사용되어 그 효과가 입증된 기술과 생물학적처리법과 같이 전통적인 기술에 비하여 늦게 개발되어 비교적 적용기간이 짧았던 혁신기술로 나뉘어 관리되고 있다. 여기서 혁신기술이란 새로 개발된 기술이기보다는 기술개발은 완료되었지만 적용횟수가 적어서 기술에 대한 현장 적용 정보가 전통적인 기술보다는 부족한 기술을 말한다. [그림 4.1.1-4]에서는 전통적인 기술과 혁신기술의 수퍼펀드 부지 적용현황을 보여주고 있다. 그림에서 보여주는 바와 같이 전체 863개 프로젝트 중 약 21%인 180개 프로젝트에 혁신기술이 적용되었으며, 이중 생물학적 처리법이 102개 프로젝트에서 사용되어 가장 높은 적용비율을 보여주고 있다. 또한 화학적
처리법과 토양세정법 등이 각각 22개, 16개 프로젝트에서 적용되었으며, 이 외에도 토양세척법, 식물재배정화법 및 용매추출법도 다수 적용된 것을 볼 수 있다.


수퍼펀드 혁신기술 적용현황(1982~2002)

Total Project = 863

전통기술 (683) 79%

혁신기술 (180) 21%

그외 기술 (20) 2%

- Neutralization(중화처리법) (12)
- Mechanical Soil Aeration(토양 압축출) (6)
- Open Burn/Open Detonation(노천 소각법) (9)

Physical Separation (20)
(물리적분리법) 2%

Thermal Desorption (69)
(열압출) 8%

Incineration (147)
(소각) 17%

Solidification/ Stabilization (205)
(고령화/안정화) 24%

Soil Vapor Extraction (222)
(토양증기추출법) 25%

Chemical Treatment (22)
(화학적처리법) 3%

Bioremediation (162)
(선물적처리법) 12%

Flushing (16)
(토양세척법) 2%

Multi-Phase Extraction (대중성추출법) (8)

Soil Washing (토양세척법) (8)

In Situ Thermal Treatment (방화처리법) (8)

Phytoremediation (식물재배정화법) (6)

Solvent Extraction (용매추출법) (5)

Vitrification (유리화법) (4)

Electrical Separation (전기분리법) (1)

[그림 4.1.1-4] 수퍼펀드 부지 혁신기술 적용현황
미국의 수퍼펀드부지에서의 오염물질별 기술적용 현황을 살펴보면 표 4.1.1-1과 같다. 1982년부터 2002년까지 수퍼펀드부지에서 발견된 오염물질을 크게 9가지로 나누어 볼 수 있으며, 이 중 약 75%가 유기오염물질이고 25%가 중금속류로 조사되었다. 표 4.1.1-1에서 볼 수 있는 바와 같이 할로겐 휘발성 유기화합물질, BTEX, 비할로겐 휘발성 유기화합물질로 오염된 부지에는 토양증기추출법이 가장 많이 적용되었으며, 비할로겐 준휘발성 유기화합물질 및 PAHs로 오염된 지역에는 생물학적 처리법이 주로 적용된 것으로 나타났다. 또한 PCB(Polychlorinated byphenyls), 유기성살충제(Pesticides/herbicides) 및 할로겐 준휘발성 유기화합물질로 오염된 지역에는 소각법이, 중금속으로 오염된 지역에는 고형화/안정화법이 가장 활발히 적용된 것으로 조사되었다.

결론적으로 [표 4.1.1-1]에서 나타낸 오염토양 정화기술이 대부분 미국에서는 현장 적용이 가능한 상용화된 기술들이며 수퍼펀드 프로그램을 통하여 처리효율이 입증된 기술들이다. 다만 오염물질, 현장조건, 사회적 요구조건 등에 따라 기술의 개발 및 기술적용의 경향 등이 변화해 왔으며 최근에는 지중처리기술, 특히 생물학적처리법, 화학적 산화/환원법과 같은 기술이 가장 활발히 적용되고 있는 것으로 조사되었다.
<table>
<thead>
<tr>
<th>기술</th>
<th>Total number of projects</th>
<th>Polynuclear aromatic hydrocarbons</th>
<th>Other haloaromatic hydrocarbons</th>
<th>Benzene, toluene, xylene</th>
<th>Other aromatic compounds</th>
<th>Other haloaromatic hydrocarbons</th>
<th>Other chlorinated compounds</th>
<th>Halogenated organics</th>
<th>Organic compounds and hydrocarbons</th>
<th>Other chlorinated compounds</th>
<th>Other aromatic compounds</th>
<th>Other organometallic compounds</th>
<th>Polychlorinated biphenyls</th>
<th>Polybrominated biphenyls</th>
<th>Metabolite and other metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Vapor Extraction(토양조각수분출)</td>
<td>222</td>
<td>14</td>
<td>21</td>
<td>102</td>
<td>48</td>
<td>3</td>
<td>27</td>
<td>183</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solidification/Abatization(수처리/폐기)</td>
<td>265</td>
<td>16</td>
<td>18</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td>14</td>
<td>36</td>
<td>26</td>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incineration(교열)</td>
<td>147</td>
<td>59</td>
<td>41</td>
<td>36</td>
<td>23</td>
<td>36</td>
<td>34</td>
<td>47</td>
<td>37</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioremediation(생물적재활)</td>
<td>102</td>
<td>38</td>
<td>49</td>
<td>20</td>
<td>29</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Desorption(열분과)</td>
<td>59</td>
<td>10</td>
<td>16</td>
<td>22</td>
<td>15</td>
<td>9</td>
<td>11</td>
<td>30</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Treatment(화학처리)</td>
<td>22</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Separation(물리적분리)</td>
<td>20</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flashing(조명제부용)</td>
<td>19</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutralization(중성화처리)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Phase Extraction(다기상분리)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Washing(토양처리)</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Situ Thermal Treatment(지상열처리)</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoremediation(식물적재활)</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Soil Aeration(기계동공기)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilation(구호호기)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Burn/Open Deforestation(연기정리기)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Separation(전기분리)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total Project</strong></td>
<td><strong>863</strong></td>
<td><strong>139</strong></td>
<td><strong>172</strong></td>
<td><strong>222</strong></td>
<td><strong>100</strong></td>
<td><strong>198</strong></td>
<td><strong>327</strong></td>
<td><strong>103</strong></td>
<td><strong>216</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.2 반출정화제도의 법적근거 및 환경관리 규정 검토

가. 미국
미국은 오염토양을 고형 폐기물로 간주하므로 토양 처리시설도 고형 폐기물 처리시설의 하나로 간주한다. 따라서 토양 처리시설은 고형 폐기물 처리시설의 규정에 따르는 것이 일반적이다. 따라서 오염토양의 반출정화제도에 대한 별도의 국가적 법적근거는 없는 것으로 보이며, 각 주마다 필요에 따라 오염토양의 반입정화 시설에 대한 규정을 제정하고 있다. 예를 들어 플로리다주의 경우, 플로리다 행정법(Florida Administrative Code, F.A.C.) 62-713장에 토양 처리시설의 형태에 대한 규정을 두고 있다. 이에 따르면 토양 처리시설에는 크게 두 가지 형태가 있는데, 하나는 하나 이상의 외부오염현장으로부터 유류나 기타 화학물질로 오염된 토양을 반입하여 처리하는 고정된(stationary) 토양 처리시설이고 다른 하나는 유류로 오염된 토양 현장으로 직접 이동하여 열처리 방식으로 정화하는 이동식 토양 처리시설이다. 이들 토양 처리시설은 F.A.C. 62-713장에 명시된 시설 디자인 요구사항, 시설 운영, 토양시료 채취 및 분석, 처리토양의 평가 및 사용, 시설의 폐쇄 등의 규정에 따른다. 특히 처리시설에서 정화된 토양은 일정 조건을 만족할 경우에만 정화토(cleaned soil)로 규정하고 있는데 다음과 같다.

- 처리된 토양에서 발견된 모든 오염물 농도는 플로리다주 행정법 Chapter 62-777의 표에 제시된 토양 정화 목표 레벨 중 주거지역 직접 노출(Residential Direct Exposure) 기준 이하여야 한다.(Chapter 62-777의 표는 부록 1 참조)
- 처리된 토양에서 발견된 모든 오염물의 농도는 플로리다주 행정법 Chapter 62-777의 표에 제시된 토양 정화 목표 레벨 중 용출능(leachability) 항목 기준 이하여야 한다. 폐유나 그와 유사한 석유제품으로 오염된 토양의 경우에는 지하수나 지표수 오염의 우려가 없을음을 입증하기 위하여 표에 제시된 용출 기준 대신 SPLP 시험이나 TCLP 시험결과에서 얻어진 용출능 값을 적용할 수 있다.
- 처리된 토양에서 발견된 오염물이 플로리다주 행정법 Chapter 62-777의 표에 제시되지 않은 경우에는 각 케이스별로 토양 정화 목표 레벨을 설정하여야 하며, 다음과 같이 계산할 수 있다.
- 초과평생 발암 위해도(excess lifetime cancer risk level)가 $1.0 \times 10^{-6}$ 이하
- 위험지수(hazard index, 유해지수(hazard quotients)의 총합) 1.0 이하
- 부록 2 - 부록 6에 제시된 방법들을 적용
- 토양 속 화학물질의 검출한계(best achievable detection limits)

만약 처리된 토양이 정화토 기준에 적합하지 않을 경우에는 다음 중 하나의 방법으로 처리하도록 하고 있다.

- 재처리
- 정화토의 기준에 적합하도록 다른 토양과의 혼합
- Class I 매립지나 Waste-to-Energy 시설로 처분

한편 정화토는 추가적인 제약 없이 토지에 적용되거나 사용할 수 있다. 다만 정화토가 지표수질을 악화시키거나 수생생물에 독성을 일으키지 않음을 증명할 수 없거나 포화상태에서 악취를 일으킬 수 있는 화학약품이나 물질을 포함하지 않았음을 증명할 수 없다면 정화토는 지표수 또는 습지(wetland)에 투기할 수 없도록 하고 있다.

나. 일본

일본은 과거 국내에서 폐기물의 폐기물 반출·운반·처리절차의 관리를 위해 시행했던 폐기물 인계서(6매 1조) 제도와 유사한 5매로 구성된 오염토 관리표를 이용한 오염토양 배출관리 제도를 운영하고 있으며, 유해폐기물 중 석면은 특별관리산업폐기물로 지정하여 별도로 규제하고 있는 것으로 조사되었다. 또한, 일본은 오염토양 정화시설에 관한 구조 및 유지관리 지침을 보유하고 있었다. 이 기준은 오염토양 정화시설에 대한 공통기준과 많이 사용되고 있는 열처리공법과 세정공법(토양세척법), 화학분해공법에 대한 개별적인 기준을 설정하여 운영하고 있는 것으로 확인되었다.
1) 오염토양 배출관리 제도

오염토양을 외부로 반출할 경우 반출실시자(오염토양 배출자)는 반출 오염토양 관리표(이하 “오염토 관리표”라 함)를 작성·교부하여 토양의 이동을 관리하여야 한다. 오염토 관리표는 반출 토양의 오염을 처리장소로 운반되는 것을 확인하는 목적으로 하고 있으며, 작성 및 처리 절차는 다음과 같다.

1. 오염토양 관리표 작성 및 처리 절차
   - 반출실시자는 운반차량 1대당 1부(5매 1조)의 오염토 관리표를 준비하여 필 요사항을 기입한 후, “확인자 사인란”에 담당자 성명을 기입하고 서명하여 운반자에게 전달한다.
   - 운반자는 내용을 확인하여 “운반 담당자란”에 담당자 성명을 기입하고 서명한 후, A표를 반출실시자에게 발송한다.
   - 반출실시자는 E표가 반송되어 온 때까지 A표를 보관하여야 한다.
   - 운반이 완료되면 운반자는 오염토양을 운반한 증명으로 “확인자 사인란”에 담당자 성명을 기입하고 서명한 후 B표를 5년간 보관하고 나머지 C~E표를 처분자에게 전달한다.
   - 오염토양을 처분한 후, 처분자는 내용을 확인하고 “처분자 사인란”에 담당자 성명을 기입하고 서명한 후, C표를 5년간 보관하고 처분 완료 10일 이내에 D, E표를 반출실시자에게 송부한다.
   - 반출실시자는 반송된 E표를 보관한 A표와 비교·확인한 후 “교부담당자 최종확인란”에 담당자 성명을 기입하고 서명한 후 E표를 5년간 보관한다.
2) 오염토양 정화시설 기준

일본은 오염토양 정화시설에 대해 구조 및 유지관리 기준을 규정하고 있다. 이 기준은 오염토양 정화시설의 공통기준으로서 기본 기능, 환경보전, 기능검사 및 비상시의 조치, 품질관리, 운영관리 및 저장 등의 6개 항목으로 분류하여 구조 및 유지관리에 대해 규정하고 있으며, 많이 적용되고 있는 공정으로서 열처리시설, 세정시설 및 화학 분해시설에 대해 개별적인 기준을 규정하고 있다. 이 기준은 오염물질 관리에서부터 이를 제거하기 위한 설비의 설치·유지관리, 운영 과정에서 발생할 수 있는 2차 오염물질 제거설비의 설치·유지관리 및 기록까지의 기준을 상세하게 제시하고 있다.

[표 4.1.2-1]에 이 기준에서 규정하고 있는 항목과 내용을 정리하였으며, [표 4.1.2-2]에서는 오염토양 정화시설이 공통적으로 갖추어야 하는 사항을 기본 기능, 환경보전, 기능검사 및 비상시의 조치, 품질관리, 운영관리 및 저장 등의 6개 항목으로 구분하여 정리하였다.
<table>
<thead>
<tr>
<th>구분</th>
<th>기능</th>
<th>구조 및 유지관리 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>공통기준</td>
<td>기본 기능</td>
<td>특정유해물질, 혼합 정화, 시설 설치, 정화 및 설비 능력 적합성, 환경보전, 안전, 부식방지, 특정유해물질 측정기기, 정량 공급설비, 정화토양 선별설비, 폐기물 및 부생성물의 적정 처리, 기록 보존 등</td>
</tr>
<tr>
<td></td>
<td>환경보전</td>
<td>비산・취산・유출・악취 방지 설비 및 유지관리, 외부 유출방지 설비, 소음・진동 관리, 배출수 체취・처리설비 설치 및 유지관리, 배기중의 특정유해물질 처리설비 설치 및 유지관리</td>
</tr>
<tr>
<td></td>
<td>기능검사 및 비상시의 조치</td>
<td>정기적인 시설 점검 및 기능검사, 기록 보존, 비상시 시설 점검 및 조치</td>
</tr>
<tr>
<td></td>
<td>품질관리</td>
<td>시료 체취구, 정화토양 품질관리, 특정 유해물질 및 PCB의 결과기록 및 보존</td>
</tr>
<tr>
<td></td>
<td>운영관리</td>
<td>조명, 주요 부분의 이상 점검・감시 설비, 설비 이상시 조치 강구, 시설 유지관리에 관한 점검</td>
</tr>
<tr>
<td></td>
<td>저장 등</td>
<td>정화능력에 따른 충분한 용량, 정화・반출 오염토양을 구별하여 저장 가능한 설비, 정화토양 반출 관리</td>
</tr>
<tr>
<td>열처리시설</td>
<td>공통 기준</td>
<td>오염토양의 정량 공급 및 설비 설치, 노로부터 발생하는 배출가스 처리, 냉각 설비 설치, 유지관리 및 기록 보존, 배출가스 포집 설비 설치 및 배출가스량 정기 측정, 세정수의 비산 또는 유효방지, 매진 제거</td>
</tr>
<tr>
<td></td>
<td>개별 기준</td>
<td>열분해 방식, 가열・휘발 방식, 용해 방식</td>
</tr>
<tr>
<td>세정시설</td>
<td>-</td>
<td>세정분급 등 방식</td>
</tr>
<tr>
<td>화학분해시설</td>
<td>-</td>
<td>산화 등 분해방식</td>
</tr>
</tbody>
</table>

[표 4.1.2-1] 오염토양 정화시설의 구조 및 유지관리 기준의 개요
<table>
<thead>
<tr>
<th>구분</th>
<th>구조 지침</th>
<th>유지관리 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td>기본 기능</td>
<td>1. 정화방법은 과학적이며 합리적인 원리를 가져야 함  2. 시설은 정화대상물질의 특성을 충분히 고려하여 구성되어야 함  3. 회식 등에 의해 오염농도가 저감되지 않아야 함  4. 공정의 물질수지가 합리적이어야 함  5. 발생하는 대기오염, 수질오염, 소음, 진동 또는 악취 등이 환경보전상 문제가 없어야 함  6. 자중, 적재 하중, 지진 등에 대해 구조 내력 상 안전하여야 함  7. 배출가스, 배출수 및 사용약품에 대해 무식에 견딜 수 있어야 함  8. 정화시설의 측정기를 보유하여야 함  9. 시설에 오염토양을 적정하게 공급할 수 있어야 함  10. 정화 부산물과 정화토양을 구분할 수 있어야 함</td>
<td>1. 오염토양을 혼합하여 정화하지 않아야 함  2. 폐기물 처리시설에서 오염토양을 폐기물과 혼합하여 정화할 경우 그 처리물은 관련 법규에 따라서 적정하게 취급하여야 함</td>
</tr>
<tr>
<td>환경 보전</td>
<td>11. 오염물질 또는 부생성물의 비산, 휘발, 유출 및 악취방지 설치하여야 함  12. 시설부단 등은 오염확산 및 침출수 방지시설을 설치하여야 함  13. 발생하는 소음·진동이 주위의 환경을 해치지 않아야 함</td>
<td>3. 오염토양은 정화공정, 시설용량 등에 적정하게 반입되어야 하며, 계량·분석결과는 일정기간 보존하여야 함  4. 오염토양은 시설용량에 적정하게 공급되어야 함  5. 오염토양을 정화처리 없이 시설 외부로 반출해서는 안됨  6. 정화 부산물과 정화토양은 관련 법규에 따라 적정하게 취급되어야 함</td>
</tr>
</tbody>
</table>

[표 4.1.2-2] 오염토양 정화시설의 공통 기준
<table>
<thead>
<tr>
<th>구분</th>
<th>구조 지침</th>
<th>유지관리 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경 보전</td>
<td>14. 배출수 처리설비를 설치하여야 함</td>
<td>10. 배출수 처리설비를 적정하게 유지 관리하여야 함</td>
</tr>
<tr>
<td></td>
<td>15. 배출수 채취설비를 설치하여야 함</td>
<td>11. 배출수질을 정기적으로 측정하고 그 결과를 일정기간 보존하여야 함</td>
</tr>
<tr>
<td></td>
<td>16. 발생하는 휘발성물질 등 유해가스 제거설비를 설치하여야 함</td>
<td>12. 발생하는 휘발성물질 등 유해가스는 확실히 제거 또는 분해하여 배출하여야 함</td>
</tr>
<tr>
<td>기능 검사 및 비상 시의 조치</td>
<td>17. 정화시설의 적정한 위치에 시료 채취구를 설치하여야 함</td>
<td>13. 시설의 정기검사를 실시하고 결과를 일정기간 보존하여야 함</td>
</tr>
<tr>
<td></td>
<td>18. 일상점검, 보수의 편의를 위해 필요한 구역을 갖추고 조명 등의 설비 및 주요 시설의 이상 감지 또는 감시 설비를 설치하여야 함</td>
<td>14. 오염물질 등이 외부로 누출된 경우 시설의 운전을 정지하고 시설점검을 실시, 오염물질을 회수하여야 함</td>
</tr>
<tr>
<td></td>
<td>19. 오염토양은 1일 처리량의 14배 이내로 반입·보관되어야 하며, 오염토양을 반출지별로 구분하여 저장할 수 있어야 함</td>
<td>15. 1일 처리된 토양에서 시료를 채취하여 분석하고 결과를 일정기간 보존하여야 함 (오염물질이 PCB인 경우, 다이옥신류 농도를 분석)</td>
</tr>
<tr>
<td></td>
<td>20. 정화된 톨양은 반출지별로 구분하여 보관할 수 있는 설비를 갖추어야 함</td>
<td>16. 정화된 톨양을 분석하여, 정화기준 이내로 정화되지 않았을 경우 재차 정화하여야 함</td>
</tr>
<tr>
<td></td>
<td>21. 시설에 이상이 발생한 경우 가동정지 후 필요한 조치를 강구하여야 함</td>
<td>17. 시설이 이상이 발생한 경우 가동정지 후 필요한 조치를 강구하여야 함</td>
</tr>
<tr>
<td></td>
<td>22. 정화토양량 및 분석결과, 시설의 점검, 검사 등의 조치 기록을 일정기간 보존하여야 함</td>
<td>18. 정화토양량 및 분석결과, 시설의 점검, 검사 등의 조치 기록을 일정기간 보존하여야 함</td>
</tr>
<tr>
<td></td>
<td>23. 다른 지역에서 반출된 오염토양은 구분하여 보관하여야 함</td>
<td>19. 다른 지역에서 반출된 오염토양은 구분하여 보관하여야 함</td>
</tr>
<tr>
<td></td>
<td>24. 오염토양은 신속하게 정화하고 정화된 톨양은 분석을 거쳐 정화기준 이내일 경우 신속하게 반출하여야 함</td>
<td>20. 오염토양은 신속하게 정화하고 정화된 톨양은 분석을 거쳐 정화기준 이내일 경우 신속하게 반출하여야 함</td>
</tr>
</tbody>
</table>

[표 4.1.2-2] 오염토양 정화시설의 공통 기준
일본의 오염토양 정화시설 시설 중 적용빈도가 높은 열처리시설은 그 공정의 특성에 따라 열분해 방식, 가열·휘발방식 및 용해 방식으로 구분된다. 열분해 방식은 오염물질의 특성에 따라 분해온도 이상으로 일정시간 가열하여 오염물질을 분해·제거하는 방법이며, 가열·휘발 방식은 오염토양을 일정온도 이상으로 가열하여 오염물을 기상으로 휘발시키는 방법에 의해 제거한다. 용해 방식은 오염토양을 용해하는 과정에서 오염물질도 함께 분해, 휘발 또는 분리하여 제거하는 방법이다. 일본의 "오염토양 정화시설의 구조 및 유지관리 기준"에서는 각 공정의 특성에 따라 개별적인 기준을 설정하여 관리하고 있는 것으로 파악되었으며 [표 4.1.2-3], [표 4.1.2-4]에 열처리시설의 공통기준과 각 방식별 기준을 정리하였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>구조 지침</th>
<th>유지관리 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경 보전</td>
<td>1. 오염토양 정량 공급설비가 설치되어야 함(외부공기와 차단된 상태)</td>
<td>1. 오염토양은 외부공기와 차단된 상태로 정량적 공급하여야 함</td>
</tr>
<tr>
<td></td>
<td>2. 배출가스는 200℃이하로 냉각할 수 있는 설비가 설치되어야 함</td>
<td>2. 배출가스는 200℃이하로 냉각하여 배출하여야 함</td>
</tr>
<tr>
<td></td>
<td>3. 배출되는 연소가스의 온도를 연속측정하는 설비가 설치되어야 함</td>
<td>3. 배출되는 연소가스의 온도를 연속측정하여 일정기간 보존하여야 함</td>
</tr>
<tr>
<td></td>
<td>4. 배출가스 내의 대기오염물질 저감설비가 설치되어야 함</td>
<td>4. 배출가스 내의 대기오염물질 저감설비는 적정하게 유지관리되어야 함</td>
</tr>
<tr>
<td></td>
<td>5. 배출가스를 포집·채취설비가 설치되어야 함</td>
<td>5. 배출가스량과 배출가스 내 대기오염물질 농도를 정기적으로 측정하여 일정기간 보존하여야 함</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. 냉각설비 등에서 세정수 등이 비산 또는 유출되지 않도록 하여야 함</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. 냉각 설비 및 배출가스 처리설비에 퇴적한 분진을 제거하여야 함</td>
</tr>
</tbody>
</table>

[표 4.1.2-3] 열처리시설의 공통 기준
<table>
<thead>
<tr>
<th>공법</th>
<th>구조 지침</th>
<th>유지관리 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td>열분해</td>
<td>1. 오염물질의 특성에 따라 적정한 분해온도와 체류시간을 가질 수 있는 설비가 설치되어야 함&lt;br&gt;2. 로내의 분해온도를 연속측정하는 설비가 설치되어야 함</td>
<td>1. 오염물질의 특성에 따라 적정한 분해온도와 체류시간을 가질 수 있도록 운영하여야 함&lt;br&gt;2. 로내의 분해온도를 연속측정하여 일정기간 보존하여야 함</td>
</tr>
<tr>
<td>가열・휘발</td>
<td>1. 오염물질의 특성에 따라 적정한 휘발온도와 체류시간을 가질 수 있는 설비가 설치되어야 함&lt;br&gt;2. 로내의 온도를 연속측정하는 설비가 설치되어야 함&lt;br&gt;3. 휘발된 오염물질의 저감설비를 설치하여야 함</td>
<td>1. 오염물질의 특성에 따라 적정한 휘발온도와 체류시간을 가질 수 있도록 운용하여야 함&lt;br&gt;2. 로내의 온도를 연속측정하여 일정기간 보존하여야 함&lt;br&gt;3. 휘발된 오염물질은 저감하여 배출하여야 함</td>
</tr>
<tr>
<td>용해</td>
<td>1. 오염토양을 충분한 고온하에서 용해하고 생성슬래그 배출・냉각설비가 설치되어야 함(필요시 휘발된 오염물질 등 부생성물의 저감설비가 설치되어야 함)&lt;br&gt;2. 로내의 온도를 연속측정하는 설비가 설치되어야 함&lt;br&gt;3. 용해온도 제어설비가 설치되어야 함</td>
<td>1. 오염토양을 충분한 고온하에서 용해하여 약(휘발된 오염물질 등 부생성물의 저감하여 배출하여야 함)&lt;br&gt;2. 로내의 온도를 연속측정하여 일정기간 보존하여야 함&lt;br&gt;3. 정화대상물질 및 토질에 따른 최적의 용해온도를 설정하여야 함</td>
</tr>
</tbody>
</table>

* 슬러그 처리 : 생성슬러그는 관련 법규에 따라 또는 준하여 취급하여야 함

[표 4.1.2-4] 열처리시설의 공정별 기준

세정방식은 토양 내 오염물질을 세정에 의해 추출하여 엉성과 토양을 분리하고 입염병로 구분하여 청정토양과 오염토양을 분리하여 제거하는 방법이며, 화학분해 방식은 토양오염물질을 화학물질과 반응시켜, 산화작용 등에 의해 분해하는 방법으로서 [표 4.1.2-5]에 각 공법별 기준을 정리하였다.
표 4.1.2-5  세정방식과 화학분해방식의 기준

<table>
<thead>
<tr>
<th>공법</th>
<th>구분</th>
<th>구조 지침</th>
<th>유지관리 지침</th>
</tr>
</thead>
<tbody>
<tr>
<td>세정</td>
<td>기본 기능</td>
<td>1. 오염물질을 농축·제거하는 경우 농축·분류·침전·여과 및 그 외의 필요한 설비를 설치하여야 함</td>
<td>1. 오염물질의 효과적인 농축·제거 등의 설비를 원활히 작동하도록 유지관리하여야 함</td>
</tr>
<tr>
<td></td>
<td>현탁수 처리</td>
<td>2. 세정수의 토양과 오염물질 분리 및 응집·침전·분리·농축·여과 등의 설비가 설치되어야 함</td>
<td>2. 응집·침전·분리·농축·여과 등에 의해 오염물질과 오염물질 농축 토양을 분리하여야 함</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 약품을 이용하는 경우 필요한 저장설비, 정량 공급 설비가 설치되어야 함</td>
<td>3. 응집, 침전 등에 약품을 사용하는 경우는 적절히 사용하여야 함</td>
</tr>
<tr>
<td>화학 분해</td>
<td>기본 기능</td>
<td>1. 토양과 약품을 혼합·교반하기 위한 설비가 설치되어야 함</td>
<td>1. 오염토양에 포함되는 특정 유해 물질의 종류에 따라 약품을 적절히 이용하여야 함</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 약품 주입설비는 주입량의 조절이 가능하도록 설치되어야 함</td>
<td>2. 약품 첨가량의 관리를 실시하여야 함</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 가스가 발생하는 경우 오염물질 처리설비가 설치되어야 함</td>
<td>3. 가스가 발생하는 경우 오염물질을 저감하여 배출하여야 함</td>
</tr>
</tbody>
</table>

다. 캐나다


① 부지 요건(Siting Requirement)

토양정화시설은 다음과 같은 조건을 가진 부지에 설치할 수 없다.
- 경사가 9% 이상인 지역
- 연간 최고 지하수위가 지표면 아래 1m 이내인 지역
- 홍수영향지역 (단, 홍수를 대비하여 설계한 경우는 제외)
- 시설경계가 야생동물 보호구역, 생태보전 지역과 같이 생태학적으로 민감한
지역에 걸칠 우려가 있는 지역
단, 오염 토양 부피가 100m$^3$ 이하일 경우, 부지요건에 구애받지 않음

2) 기본 설계 요건(Basic Design Requirement)
• 라이너
  - 투수계수가 $1 \times 10^{-6}$ cm/sec 이하의 바닥라이너를 설치
  - 다음과 같은 바닥재도 사용 가능
    ► 1m 이상의 두께를 가지는 다짐 토양
    ► 두께 0.5mm 이상의 내화학성 플리에틸렌과 같은 합성물질 라이너
    ► 투수계수 조건을 만족하는 컴포지트 라이너(토양+합성물질 라이너 등)
  - 라이너 하부는 라이너 침공을 일으킬 수 있는 뻣뻣한 물질이 없도록 정리
  - 모든 라이너의 상부에는 토양처리과정 중 침공이 일어나지 않았음을 확인할
    수 있도록 모래나 자갈 혹은 벗겨 등으로 조성된 0.3m 이상 두께의
    sacrificial indicator layer를 설치

• 유출방지턱(축대벽, Berm)
  - 최소높이 0.5m
  - 처리중인 토양을 완벽하게 봉쇄할 수 있도록 설치

• 덮개(Cover)
  - 작업시간 외에는 침출수 발생, 침식, 비산먼지, 대기방출 등을 최소화하기 위
    하여 덮개를 씌움
  - 강우나 강설시 침출수 발생 최소화를 위해 유출방지턱까지 덮개 설치

• 침출수 수집(Leachate collection)
  - 토양처리시설의 바닥은 집수정 쪽으로 1~5% 경사지게 설치

• 통기설비(Aeration measure)
- 처리대상 오염토양 두께가 30cm 이상일 경우, 주기적 기계교반 또는 뒤집기 설비, 통풍관 설치 등이 필요

③ Operation and maintenance
• 토양 높이
  - 시설바닥부터 토양 더미 최고점까지의 높이는 최대 3m

• 필수 작업
  - 라이너, 유출방지턱, 덮개 등 토양 처리 시설 설비에 대하여 1년에 두 번 이상 검사를 실시하고 대규모 폭우 후에도 검사 실시
  - 통기설비가 설치되어 있는 경우 1년에 두 번 이상 완전한 기계교반 또는 뒤집기 실시
  - 침출수 집수정에 모인 침출수는 시설 내에서 재이용하거나 적절하게 처리 또는 법규에 따라 처분

④ 모니터링 및 샘플링
• 시료 채취 및 실험실 분석
  - 토양과 지하수 시료채취는 “Site characterization and confirmation testing”과 “British Columbia field sampling manual”에 따르고, 토양증기는 “Vapour investigation and remediation”등에 따름
  - 시료의 분석은 “British Columbia Environmental Laboratory Manual”에 따른

• 배경농도 조사 (Baseline information)
  - 토양처리시설 건설 전에 처리시설부지 인근 천층 토양 및 지하수 수질을 조사하여 장래 토양 및 지하수 수질 비교 근거로 삼음
  - 지하수 모니터링 네트워크 구성에 있어, 토양처리시설로부터의 누출이 있을 경우 이를 반영할 수 있도록 관측정 수와 깊이를 적절하게 결정

• 운영 시 모니터링
  - 생물학적 분해반응 정도 확인을 위해 토양처리시설 내부에서 대표 토양시료
를 채취하여 pH나 기타 오염물 농도를 분석함으로써 정화토양의 재활용 또는 최종 처분 여부 등을 결정
- 정화대상물질과 관련된 적절한 지하수 지표를 매년 조사
- 토양의 뒤집기를 끝낼 때마다 부지의 여러 곳에서 대기 모니터링을 수행하며 바람 방향의 상부와 하부 모두 포함시킴. 만일 오염물 농도가 기준치를 초과 할 경우 다음 토양 뒤집기 동안 대기로 방출되는 공기는 포집하여 처리토록 하며, 처리된 공기의 배출은 허가가 필요함

단, 오염 토양 부피가 100m³ 이하일 경우, 배경농도조사나 운영 시 모니터링 관련 규정을 따르지 않아도 무방

5) 해체 및 폐쇄 (Decommissioning and closure)
- 오염토양처리가 끝난 후 정화토양은 재활용하거나 최종 처분하며, 처리시설 부지는 원래 수준으로 되돌리고 침식방지를 위해 식생 조성
- 시설 해체 및 폐쇄 후 토양, 토양 중기 및 지하수 시료를 채취, 분석하여 토양처리 도중 부지 원지반의 오염 발생여부를 조사하며, 오염이 있는 경우 이의 복원도 폐쇄수준에 포함됨

단, 오염 토양 부피가 100m³ 이하일 경우, 해체 및 폐쇄 관련 규정을 따르지 않아도 무방

6) 기록 보관 및 보고
• 기록 보관
토양처리시설의 운영자는 관리관청 조사자의 요구가 있을 경우에 대비하여 다음 사항들을 기록 보관한다.
- 오염물의 생분해능 결정을 위해 시행적으로 수행된 시도(demonstration trial)의 결과
- 토양처리시설의 설계자료(도면, 설명서, 기계 사양 등)와 브리티쉬 컬럼비아 주가 인정하는 자격을 갖춘 자가 서명한 기준(protocol)에 적합하게 설계되었음을 인정하는 문서

- 166 -
처리대상 토양의 오염물 기원, 부피, 오염종류, 오염물 농도 등의 목록
- 통기처리, 침출수 관리, 영양성분과 폐화제 첨가 등 시설 운영 시 수행된 각 종 작업 관련 문서
- 통기처리, 침출수 관리, 영양성분과 폐화제 첨가 등 시설 운영 시 수행된 각 종 작업 관련 문서
- 토양, 토양증기, 지하수 등의 분석 자료와 모니터링 행위의 결과물
- 시설물 검사 관련 문서, 유지관리 또는 보수 작업 기록물
- 침출수, 토양 증기 대기 방출과 같은 폐기물 배출/재사용이나 정화토양의 처 분/이송 등과 관련하여 필요한 인가서류의 사본
- 관리관청 직원에 의해 수행된 검사 관련 기록물, 서신

- 보고
  - 누출이 있을 경우 법률에 규정된 "Spill Reporting Regulation"에 따라 보고
  - 토양처리시설로부터의 누출된 침출수를 방지하기 위한 적절한 보수작업을 행해야 하고 장래 유사 사례를 방지하기 위한 수단을 강구

네덜란드
네덜란드는 국가 전체 면적이 2/3 이상이 평균 해수면 이하로 낮아 각지에 댐을 건설하고, 모래 언덕을 쌓아 내륙과 국토 내부의 바다·호수를 보호하는 것이 사람이 살 수 있는 환경을 위한 필수조건인 특별한 환경을 지니고 있다. 따라서 전국적으로 수많은 준설작업이 이루어지고 있으며, 이로 인해 발생하는 오염된 준설토양은 토양경작법(landfarming), 탈수공법(dewatering; 준설토양에서 수분을 제거하는 의미임), 자연정화(maturation; 단어의 원 의미는 화농, 성숙의 의미이며, 토양오염 정화의 경우 자연정화의 의미임) 등의 공법을 통하여 정화하는 규정을 보유하고 있다. 그리고 토양정화서비스 센터(Service Centrum Grondreiniging, SCG)를 설립하여 정부가 주도하는 정화사업에서 발생한 모든 오염토양을 관리하고 있다.

① 토양정화서비스 센터(SCG)
토양정화서비스 센터(SCG)는 토양정화를 매개하는 준 정부기관으로서 다양한 기술을 활용한 토양정화사업을 수행하기 위해 1989년 중앙정부, 주정부 및 지방정부에 의해
설립되었다. SCG는 오염된 토양의 단순매립으로 인한 매립지 부족과 재사용 가능한 토양의 농비, 토양정화공장의 설립을 위한 대규모 투자가 곤란한 경우, 정화대상 물량 및 정화된 토양에 대한 수요의 부족 등 토양정화 및 정화토양의 재사용에서 유발되는 문제를 해결하기 위해 설립되었다.

SCG는 정부가 주도하는 정화사업의 오염토양과 정화된 토양을 보관하며, 토양관 매소를 설립하여 정화된 토양을 건축자재로 판매하는 직접적인 시장의 역할을 담당하고 있다. 오염토양의 보관능력은 7개 지역에서 최대 700,000톤으로 긴급한 경우 에만 보관하고 있으며, 평균 보관기간은 8개월 가량이다. 토양정화를 촉진시키고 재 사용 가능한 토양의 매립을 방지하기 위한 수단으로서 정화가 가능한 오염토양의 매립을 금지하고 있으며, 이러한 토양을 매립할 경우 톤당 13유로의 세금을 과세하고 있고 토양정화업자 등 관련 업체에 대한 기술지원 등을 실시하고 있다.

SCG의 운영을 통해 결과적으로 토양정화산업과 토양정화시장이 성장하여 30개 이상의 토양 전문사업체가 번성하는 성과를 이룩하였다. 정화된 토양의 가격은 톤당 35~70유로로서 국제적으로 경쟁력 있는 가격대를 형성하여 네덜란드의 토양정화업체가 다른 EU 국가에서 정화가능한 오염토양을 수입할 정도로 시장이 활성화되었다. 1990년대 후반에는 네덜란드 내의 토양정화시장 및 정화토양 재활용시장이 완벽하게 기능하게 됨에 따라 SCG는 대부분의 목적을 달성하게 되었고, 현재는 대부분 해체되어 민간에 그 기능을 이양하였으며, 오염토양의 정화가능 여부 결정, 정화 될 수 없는 토양의 매립에 대한 면세 및 지방자치단체에 대한 지원 등의 최소한의 기능만을 수행하고 있다.

② 준설토양 관리 규정
준설작업에서 발생하는 준설토양은 탈수, 토양정착, 자연정화 및 입도에 따른 모래 분류 등의 공정을 통해 관리 및 정화되며, 이와 관련한 규정은 사전조사, 허용기준, 보관방법, 배출 또는 반출방법, 부산물 관리, 행정관리 및 등록방법 등으로 세분화되어 기준을 제시하고 있다.
사전조사
준설토양의 정화방법을 선택하기 위해서는 사전조사를 통해 오염물질의 구성성분을 파악하여야 한다. 준설토양과 관련된 인자는 지표수 조사 결과 등에 기록되어 있어 사전조사에서 오염물질이 준설토양에 존재하는지의 여부를 확인할 수 있다.

허용기준
허용기준은 매립 등으로 처분하거나 현장에서 정화해야 하는 기준으로 구별할 수 있다. 준설 오염토양의 처분은 처리작업 최소기준 및 환경관리법의 매립허가 요구사항에 따라 수행하여야 하며, 현장에 정화해야 할 경우에는 토양품질 정책의 관련 기준에 의거하여 결정하여야 한다. 각 정화방법에 따른 준설 오염토양의 허용기준은 [표 4.1.2-6]에 나타내었다.

<table>
<thead>
<tr>
<th>기 술</th>
<th>관리 조건 항목</th>
<th>비 고</th>
</tr>
</thead>
<tbody>
<tr>
<td>토양경작법</td>
<td>pH, 온도, 밀도 가중치, 폐기물 포함량, 용출량, 분해인자 측정, 보조물 첨가</td>
<td>정화</td>
</tr>
<tr>
<td>탈수/자연정화</td>
<td>밀도 가중치, 폐기물 포함량, 용출량</td>
<td>정화 및 탈수 방식으로 저장소에 재공급</td>
</tr>
<tr>
<td>모래 분류</td>
<td>밀도 가중치, 폐기물 포함량, 용출량, 침전지의 용출량</td>
<td>탈수, 분류 관리, 분류구획</td>
</tr>
</tbody>
</table>

[표 4.1.2-6] 준설 오염토양의 정화방법에 따른 허용기준

준설 오염토양이 [표 4.1.2-7]에 기록된 물리적·환경 위생적 품질 요구사항을 충족시킨다면 대상물질을 폐기하지 않고 모래 분류를 실시하여야 한다. 만약 모래함량이 너무 낮거나 환경위생 품질에 적합하지 않을 경우에는 성분의 중요성 순위에 따라 토양품질 정책의 관련 기준에 의거하여 모래 분류를 하지 않고 재사용할 수도 있으며, 부가적인 처리 또는 정화를 위해 공급되거나 폐기될 수 있다.
분석

침전지에 의한 모래 분류

물리적 품질

본질(MZ): 분질(z, mz, k, v)*
모래함량(63~2000um) > 60%

화정위생 품질

pH < 토양품질 정책 산업급
중금속(NVN 5720 패키지) < B급
광유 < 토양품질 정책 산업급
PAK < 토양품질 정책 산업급
PCB < 토양품질 정책 산업급

표 4.1.2-7 준설토양의 모래 분류를 위한 품질 허용기준

비고] * z=모래, mz=중급모래, k=진흙, v=토탄(peat)
** NEN 5753에 의해 정해짐
*** 분해가 불가능한 살균제(농약) (토양경작법)
**** 가중치 : “사분석 SERPENTINE 가중치를 각섬석보다 10배 증가시킴”

준설토양 중 일부는 허용기준에서 모래함량이 낮아 폐기될 수도 있으며, 이와 반대로 일부 성분의 모래함량이 높아 폐기할 필요가 없다고 판단되는 경우도 있다. 준설토양의 품질 허용기준은 통과하여 승인되었으나 모래가중치와 관련하여 일부분이 기준을 통과하지 못하였을 경우, 통과한 부분들은 처리작업을 위해 허용될 수 있다.

○ 보관방법

오염된 준설토양을 반입하여 일시적으로 보관하거나 정화된 준설토양의 경우, 재활용하기 위해 보관하게 된다. 오염된 준설토양을 처리하는 과정에서 경우에 따라 일부 물질을 첨가하여 정화할 수 있으며, 동일한 품질의 정화토양 및 부산물을 얻을 수 있다면 개별적인 처리작업이 가능하도록 설정되어 있다. 그러나, 동시에 네덜란드 환경관리법의 요구사항을 충족시켜야 한다.

정화 후 발생한 최종산물 및 부산물은 별도로 관리하여야 하며, 각 처리기술을 이용하여 정화한 토양들도 마찬가지로 서로 혼합해서는 안 된다. 그러나 정화토양 및 부산물의 최종 재사용 목적에 동일할 경우 보관시설 내에서는 혼합하여 보관될 수 있으며, 이 경우 환경관리법 담당자로부터 사전에 허가를 받아야 한다.
○ 배출 또는 반출방법

정화된 토양을 반출하기에 앞서 사전심사 또는 품질검정을 실시하여야 하며, 먼저 토양품질 정책의 관련 기준의 요구사항들을 모두 충족시켜야 한다. 정화작업 전후의 오염물질 성분은 각 성분에 대해 분석되어져야 하며, 정화토양 및 준설토양은 최종적으로 건축재료에 해당되는 요구사항들을 충족시켰을 경우 반출할 수 있다.

○ 부산물 관리

정화처리 과정에서 발생하는 부산물은 인증된 처리자에게 인계되어 처리되어야 하며, 부산물의 양은 등록부에 지속적으로 기록하여야 한다.

○ 행정관리 및 등록

오염된 준설토양 정화와 관련하여 원료 공급, 제품 및 부산물 배출(매각)의 관리, 저장 및 처리작업은 지침의 중요한 부분이며, 반입되는 오염 준설토양의 성분, 저장 성분, 정화된 토양의 반출(매각) 및 잔여물은 성분의 관계를 바로 인지할 수 있도록 관리하고 감독되어야 한다. 이와 관련하여 기록부에 개관적인 방식으로 다음과 같은 사항들을 기록하여야 한다.

- 반출(매각)허용 날짜
- 경작자/제공자의 이름, 주소 및 거주지 등 일반 정보
- 발생원, 특성 및 성분
- 처리방식
- 반출량(㎥ 및 톤, 밀도 기준)
- 분석자료
- 폐기물 신고 및 유해폐기물 정책 기준에 요구된 정보
- 위탁된 작업자 등
- 성분, 시기 및 양을 적용 시 함께 처리 작업한 지역

정화처리자는 최소 3개월에 1회 이상 정화 횟수, 기록방법 등을 확인하여야 하며, 최소 1년에 1회 이상 정화토양 및 준설토양량의 수지를 만들고 재고조사를 실시하여야 한다. 여기에 포함되는 모든 토양정화 관련 폐기물과 최종제품 및 부산물의 재고를 파악하여야 한다. [표 4.1.2-8]은 오염된 준설토양의 적정관리를 위한 평가양식을 나타낸 것이다.
<table>
<thead>
<tr>
<th>정화회사 이름</th>
<th>코드</th>
<th>버전</th>
<th>날짜</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>양식</th>
<th>승인:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>진행</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>프로젝트평가</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>정화처리자가 일반 정보</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>정화처리자 이름</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>주소 및 거주지</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>연락가능한 담당자</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>전화번호</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

사전허가
설명 (정의)  
원래 위치

화학구성 정보
설명
특징성분 및 혹은
설명
결정적인 처리과정 파라미터
설명

폐기물번호
프로젝트코드
운반자

저장 및 처리
1차 공급 날짜

주조 및 감독
설명

폐기장 설명
코드
클리스팅

정화기간
설명
예외상황

반출 감독 및 메각

방식
평가지침 9308/ 평가지침 9309/ 평가지침 9335/ 사용자 프로토콜 평가지침
자격부여

가공한 토양 / 1기준으로 정화된 토양 / 2기준으로 정화된 토양 / 기타

구매자의 일반 정보
이름
주소
연락가능한 담당자
전화번호

NAW 목적지
주소
제공 날짜
양

부분 제공
예/아니요
폐기물번호
구매자의 검사 (관리)
예/아니요

[표 4.1.2-8] 오염된 준설토양 관리를 위한 평가양식
[표 4.1.2-9] 준설토양의 반입, 정화, 반출 등과 관련하여 기록해야 할 사항에 대해 정리한 것이다.

<table>
<thead>
<tr>
<th>정보</th>
<th>동록 방식</th>
</tr>
</thead>
<tbody>
<tr>
<td>인가 및 공급받은 날짜</td>
<td>제안/정리, 운반안내양식, 정의(설명)양식, 가중치표 및 자동화시스템에서 결정함</td>
</tr>
<tr>
<td>정화처리자 이름</td>
<td>대형계량기/선박측정법 + 행정관리</td>
</tr>
<tr>
<td>물품 특정 및 폐기물 코드</td>
<td>(제안, 실험등록양식, 자동화시스템)</td>
</tr>
<tr>
<td>양</td>
<td>(제안, 정리, 자동화시스템)</td>
</tr>
<tr>
<td>공급받는 방식</td>
<td></td>
</tr>
<tr>
<td>분석보고서 참가</td>
<td>(제안, 실험등록양식, 자동화시스템)</td>
</tr>
<tr>
<td>비용</td>
<td></td>
</tr>
</tbody>
</table>

설비 내의 작업내용

| 정확한 위치 | 농지지역; 상황에 따라 최소 일주에 한 번씩 실천함 |
| 반입/반출량의 차이 | 독립적 전문가/행정관리평가로 1년에 한 번씩 측정 |
| 반입량 | - |
| 반출량 | - |
| 소모량 | - |
| 분석보고서 참가 | 정화물을 실험하며 분석함 |

반출

| 이전 날짜 | - |
| 구매자 이름 | - |
| 물품 특정 및 Eural 코드 | Bsb(예; 평가지침 9308/9309)의 모래 가중치 및 작은 알갱이[granule] 가중치 |
| RGR-잔류물, 진흙 덩어리/범람폐기물 같은 부산물: 운송안내서, 정의양식, 가중치표 및 자동화시스템에 최종 처리자와 계약에 결정함 |
| 양 | 대형계량기/선박측정법 |
| 배출 방식 | - |
| 분석보고서 참가 | 잔류물/진흙: 토양의 잔류물/진흙의 Bodem+증명서 |
| 비용 | (계약) |

[표 4.1.2-9] 준설토양의 반입, 정화, 반출 등록 개요
4.1.3 반출정화시설의 운영 및 정화토 활용 현황조사

가. 벨기에

벨기에의 SITA Remediation은 1996년 WATCO Remediation Service로 토양오염 복원사업을 시작하여 2002년 SITA Remediation으로 회사 이름을 바꾸었으며 2008년 Suez환경그룹의 자회사로 편입되었다. 지금까지 약 20년간 토양정화사업을 수행하고 있는 SITA Remediation은 현재 벨기에 내 5개소 외에 프랑스, 독일, 네덜란드 등에 반입정화시설을 운영하고 있으며, 매년 백만톤 이상의 토양을 정화하고 있다. 처리시설별 반입정화시설 운영 현황은 다음과 같다.

- 물리-화학적 처리시설
  - 벨기에 내 물리-화학적 처리시설 1개소 운영
  - 이동형 플랜트 1기 보유
- 열탈착 설비
  - 독일 및 영국에 각각 1기 운영
- 고형화 처리시설
  - 유럽 전역에 고형화 처리시설 8개소 운영
  - 이동형 플랜트 2기 보유
- 생물학적 처리시설
  - 유럽 전역에 생물학적 처리시설 11개소 운영
  - 이동형 플랜트 6기 보유

이 중 물리-화학적 처리시설을 설치한 벨기에의 Grimbergen 반입정화시설과 열탈착 설비를 보유하고 독일의 Herne 반입정화시설의 개요는 다음과 같다.

① 벨기에 Grimbergen 반입정화시설

1928년부터 1994년까지 황산, 이황화탄소, 차아염소산나트륨을 주로 생산하였던 화학공장 부지 약 15.7헥타르 1995년 SITA Remediation에서 정화를 포함하는 조건으로 인수하여, 약 500,000m³의 토양 및 유해폐기물을 정화한 후 반입정화시설로서 사용 중이다. 현재 연간 200,000톤의 오염토양을 반입하여 물리-화학적 처리방법으로 정화하고 있다.
독일 Herne 반입정화시설

SITA Remediation이 독일 Herne 지역에서 운영하고 있는 반입정화시설은 열적처리(pyrolysis)를 이용하여 오염토양을 정화시키는 시설로서 크게 기계적 전처리, 열적처리, 배가스 정화 공정으로 이루어져 있으며, 세부적인 공정순서는 다음과 같다.

- 오염물질 분석
- 오염토양 분쇄(1단계 전처리)
- 진동 스크린 및 자력선택기를 이용한 이물질 제거(2단계 전처리)
  (돌, 목재, 플라스틱, 철재류 등)
- 로터리 킬رن(약 550℃)에 오염토양 투입 : 수분 증발 과정과 이후 오염물질 가열과정이 통합되어 이루어짐
- 로터리 킬런에서 배출된 토양을 물과 함께 혼합기에 투입하여 건조상태에서 분진의 발생 방지 및 냉각
- 정화 토양 배출

열적처리 공정의 처리대상 토양은 다이옥신, PAH, 광유 등 유기물 오염 토양, 수은과 같은 휘발성 중금속 오염 토양, 그 외 폭발물, 살충제 등 독성 또는 유해성 물질로 오염된 토양 등이다.

외부에서 반입된 오염토양은 우천시에 발생할 수 있는 오염물질의 외부 노출을 방지하기 위하여 바닥은 모두 방수처리가 되어 있는 콘크리트로 이루어져 있으며, 출입구에서 내부쪽으로 내리막 형식의 구배가 형성되어 비가 많이 왔을 경우 침출수가 오염토양이 외부로 유출되는 것을 방지하고 있다. 그리고, 오염토양과 정화된 토양은 콘크리트 옹벽을 이용하여 분리하여 보관하고 있는 것으로 조사되었다.
Herne 반입정화시설에 설치된 열적처리 공정의 개요는 아래 그림과 같다.

[그림 4.1.3-1] 콘크리트 바닥(경사)

[그림 4.1.3-2] 콘크리트 옹벽(분리)

[그림 4.1.3-3] Herne 반입정화시설에 설치된 열분해 공정
열적처리 방법에서는 오염토양의 가열과정에서 오염물질 및 수분의 휘발 등에 의한 가스가 발생되는데, 발생가스는 토양 내부에 함유되어 있는 수분이 가열과정에서 발생하는 것으로 발생가스에는 중금속 및 여러 화학물질이 포함되어 있다. 이러한 발생가스를 정화과정 없이 배출할 경우 대기를 오염시키는 원인으로 작용할 가능성이 있으며, 이를 정화하기 위한 대책으로 다음과 같은 총 5단계의 2차 오염 방지시설을 운영하고 있다.

① 1차 방지 시스템
1차 방지 시스템은 발생가스를 처리하기 위한 첫 번째 시설인 MCF(Multiple Cyclone Filter)의 전단에 설치되어 있다. 이것은 발생가스가 MCF로 가는 단계에서 일부 온도가 손실되어 액체로 변화되는 현상을 막기 위한 것이며, 발생가스가 온도 손실로 인해 액체화되어 타르 등의 일부 오염물질이 MCF로 이송되지 않는 것을 방지하기 위하여 이곳에서 약 200℃로 가열된다.

② 2차 방지 시스템
로터리 킬론에서 발생된 가스는 MCF를 통해 오염물질이 제거되는데, 제거된 오염물질은 다시 가열하여 정화하는 시스템이다. 가열을 통해 배출된 물질은 정화토양 냉각공정으로 이송되어 정청한 상태로 배출된다.

③ 3차 방지 시스템
MCF에서 제거되지 않은 오염물질은 다시 1000~1200℃로 가열하여 오염물질을 분해한다.

④ 4차 방지 시스템
3차 공정을 통과한 잔여 미립자는 집진기(Cloth filter)를 통하여 제거된다. 포집된 미립자에는 환경유해물질인 다이옥신 등이 포함되어 있으며, 이를 Active carbon filter에서 활성탄을 첨가하여 정화하고 있다. 처리 후에는 오염물질이 완전히 정화되었는지 확인하기 위하여 매일 시료를 체취·분석하고 있으며, 정청한 경우 정화토양 냉각과정으로 이송한다. 분석 결과 정화기준 이상으로 확인된 경우는 최종 매립지로 보내서 처리하고 있다.
5차 방지 시스템

4차 방지 시스템에서 제거되지 못하고 배출되는 가스는 산성비의 원인이 되는 물질이 함유되어 있어 우선적으로 Reactor filter를 통해 오염물질을 제거하고, 포집된 물질은 Gas washer를 통해 중화제와 물을 분무하여 중성화시킨다.
4.2 국내 반출정화 현황과 악 및 분석

4.2.1 반출정화실적 현황 조사 및 반입정화처리 정화실적 분석

본 절에서는 연도별·시설별 오염토양 반출량, 정화량, 정화토양 사용량 등 국내 반출정화 실적 현황 및 반입정화처리에 대한 오염물질별, 정화방법별 정화실적 조사·분석을 실시하였다.

가. 반입 정화시설 보유 업체 연도별 등록현황


[그림 4.2.1-1] 반입정화시설 보유 업체 연도별 등록현황
나. 반입정화시설 규모

반입정화시설 중 보관시설 24개소의 전체 면적은 40,822㎡, 면적 범위는 405㎡~9,920㎡로 조사되었다. 또한, 1,000㎡~5,000㎡인 보관시설이 약 48%로써 대부분 중규모 시설을 보유하고 있었다. 정화시설의 경우 전체 24개소의 면적은 23,604㎡, 면적 범위는 407㎡~3,527㎡이며, 500㎡~1,000㎡인 정화시설이 약 50%로써 보관시설 규모에 비해 정화시설 규모가 대체로 작은 것으로 나타났다.

![그림 4.2.1-2] 반입정화시설 면적 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>총면적(㎡)</th>
<th>평균 면적(㎡)</th>
<th>최소 면적(㎡)</th>
<th>최대 면적(㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>보관시설</td>
<td>40,822</td>
<td>1,701</td>
<td>405</td>
<td>9,920</td>
</tr>
<tr>
<td>정화시설</td>
<td>23,604</td>
<td>983</td>
<td>407</td>
<td>3,527</td>
</tr>
<tr>
<td>소계</td>
<td>64,426</td>
<td>2,684</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[표 4.2.1-1] 보관시설 및 정화시설 면적 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>시설수</th>
<th>1.0 이하</th>
<th>1.0~5.0</th>
<th>5.0~10.0</th>
<th>10.0 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>시설수</td>
<td>24</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

[표 4.2.1-2] 반입정화시설 면적 비율(보관시설/정화시설)
다. 정화공법별 시설 규모

반입정화시설 전체 면적 23,604㎡ 중 약 91%에 해당하는 21,484㎡에서 토양경작법을 사용하는 것으로 조사되어 반출정화의 경우 대부분 생물학적 처리를 적용하는 것으로 나타났다.

[그림 4.2.1-3] 정화공법별 시설 규모

라. 연도별 반입량, 처리량 현황

2006년 이후 매년 반입량 및 처리량이 늘어나고 있으며, 특히 2010년 이후 급격한 증가 추세를 보이고 있다.

[그림 4.2.1-4] 연도별 반입량, 처리량 현황
4.3 반출정화대상 관련 규정 개선안 제시

4.3.1 반출정화 인식도 및 제도개선 등에 대한 의견 수렴

반출정화 인식도 및 제도개선 등에 대한 의견 수렴을 목적으로 업체 및 전문가를 대상으로 한 설문조사를 실시하였다.

가. 설문조사 개요

○ 설 문 명 : 「오염토양 반출정화제도 개선을 위한 설문조사」
○ 설문기간 : ‘13.3.11 ~ ‘13.3.15
○ 설문대상 : 정화업체 103개소(반입정화시설 보유 및 미보유업체), 전문가 5인
○ 설문방법 : 설문지 이메일 송부
○ 설문 응답율 : 38%

<table>
<thead>
<tr>
<th>구분</th>
<th>반입정화시설 업체</th>
<th>반입정화시설 미보유업체</th>
<th>전문가</th>
<th>합계</th>
</tr>
</thead>
<tbody>
<tr>
<td>송부</td>
<td>20</td>
<td>83</td>
<td>5</td>
<td>108</td>
</tr>
<tr>
<td>회수</td>
<td>9</td>
<td>30</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>응답율</td>
<td>45%</td>
<td>36%</td>
<td>40%</td>
<td>38%</td>
</tr>
</tbody>
</table>

[표 4.3.1-1] 설문조사 응답율 현황

○ 설문조사 항목 : 총 7개 항목
  • 외국의 경우와 비교하여 국내 반출정화제도 엄격성 여부
  • 외국의 경우와 비교하여 국내 반출정화제도 관리-운영기준 엄격성 여부
  • 반출정화제도 문제 해결 방안(7가지 예시 중 우선순위 결정)
  • 반출정화제도 시정 및 개선사항
  • 반출정화대상 확대 여부와 관련한 의견
  • 향후 반입정화시설 신규 및 추가 설치 여부
  • 반입정화시설 운영상의 어로사항(반입정화시설 운영 업체만 해당)

나. 설문조사 결과 및 분석

업체 및 전문가를 대상으로 상기 7개 항목에 대한 설문조사 실시 분석 결과는 다음과 같다.
외국의 경우와 비교하여 국내 반출정화제도 엄격성 여부

<table>
<thead>
<tr>
<th>항목</th>
<th>엄격하다 (확대 필요)</th>
<th>비교적 엄격한 편이다</th>
<th>적정하다</th>
<th>비교적 약한 편이다</th>
<th>약하다 (축소 필요)</th>
<th>기타 (무응답)</th>
</tr>
</thead>
<tbody>
<tr>
<td>반입보유(9)</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>반입미보유(30)</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>전문가(2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[표 4.3.1-2] 외국의 경우와 비교하여 국내 반출정화제도 엄격성 여부


<table>
<thead>
<tr>
<th>확대 찬성 의견</th>
<th>축소 찬성 의견</th>
</tr>
</thead>
<tbody>
<tr>
<td>·외국(미국, 일본 등)의 경우</td>
<td>·정화완료토양에 대한 처분 및 재검증 어려움</td>
</tr>
<tr>
<td>오염원인자(발주처)의 판단에 따라 반출처리 가능</td>
<td>·외국(캐나다)의 경우 현장 정화 중심</td>
</tr>
<tr>
<td>·부지가 협소한 우리나라의 경우 확대시행 필요</td>
<td></td>
</tr>
<tr>
<td>·부지 외 2차오염 방지 및 부지 재활용 가능</td>
<td></td>
</tr>
<tr>
<td>·주유소의 경우 부지가 협소해 현장 내 정화 한계</td>
<td></td>
</tr>
<tr>
<td>·반출사유의 개선을 통한 시장활성화 부분 고려 필요</td>
<td></td>
</tr>
<tr>
<td>·현실적으로 부지내 처리가 불가한 경우 많은</td>
<td></td>
</tr>
<tr>
<td>·부지내 ex-situ 공법 이용시 민원 등 다양한 문제 발생</td>
<td></td>
</tr>
</tbody>
</table>

[표 4.3.1-3] 설문조사 기타 의견(국내 반출정화제도 엄격성 여부)
외국의 경우와 비교하여 국내 반출정화제도 관리·운영기준 업무성 여부

<table>
<thead>
<tr>
<th>항목</th>
<th>엄격하다 (확대 필요)</th>
<th>비교적 엄격한 편이다</th>
<th>적정하다</th>
<th>비교적 악한 편이다</th>
<th>악하다 (축소 필요)</th>
<th>기타 (무응답)</th>
</tr>
</thead>
<tbody>
<tr>
<td>반입보유(9)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>반입미보유(30 )</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>전문가(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

[표 4.3.1-4] 외국의 경우와 비교하여 국내 반출정화제도 관리·운영기준 업무성 여부

업체의 경우(반입정화시설 보유 및 미보유업체) 국내 반출정화제도 관리·운영 기준이 대체로 '적정하다'고 응답하였으며, 전문가는 비교적 '약하다'고 응답하였다. 반입정화시설 보유 업체의 경우 반출정화대상은 확대되어야 한다는 의견이 지배적이었으나, 현재 관리·운영기준에 대해서는 비교적 만족하는 것으로 나타났다. 기타 의견은 [표 4.3.1-5]와 같다.

<table>
<thead>
<tr>
<th>확대 찬성 의견</th>
<th>축소 찬성 의견</th>
</tr>
</thead>
<tbody>
<tr>
<td>·시설기준 및 지적법에 의한 수질, 대기에 관한 반입장 규제 강화</td>
<td>·시설기준 및 지적법에 의한 수질, 대기에 관한 반입장 규제 강화</td>
</tr>
<tr>
<td>·반입시설 내 인력 부족 및 관리 소홀</td>
<td>·반입정화부지 설치 결과 관리 소홀한 경우 많음</td>
</tr>
<tr>
<td>·종 더 철저한 추적관리 필요</td>
<td>·국내 정화기술 현황, 법적규제의 한계점, 오염특성, 예산확보, 정부발주 공사의 특징 등 다각도로 종합적 검토 필요</td>
</tr>
</tbody>
</table>

[표 4.3.1-5] 설문조사 기타 의견(국내 반출정화제도 관리·운영기준 업무성 여부)
3. 반출정화제도 문제 해결 방안

<table>
<thead>
<tr>
<th>항목</th>
<th>반입정보시설 내정화공정 감독 상주 동사전관리 강화</th>
<th>오염토양부적정처리(법령위반)에 대한 사후처벌강화</th>
<th>반입정화시설의시설보완 및개선</th>
<th>반출오염토양의환경기준 강화</th>
<th>반출오염토양의환경기준 강화</th>
<th>반입정보시설 자체운영관리기준 강화</th>
<th>반입정보시설보완개선업계의자정노력</th>
</tr>
</thead>
<tbody>
<tr>
<td>반입보유(9)</td>
<td>20</td>
<td>46</td>
<td>37</td>
<td>50</td>
<td>26</td>
<td>24</td>
<td>49</td>
</tr>
<tr>
<td>반입미보유(30)</td>
<td>70</td>
<td>96</td>
<td>114</td>
<td>82</td>
<td>86</td>
<td>71</td>
<td>107</td>
</tr>
<tr>
<td>전문가(2)</td>
<td>13</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>합계</td>
<td>103</td>
<td>154</td>
<td>159</td>
<td>138</td>
<td>120</td>
<td>99</td>
<td>161</td>
</tr>
</tbody>
</table>

[표 4.3.1-6] 반출정화제도 문제 해결 방안

세 번째 항목의 경우 반출정화제도 문제 해결과 관련한 7가지 예시를 제시하고 우선순위를 결정하게 하였다. 그 결과 순위가 높은 순서대로 점수를 부여하여(ex : 1순위 7점, 2순위 6점, ⋯, 7순위 1점) 점수가 높은 상위 2개 항목을 선정하였다.(볼드체 밑줄 표기)
기타 의견

· 반출정화 인허가시 면밀한 검토 필요(규모, 설비현황, 기보관 오염토량 등)
· 오염지역의 지목별(1,2,3 지역) 정화(우려) 기준의 90% 이하로 정화(기준 상향조정)
· 조사기간의 실적 향상 및 책임 강화, 관할청의 관리감독 강화
· 부적절 처리 업체에 대한 처벌 강화(벌점 부여 등)
· 폐기물관리법 또는 건폐법 기준 등에 준하도록 제도 정비
· 불사 점검 및 처벌 강화 필요

[표 4.3.1-7] 설문조사 기타 의견(반출정화제도 문제 해결 방안)

④ 반출정화제도 시정 및 개선사항
반출정화제도 시정 및 개선사항에 대한 의견은 [표 4.3.1-8]과 같다.

자유 의견

· 반출정화시설 등록기준 상향조정(부실업체의 시장 진입 차단)
· 반출정화시설의 입지 불허
· 신규업체의 경우 일정기간 이상의 무영 제도 도입
· 정화비용 적정 가이드라인 제시(지가 수수에 따른 부실처리 방지)
· 검증업체 요건 강화
· 동봉 오염토양의 경우 반출정화 확대
· 정화토 재활용 범위 확대방안 강구
· 반출정화대상 강화(현행 허용 대상 대폭 축소)
· 토양정화공사 하도급 기준 강화
· 행정기관 관리감독 및 강화
· 반출정화 대상 여부에 대한 행정기관 사전점검 강화
· 반출정화는 2차 오염의 우려가 있으므로 금지해야 함
· 시설용량 대비 정화계획서 상의 반출토량 및 기입토양 관리 필요
· 사후 처벌 강화보다는 사고를 미연에 방지할 수 있는 관리 시스템 강화 필요

[표 4.3.1-8] 설문조사 자유 의견(반출정화제도 시정 및 개선사항)
반출정화제도 확대 여부와 관련한 의견

<table>
<thead>
<tr>
<th>항목</th>
<th>확대 필요</th>
<th>현행 유지</th>
<th>축소 필요</th>
<th>반입정화시설 관리 강화 후 확대여부 결정</th>
<th>기타 (무응답)</th>
</tr>
</thead>
<tbody>
<tr>
<td>반입보유(9)</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>반입미보유(30)</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>전문가(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

[표 4.3.1-9] 반출정화제도 확대 여부와 관련한 의견


<table>
<thead>
<tr>
<th>확대 찬성 의견</th>
<th>축소 찬성 의견</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 오염원인자에게 정화방식 선택권 부여</td>
<td>• '부지 내 처리 원칙'에 위반되는 경우가 많음</td>
</tr>
<tr>
<td>• 반출불가에 따른 과태료 부과</td>
<td>• 반출정화 대상 영업에 대한 행정기관 사전점검 강화</td>
</tr>
<tr>
<td>• 부지 내 정화 장시간 소요, 부지활용 제한</td>
<td>• 반출정화 확대시 오염원인자의 도덕적 해이</td>
</tr>
<tr>
<td>• 부지 내 정화에 비해 정화효율 탁월</td>
<td>• 반출정화는 2차 오염의 우려가 있음</td>
</tr>
<tr>
<td>• 자율적 자정과 행정적 모니터링을 통한 정화 투명성 제고</td>
<td></td>
</tr>
</tbody>
</table>

[표 4.3.1-10] 설문조사 기타 의견(반출정화제도 확대 여부와 관련한 의견)
<table>
<thead>
<tr>
<th>항목</th>
<th>설치계획 있음</th>
<th>설치계획 없음</th>
<th>비고(설치시기 및 용량)</th>
</tr>
</thead>
</table>
| 반입보유(9)| 2              | 7              | ·'13년 / 용량 미정
   ·'13년 / 28,000㎥ |
| 반입미보유(30)| 7              | 23             | ·'15년 / 10,000㎥
   ·'15년 / 800㎥
   ·시기 및 용량 미정
   ·'13년 / 13,440㎥
   ·'15년 / 10,000㎥
   ·시기 및 용량 미정
   ·'14년 / 용량 미정 |

[표 4.3.1-11] 향후 반입정화시설 신규 및 추가 설치 여부

반입정화시설 보유 업체의 경우 2개 업체, 미보유 업체의 경우 7개 업체가 향후 반입정화시설 신·증설 계획이 있는 것으로 응답하였다.

⑦ 반입정화시설 운영상의 애로사항

반입정화시설 보유 업체만을 대상으로 반입정화시설 운영상의 애로사항을 조사하였으며, 그 결과는 [표 4.3.1-12]와 같다.

<table>
<thead>
<tr>
<th>자유 의견</th>
</tr>
</thead>
<tbody>
<tr>
<td>·처리능력 대비 반입물량 미확보</td>
</tr>
<tr>
<td>·보관도 넓은 의미의 정화로 간주 요망</td>
</tr>
<tr>
<td>·건폐법 수준의 법적 근거 마련 필요</td>
</tr>
<tr>
<td>·신규업체 진입의 제한 필요성</td>
</tr>
<tr>
<td>·정화토 의무 사용 제도 개선 필요(복토재 등)</td>
</tr>
<tr>
<td>·보관등과 경작등의 시설이 동일할 경우 보관등에서도 경작 가능한토록 제도 개선 필요</td>
</tr>
</tbody>
</table>

[표 4.3.1-12] 설문조사 자유 의견(반입정화시설 운영상의 애로사항)
4.3.2 반출정화대상 확대 또는 축소 등 개선방안 제시

서론에서 언급한 바와 같이 반출정화의 경우 2006년 이후 매년 처리량이 증가 추세에 있으며, 반출정화대상 확대 요구도 지속적으로 늘어나고 있다. 적정한 반출정화를 위해서는 철저한 반입정화시설 관리를 통한 ‘오염토양의 확산’ 방지가 우선되어야 하나, 2012년 실시한 반입정화시설 운영 업체 합동 지도·점검 결과 반입정화시설 관리가 전반적으로 미흡한 것으로 확인되었다. 따라서, 현 시점에서 반출정화대상을 확대하는 것은 어려우며, 반입정화시설에 대한 관리 강화 후 확대여부를 결정해야 할 것으로 사료되며, 반출정화대상 확대를 위하여 필요한 반입정화시설 관리 강화 방안을 몇 가지 제시하고자 한다.

가. 시설용량 제한규정 신설

2012년 지도·점검 결과 반입정화시설 중 일부가 오염토양 정화시설에 비해 보관시설의 규모가 과대하며, 일부 정화업체는 정화시설의 정화능력 증가를 고려하지 않은 상태에서 보관시설만을 증축 또는 신축 중인 것으로 조사되었다. 오염토양 보관시설의 규모가 정화시설보다 과대할 경우 오염토양의 장기 보관이 불가피하여 오염토양의 정화가 지연될 수 있고, 정화처리 전 정화완료 시점이 도래하여 오염토양의 부적정 처리가 우려되는 등의 부작용이 발생할 수 있다. 따라서, 오염토양 최대 보관기간을 설정하거나 정화능력 대비 보관능력을 제한하는 규정을 도입할 필요가 있다. 오염토양 최대 보관기간 및 최대 보관 운영물량의 경우 3~6개월이 타당한 것으로 판단되며, 이는 모든 시설에서 적용하고 있는 토양경작공법이 1Batch에 최소 2개월 가량이 소요되는 점을 감안할 때 약 3Batch 운영물량 수준에 해당한다.

나. 인허가 규정 강화

반출대상여부의 적정성유무 판단 제고를 위하여 인허가 규정을 강화할 필요가 있다. 예를 들어 지자체 담당자가 반출정화 관련 인허가 전 전문기관의 자문을 받도록 하는 것을 법제화하는 것을 들 수 있다. 다른 분야의 사례를 살펴보면 ‘수도권대기환경개선에 관한 특별법’의 경우 지자체 담당자가 사업장 인허가시 전문기관(수도권대기환경연구지원단)의 자문결과를 고려하도록 되어 있다.(법 제16조제2항제6조). 이와 같이 반출정화에 있어서도 타 법의 사례를 적용할 수 있을 것이다.

다. 반입정화시설 시설기준 및 관리기준 강화

설문조사 결과에서도 나타났듯이 반출정화제도 문제를 해결하기 위하여 반입정화시설 시설기준 및 관리기준 강화가 필요하며, 이를 위하여 수질 및 대기 분야에
서처럼 반입정화시설 내 법정 관리인을 선임하는 것도 하나의 방안이 될 수 있다.

4.4 반출정화토양의 재사용 촉진방안 제시

4.4.1 정화토 재사용 촉진방안 마련

국내의 반출정화 제도는 오염토양의 정화를 통한 토양환경보전의 기본 목적을 달성하기 위해 기술적·현실적 여건으로 부지 내에서 정화하기 곤란한 오염토양을 부지 외로 반출하여 정화할 수 있도록 합리적인 정화절차를 제공하고 있으며, 현재 반출대상 오염토양의 확대가 예정되어 있다. 본 장에서는 연구결과를 바탕으로 반출정화 제도의 합리적인 운영과 발전을 위해 필요한 정화토양의 재활용 촉진 방안에 대해 고찰하였다.

가. 정화토양 재활용 용도 규정 및 의무사용제도 도입

반출된 오염토양은 관련 규정에서 정하는 기준(토양오염우려기준) 이내로 정화되었을 경우 그 특성 및 오염정도, 사용목적에 따라 재사용될 수 있음에도 불구하고, 최초에 “오염토양”이었던 선입감으로 인해 재활용은 물론 최종적인 처분을 위한 수요체 확보가 어려운 현실이다. 반입정화시설 내에서 정화토양의 재사용 등에 따른 정화토양 반출이 원활하지 않을 경우 정화토양의 보관으로 인한 시설 이용도가 저감될 수 있으며, 결국 오염토양의 적정한 정화에도 영향을 끼칠 수 있어 이에 대한 해결이 필요하다고 판단된다.

정화토양의 재활용 문제의 해결을 위해서는 건설폐기물 재활용촉진에 관한 법률(이하 건폐법)을 참고할 필요가 있다. 건폐법에서는 건설폐기물의 처리에서 발생하는 순환재료의 재활용 용도와 순환재료 의무사용 건설공사 등을 명확하게 규정되어 있어 재사용이 가능한 자원의 활용도를 높이는 측면에서 긍정적인 역할을 하고 있다. 다음에 순환재료의 재활용과 관련한 조항을 정리하였다.

○ 건설폐기물 재활용촉진에 관한 법률
  • 제2조의13 : “순환재료의 재활용 용도”를 규정
  • 제2조의14 : “순환재료의무사용건설공사”를 규정

○ 건설폐기물 재활용촉진에 관한 법률 시행령
  • 제4조 : “순환재료의 재활용 용도”는 다음과 같다.
    1. 도로공사용 순환재료
    2. 건설공사용 순환재료(콘크리트용, 콘크리트제품 제조용, 되워확류 및 됐
      채움 용도로 쓰이는 것에 한한다)
    3. 다음 각목의 용도의 순환재료(건설폐토석을 법 제13조제1항의 규정에 적
합하게 처리한 것을 포함한다)
- 관계법령에 의하여 인·허가된 건설공사의 성토용·복토용
- 「폐기물관리법」 제30조제1항의 규정에 의하여 설치된 폐기물처리 시설중 매립시설의 복토용
- 「국토의 계획 및 이용에 관한 법률 시행령」 제53조제3호 가목 및 나목의 규정에 의한 성토용(농지개량을 위한 성토의 경우 「농지법시행령」 제3조의2의 규정에 적합한 경우에 한한다)
- 제5조: “순환골재의무사용건설공사”를 다음과 같이 규정하고 있다.
  1. 「도로법」 제2조 또는 제10조의 규정에 의한 도로 중 4킬로미터 이상인 도로의 신설 또는 확장공사
  2. 「국토의 계획 및 이용에 관한 법률 시행령」 제2조제2항제1호의 규정에 의한 도로 중 1킬로미터 이상인 일반도로, 자동차전용도로, 보행자전용도로, 자전거전용도로의 신설 또는 확장공사
  3. 「산업입지 및 개발에 관한 법률」 제2조제6호의 규정에 의한 산업 단지 개발 사업 중 면적이 15만제곱미터 이상인 용지조성사업
  4. 「하수도법」 제2조제5호의 규정에 의한 허수종말처리시설 설치공사
  5. 「오수·분뇨 및 축산폐수의 처리에 관한 법률」 제2조제9호 및 제10호의 규정에 의한 분뇨처리시설 및 축산폐수공공처리시설 설치공사
  6. 「수질환경보전법」 제25조제1항의 규정에 의한 폐수종말처리시설의 설치공사

전폐법의 사례를 토양분야의 관련 규정에 도입할 경우 사용가능 자원의 재활용 및 반입정화시설의 운영 등 오염토양 반출정화처리 전반에 긍정적인 효과를 미칠 것으로 판단된다.

나. 정화토양의 품질 인증제도 도입

또한 건폐법 제35조와 제36조에서는 건설폐기물의 재활용을 촉진하기 위하여 순환골재의 용도별 품질기준 및 설계·시공지침 등에 관하여 필요한 기준을 정하고 순환골재의 품질을 확보하기 위하여 인증을 부여할 수 있도록 규정하고 있다. 정화토양의 재활용을 촉진하기 위해서는 정화토양의 품질을 국가차원에서 인증하거나 품질인증기관을 지정하여 운영하는 제도를 도입하는 방안도 효과적일 것으로 판단된다.

다음에 건폐법의 순환골재 품질인증과 관련한 조항을 정리하였다.

○ 제36조(순환골재의 품질인증 등)
  • 건설교통부장관은 순환골재의 품질을 확보하기 위하여 인증(이하 “품질인증”이라 한다)을 부여할 수 있다.
품질인증과 관련하여 필요한 인증기준·관리방법 및 절차 등에 관하여 필요한 사항은 건설교통부령으로 정한다.

건설교통부장관은 품질인증된 사항에 대하여 운영실태와 사후관리상태를 조사하여야 하며, 조사결과 품질인증기준에 부적합하다고 인정하는 때에는 시정 등 필요한 조치를 취할 수 있다.

다. 정화토양의 재활용 방안(매립지 복토재 이용)

본 절에서는 상기에서 제안한 정화토양의 재활용 촉진방안의 구체적 대안으로서 정화토양 사용 방안에 대해 제시하였다.

2008년 말 기준으로 현재 사용 중인 매립시설은 전국에 220개소가 존재하고 있으며, 그 면적은 29,468천㎡, 매립용량은 384,963천㎥에 이르고 있다. 전체 매립지에 대한 조사결과 매립공정은 약 50% 정도 이루어진 것으로 조사되었고, 220개의 매립시설 중 1만㎡ 이상의 규모시설은 141개소, 1만㎡ 미만의 소형 매립시설은 79개소로서 전국 각지에 분포하고 있는 것으로 파악되었다. [표 4.4.1-1]은 전국 시·도별 매립시설 설치현황을 정리한 것이다.
메립지에서는 매일 복토재로서 토양이 사용되고 있으며, 본 연구에서는 메립지 중 대표적인 사례로서 김포 수도권메립지의 복토재 사용현황을 조사하였다. 수도권메립지의 하루에 필요한 복토재의 양은 2,703㎥이며, 복토재의 주요 공급처는 관급토양과 사급토양, 그리고 자체에서 생산하는 슬러지로 구분되나, 대부분 관급토양이 사용하고 있는 것으로 조사되었다.

- 관급토양: 서울시, 경기도, 인천시에서 발주한 관급공사에서 발생하는 토양을 무상으로 반입, 외곽수림대조성 및 양묘장 등에도 공급
- 사급토양: 폐기물의 매립 및 부대공사에 사용되는 토양중 시공사에게 직접 확보하여 반입되는 토양
- 자체 생산 슬러지 : 자체적으로 슬러지 자원화시설을 통해 슬러지를 고형화하
여 사용, 슬러지 생성량은 1,000톤/day이며, 직매립하거나 고형슬러지를 40% 건조하여 복토재로 사용

상기의 조사결과를 검토하였을 때 매립지에서 사용되는 복토재의 일부를 정화토양으로 대체한다면, 각 반입정화시설에서 정화되는 토양의 대부분을 처리할 수 있을 것으로 판단되며, 또한 이는 오염토양의 반출관리에도 긍정적 효과를 불러올 것으로 판단된다.
부 록

A. 토양정화업무 처리지침
토양정화업무 처리지침
목    차

1. 서론 .............................................................................................................. 1
   1.1 배경 및 목적 .................................................................................... 1
   1.2 토양오염정화관련 주요 용어개념 .................................................... 1
   1.3 토양정화업무 절차분석 ................................................................. 4

2. 오염토양정화업무 단계별 작성 및 검토요령 ............................................ 5
   2.1 토양측정망 ..................................................................................... 5
   2.2 토양오염실태조사 ........................................................................... 6
   2.3 토양오염검사 ................................................................................... 7
   2.4 정밀조사 .......................................................................................... 8
   2.5 정화공사 ........................................................................................ 9
   2.6 토양정화검증 ................................................................................... 14
   2.7 정화완료 ....................................................................................... 16

3. 토양정화 제출서류 내용 검토요령 ........................................................... 17
   3.1 정밀조사보고서 검토요령 ............................................................... 17
   3.2 오염토양정화계획서 검토요령 ....................................................... 18
   3.3 오염토양(반출)정화계획서 검토요령 ............................................. 18
   3.4 정화검증계획서 검토요령 .............................................................. 19
   3.5 정화검증완료보고서 검토요령 ....................................................... 20

4. 토양정화관련 인허가 사항 ................................................................... 21
   4.1 인허가 수입전 검토사항 ............................................................... 21
   4.2 정화사업 인허가함목 ................................................................. 21

부록 1. 질의 · 회신 사례 ............................................................................ 24
       2. 오염토양 주요정화공법 개요 ..................................................... 35
제 1 장 서론

1.1 배경 및 목적

- 우리나라의 토양측정망, 토양오염실태조사, 토양오염도검사 등을 통해 발견된 오염부지에 대해서는 지자체에서 정화명령 등을 통해 관리하고 있으며, 오염원인자에 대한 행정명령으로 개별 오염부지조사 및 정화를 실시하고 있음
- 기존 「토양정화방법 가이드라인」은 관련분야 업무종사자, 관계공무원 등이 토양정화업무를 쉽게 접하는 데에 한계가 있음
- 이 요령서는 토양환경보전법 제15조의3의 규정에 의한 오염토양의 정화를 실시함에 있어 정화절차분석 및 각 정화업무단계에 따른 세부적인 업무수행 절차를 명확히 제시함으로써 토양정화업무를 담당하는 공무원의 업무편의를 도모하여 제반 업무가 올바르고 효율적으로 수행하는 것을 목적으로 함

1.2 토양오염정화관련 주요 용어개념

- 토양오염물질
  - 무기물질 : 카드뮴, 구리, 비소, 수은, 납, 6가크롬, 아연, 니켈, 불소, 시안(10항목)
  - 유기화합물 : 유기인화합물, PCB, 페놀(3항목)
  - 휘발성유기화합물 : 벤젠, 톨루엔, 에틸벤젠, 크실렌, TPH, TCE, PCE, PCE, 벤조(a)피렌(8항목)

- 토양오염원인자
  - 토양오염에 따른 피해와 오염토양의 정화 책임을 명확히 하기 위한 무과실 책임, 연대책임 원칙 등으로 오염원인자 범위 구체화
    - 오염원인자 : 토양오염피해 발생 시 배상 및 오염토양 정화 책임자
    - 연대책임 : 오염원인자가 2인 이상일 경우 연대하여 배상 및 정화책임
    - 오염원인자 범위
      1) 토양오염물질을 누출, 유출, 투기, 방치하여 토양오염을 유발시킨 자
      2) 토양오염 발생 당시 오염원인 시설을 소유, 점유, 운영하고 있는 자
      3) 오염원인 시설을 양수하거나 합병, 상속 등으로 권리, 의무를 포괄적으로 승계한 자
      4) 민법상 경매, 환가, 압류재산 매각 등으로 시설을 인수한 자
    ※ 다만 3)과 4)의 경우 양수, 인수자가 선의이며 과실이 없을 경우는 제외
토양오염기준

- 토양오염에 의한 사람의 건강, 재산 및 생태계 등에 미치는 악영향을 방지하기 위하여 토양오염우려기준과 대책기준을 설정
  - 토양오염우려기준: 건강, 재산, 동식물 생육에 지장을 초래할 우려
  - 토양오염대책기준: 건강, 재산, 동식물 생육에 지장, 대책 필요
  ※ 기준항목: 무기물질 10항목, 유기물질 11항목 등 총 21개 항목

토양오염기준 지역구분

- 토양오염기준은 지적법에 의한 지목에 따라 3단계로 구분하고, 토지의 이용 상황, 오염가능성 등을 고려하여 차등적용
- “1”지역: 전, 답, 공원, 학교용지, 공원 등 13개 지목
- “2”지역: 임야, 창고용지, 체육용지 등 11개 지목
- “3”지역: 공장용지, 주차장, 주우소용지 등 7개 지목 및 「국방 및 군사시설사업에 관한 법률」에 의한 국방·군사시설

오염토양 정화기준

- 토양오염도가 토양오염우려기준을 초과한 경우에는 오염토양으로 간주, 토양오염우려기준 이내로 정화하도록 하여 정화기준으로 운영
- 토양오염물질별로 토양오염우려기준을 정하고, 우려기준을 초과한 토양을 오염토양으로 규정
- 오염토양을 정화할 때 정화의 기준을 토양오염우려기준으로 설정
- 오염토양의 지목에 해당하는 지역기준을 적용

오염토양 정화방법

- 오염토양은 토양환경보전법에서 정한 생물학적, 물리·화학적, 열적 처리 등 정화방법에 따라 토양정화업자에게 위탁하여 정화
- 도시지역안의 건설공사 현장, 토양오염사고 발생지역 등 오염토양을 즉시 처리해야 할 경우 토양정화업자에 보유한 시설(반입정화시설)로 반출하여 정화

반출정화 대상

- 「국토의 계획 및 이용에 관한 법률」에 의한 도시지역안의 건설공사 현장 등 환경부장관이 정하여 고시하는 경우
- 토양오염물질 운송차량의 진출 등 긴급한 사고로 인한 오염토양으로서 즉시 처리하야 하는 경우
- 오염토양의 양이 5세제곱미터 미만으로서 현장에서 정화하는 때에는 정화효율이 현저하게 저하되는 경우
- 오염토양의 정화 조치명령을 받은 자가 오염토양 정화공사를 시행하였으나 오염물

- 2 -
질의 종류, 오염정도 및 기술적 한계 등으로 최초 조치명령기간 내에 이를 완료하지 못한 경우로서 토양오염조사기관의 정화과정 검증결과 반출하여 정화할 필요가 있다고 인정한 경우

• 토양오염이 발생한 부지가 같은 시·군·구내에 흩어져 있는 경우로서 오염부지의 소유자 또는 오염원인자가 같고 각각의 오염부지에 토양정화시설을 모두 설치하기 곤란하여 토양정화업자가 오염부지 중 어느 한 곳에 설치한 시설을 이용하여 한꺼번에 정화하는 경우(정화 대상 오염토양 전부를 하나의 토양정화업자에게 위탁한 경우만 해당한다.)

• 비소, 폴리클로리네이티드비페닐, 유기인화합물의 토양오염으로 열적처리방법으로 처리하여야 하는 오염토양

• 정화부지가 100제곱미터 이내로 협소하여 부지안에서 정화가 곤란한 오염토양
1.3 토양정화업무 절차분석

- 토양측정망에 의한 상시측정, 토양오염우려시설의 토양오염실태조사, 토양오염유발시설의 토양오염검사, 토양환경평가 등 토양오염조사체계에 따라 실시된 오염도 조사결과 우려기준을 초과한 경우 토양정밀조사를 실시
- 토양정밀조사의 결과 우려기준을 초과하면 토양오염방지조치를 실시하며, 대책기준을 초과한 경우 토양보전대책지역으로 지정되어 대책계획을 수립하여 토양오염개선사업을 실시

토양오염도측정
- 토양오염 실태를 파악하기 위하여 측정망을 설치하고, 토양오염도를 상시측정함
- 토양측정망 운영 및 토양오염설계조사 결과 토양오염우려기준을 초과하는 지역에 대해서는 토양정밀조사를 실시하여 오염원 및 오염물질의 종류·농도 등을 평가

토양오염검사
- 토양오염검사는 토양오염도검사와 누출검사로 구분. 토양오염도검사는 토양상황에 직접 체계하여 오염물질 함유정도를 검사하는 것을 말하고, 누출검사는 지하매설 저장시설의 저장물질이 누출되었는지 여부와 누출량을 확인하기 위하여 실시하는 법정 검사를 말함

정밀조사
- 상시측정 또는 토양오염설계조사결과 우려기준을 넘는 지역이나 토양오염사고 등으로 인하여 우려기준을 넘을 가능성이 크다고 인정하는 지역, 토양오염도 검사결과 우려기준 초과시 토양정밀조사를 실시

정화공사
- 토양오염우려기준을 초과한 오염토양은 토양정화업자에게 위탁하여 정화하며, 정화공사는 타당성 평가 및 설계를 바탕으로 토양정화업에 등록된 전문업체를 통하여 정화공사를 수행함

정화검증
- 오염유무기가 오염토양의 정화를 토양정화업자에게 위탁하여 정화하며, 정화공사는 타당성 평가 및 설계를 바탕으로 토양정화업에 등록된 전문업체를 통하여 정화공사를 수행함

정화완료
- 오염유무기가 정화공사 완료검증 후 적합관련을 받으면 이행보고서에 토양정화검증보고서를 첨부하여 제출
- 사·도지사 또는 시장·군수·구청장은 이행보고를 받은 때에는 관계공무원으로 하여금 서류 및 현장조사를 통하여 지체없이 이행상태를 확인함
제 2 장 오염토양정화업무 단계별 작성 및 검토요령

# 2.1 토양측정방 : 토양환경보전법 제5조

| 주요 내용 | \(\text{환경부는 측정망 운영증과, 측정망 설치운영계획 수립 \cdot 측정기관 지도감독 등의 업무를 수행하며, 지방환경관서에서는 측정망 운영 및 유지관리, 토양정밀조사 사업 등을 담당}
| | \(\text{토양측정망 설치계획 변경(환경부고시 제2011-34호) 참고}\)
| 조사목적 | \(\text{전국 토양에 대한 오염실태 및 오염추세를 종합적으로 파악하여 오염토양을 정화 \cdot 복원 하는 등 토양보전대책을 수립하기 위함}\)
| 조사지점 | \(\text{전국적으로 1,521개의 고정지점}\)
| 조사방법 | \(\text{고정지점에 대해 매년 실시}\)
| 조사기간 | \(\text{매년 3-4월(농경지), 5-6월(기타 지역)}\)
| 조사방법 | \(\text{시료분석 : 3-12월}\)
| 조사항목 | \(\text{지목별로 2개 군으로 구분하여 별도의 조사항목 적용}
| | \(\text{- 전, 답 등 : 11항목(중금속 - Cd, Cu, As, Hg, Pb, Cr^6, Zn, Ni}
| | \(\text{일반 - CN, 유기인, 토양산도 \cdot pH)}\)
| | \(\text{- 공장용지 등 : 16항목(중금속 - Cd, Cu, As, Hg, Pb, Cr^6, Zn, Ni, 일반 - CBs, CN, 폐물류, 벤젠, 톨루엔, 에틸벤젠, 크실렌, TPH, 불소, TCE, PCE, 토양산도 \cdot pH)}\)
| 시료채취 | \(\text{눈, 발, 채목용지 등은 표토(0~15cm)를 채취}
| | \(\text{폐기물매립지, 지하저장시설 등 오염원이 심토에 위치하는 경우에는 토양오염 범위를 파악할 수 있는 깊이(60~100cm)에서 채취하고 동 채취 위치도 및 깊이를 토양측정망 관리대장에 기록 유지}\)
| | \(\text{복토 또는 객토 등으로 오염실태 및 오염추세를 파악하기 어려운 경우 지목 및 측정목 적이 동일한 지점으로 변경하여 토양사료를 채취하고 결과 보고 시 지점 변경사항을 보고}\)
| | \(\text{매년 동일한 지점을 시료채취 할 수 있도록 시료채취지점의 사전, 건축물 또는 시설 등으로부터의 상대위치(예 : 전복대로부터의 거리) 및 채취지점의 GPS정보 등을 토양 측정망관리대장에 상세히 기록}\)
### 2.2 토양오염실태조사 : 토양환경보전법 제5조제3항

<table>
<thead>
<tr>
<th>주요 내용</th>
</tr>
</thead>
</table>
| • 토양을 현저히 오염시킬 우려가 있는 토양오염관리대상시설에 대한 토양오염 조사  
• 토양오염실태조사지침(환경부 예규 제422호) <개정 2006.1.10> 참고 |

<table>
<thead>
<tr>
<th>조사목적</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 지자체 관할구역 내의 오염우려지역에 대한 오염실태조사</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조사지점</th>
</tr>
</thead>
</table>
| • 관할 구역 안의 토양오염이 우려되는 지점  
- 연간 2,000미터 이상 |

<table>
<thead>
<tr>
<th>조사방법</th>
</tr>
</thead>
</table>
| • 관할 구역 내 사용 중이거나 사용중료 후 사후관리 중인 폐기물매립시설에 대하여는 3년에 1회 이상 실태조사가 실시될 수 있도록 매년 대상시설을 선정  
• 관할 구역 내 토양오염우려지역에 대해 실태조사 우선순위에 따라 실시(사고발생, 민원유발지역 등 시급히 조사 필요한 경우 추가조사 가능)  
• 휴폐기물폐기물 중 중·저급폐기물이 완료된 사업장 주변 환경오염양상조사 지점에 의한 폐기물폐기물 지역을 조사 지역에 추가 |

<table>
<thead>
<tr>
<th>조사기간</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 시료채취 및 분석 : 매년 3 ~ 10월</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조사항목</th>
</tr>
</thead>
</table>
| • 토양환경보전법 제2조제2호에 및 동법시행규칙 [별표 1]의 규정에 의한 토양오염물질로서 시·도지사 또는 시장·군수·구청장이 주변 토양오염원, 토지사용이력 등을 감안할 때 토양오염의 가능성이 높은 토양오염물질 및 토양 pH  
- 중금속류의 경우 주된 중금속과 함께 부수적으로 검출될 수 있는 중금속을 추가 조사  
- 유류의 경우 유증에 따라 BTEX, TPH중 해당 항목을 조사한다. 다만, 경질유와 중질유가 혼재되어 있는 경우에는 두 종목 모두 조사  
- 유기용제류의 경우 TCE, PCE를 모두 조사 |

<table>
<thead>
<tr>
<th>시료채취</th>
</tr>
</thead>
</table>
| • 현장 특성을 고려하여 토양 오염 가능성이 높은 곳으로 추정되는 지점에 대해 실시  
• 오염 유형에 따라 표토 또는 심토까지 조사하는 것을 원칙으로 함 |

<table>
<thead>
<tr>
<th>보고</th>
</tr>
</thead>
</table>
| • 시장·군수·구청장은 보고서 작성내용 및 서식에 따라 토양오염실태조사결과 보고서를 매년 12월 31일까지 시·도지사에게 제출  
• 시·도지사는 관할 시장·군수·구청장이 보고한 토양오염실태조사 결과를 취합·평가하여 다음연도 1월 31일까지 환경부에 보고 |
### 2.3 토양오염검사 : 토양환경보전법 제13조

<table>
<thead>
<tr>
<th>주요 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>토양을 현저히 오염시킬 우려가 있는 토양오염관리대상시설에 대한 토양오염 조사</td>
</tr>
<tr>
<td>토양오염도 검사 및 누출검사로 구분하여 실시(누출검사: 누출여부를 눈으로 확인할 수 없는 시설에 한하여 실시)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조사목적</th>
</tr>
</thead>
<tbody>
<tr>
<td>토양을 현저히 오염시킬 우려가 있는 토양오염관리대상시설에 대한 토양오염 조사</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조사지점</th>
</tr>
</thead>
<tbody>
<tr>
<td>석유류 제조 및 저장시설: 제4류 위험물 중 제1·제2·제3·제4석유류에 해당하는 인화성액체 저장시설 중 20,000L 이상 규모(이동탱크저장시설 제외)</td>
</tr>
<tr>
<td>유독물 제조 및 저장시설: 토양오염물질을 저장하는 시설(유기용제류의 경우 TCE, PCE 저장시설에 국한)</td>
</tr>
<tr>
<td>송유관 시설: 송유관시설 중 송유용 배관 및 탱크</td>
</tr>
<tr>
<td>기타 시설: 기타 위 관리대상시설과 유사한 시설로서 특별히 관리할 필요가 있다고 인정되어 환경부장관이 관계중앙행정기관의 장과 협의하여 고시하는 시설</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조사방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>석유류 제조 및 저장시설: 제4류 위험물 중 제1·제2·제3·제4석유류에 해당하는 인화성액체 저장시설 중 20,000L 이상 규모(이동탱크저장시설 제외)</td>
</tr>
<tr>
<td>토양오염도 검사 및 누출검사로 구분하여 실시(누출검사: 누출여부를 눈으로 확인할 수 없는 시설에 한하여 실시)</td>
</tr>
<tr>
<td>매년 1회 환경부령이 정하는 때에 검사를 받을 것. 법 제7조의 규정에 의한 토양오염방지시설을 설치한 경우 환경부령이 정하는 기준에 따라 검사주기를 3년의 범위 내에서 조정 가능</td>
</tr>
<tr>
<td>토양오염관리대상시설의 주변지역은 토양오염관리대상시설 부지의 경계선으로부터 100미터 안의 지역으로 함</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>검사주기</th>
</tr>
</thead>
<tbody>
<tr>
<td>토양환경보전법 시행규칙 [별표 4]에서 규정한 바에 따른</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조사항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>토양환경보전법 시행규칙 [별표 5] 및 비고에서 규정한 바에 따른</td>
</tr>
</tbody>
</table>
## 정밀조사 : 토양환경보전법 시행규칙 제1조의4

### 주요 내용
- 토양정밀조사는 기초조사, 개황조사, 정밀조사의 순서에 따라 3단계로 실시
- 환경부고시 제2010-104호 정밀조사 지침 참고

### 조사목적
- 토양오염우려기준을 넘거나 넘을 가능성이 크다고 판단되는 지역에 대하여 오염물질의 종류, 오염의 정도 및 범위 등을 정밀조사

### 조사항목
- 토양오염물질 누출 및 유출 신고가 있거나 이를 발견하여 오염원인·오염도를 조사한 결과 오염도가 제4조의2의 규정에 의한 우려기준을 넘는 경우 토양정밀조사의 실시
- 특정토양오염관리대상시설의 설치자가 토양오염방지시설을 설치하지 아니하거나 그 기준에 적합하지 아니한 경우나, 토양오염조사 결과 우려기준을 넘는 경우
- 토양오염실태조사의 결과 우려기준을 넘는 지역의 경우
- 오염원인자에게 토양정밀조사를 실시할 것을 명하는 때에는 토양오염지역의 범위 등을 감안하여 6월의 범위안에서 그 이행기간을 정함. 다만, 특별자치도지사·시장·군수·구청장은 조사지역의 규모 등으로 인하여 부득이하게 이행기간 내에 조사를 이행하지 못한 자에 대하여는 6개월의 범위에서 1회로 한정하여 그 이행기간을 연장할 수 있음

### 조사절차
- 기초조사, 개황조사, 정밀조사의 순서에 따라 3단계로 실시,
  - 다만, 토양오염수질검사 결과 우려기준을 초과한 특정토양오염관리대상시설과 토양오염물질 운반차량 전복, 지상저장시설의 파손에 따른 오염물질의 유출 등 오염사고 발생지역에 대하여는 개황조사를 생략하고 바로 정밀조사를 실시

### 조사항목
- 토양측정망 운영 및 토양오염실태 조사결과, '토양환경보전법' 제4조의2에 따른 토양오염우려기준(이하 "우려기준"이라 한다)을 초과하는 토양오염물질 및 토양 pH
- 토양측정망 및 토양오염실태조사 지점 외의 지역으로서 토양오염우려기준을 초과할 가능성이 있다고 판단되는 항목 및 토양 pH

### 보 고
- 시장·군수·구청장으로부터 정밀조사 명령을 받은 지역에 대하여 정밀조사를 실시한 토양오염조사기관은 완료한 후 7일 이내에 그 결과보고서를 토양오염원인자와 관할 시장·군수·구청장에 통보
- 토양정밀조사를 실시한 경우 조사 완료 후 20일 이내에 그 결과를 '붙임' 서식에 의하여 환경부장관에게 보고
2.5 정화공사 : 토양환경보전법 제15조3

<table>
<thead>
<tr>
<th>주요 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 토양오염방지 조치명령을 받은 자는 오염토양을 토양정화업자에게 위탁하여 정화</td>
</tr>
<tr>
<td>• 정화공사 착공 7일 전까지 또는 정화계획 변경 사유가 발생한 날부터 7일 이내 에 관할 특별자치도지사·시장·군수·구청장에게 오염토양정화(변경)계획서를 제출</td>
</tr>
</tbody>
</table>

2.5.1 토양오염방지 조치명령 : 토양환경보전법 제15조3항

<table>
<thead>
<tr>
<th>주요 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 상시측정, 토양오염실태조사 또는 토양정밀조사의 결과 우려기준을 넘는 경우 2년 범위 안에서 오염원인자에게 토양오염방지를 위한 조치명령</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조치권자</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 시·도지사 또는 시장·군수·구청장</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조치내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 토양오염관리대상시설의 개선 또는 이전</td>
</tr>
<tr>
<td>• 지하수 오염전방향의 평가</td>
</tr>
<tr>
<td>• 해당 토양오염물질의 사용제한 또는 사용중지</td>
</tr>
<tr>
<td>• 오염토양의 정화</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>조치명령 절차</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 시·도지사 또는 시장·군수·구청장은 법 제15조제3항의 규정에 의하여 오염원인자에게 토양오염방지를 위한 조치명령을 할 때에는 토양오염물질 및 시설의 종류·규모 등을 감안하여 2년의 범위 안에서 그 이행기간을 정함</td>
</tr>
<tr>
<td>• 조치명령을 받은 자는 공사의 규모·공법 등으로 인하여 부득이하게 이행기간 내에 조치 명령을 완료할 수 없는 경우에는 매회 1년의 범위에서 2회까지 그 이행기간을 연장 할 수 있음.</td>
</tr>
<tr>
<td>• 시·도지사 또는 시장·군수·구청장은 이행보고서를 받은 때에는 관계공무원으로 하여금 서류 및 현장조사를 통하여 지체없이 그 명령의 이행상태를 확인</td>
</tr>
</tbody>
</table>

2.5.2 오염토양정화계획서 제출 : 토양환경보전법 시행규칙 제19조6항
주요 내용

- 토양정화계획서상 토양오염물질에 적용가능한 공법과 정화목표,정화기간의 적합성 판단
- 시공할 토양정화업자가 토양정화업 면허가 등록되어있는지 파악
- 정화검증업체가 토양관련전문기관으로 등록되어있는지 파악

오염토양정화계획 또는 오염토양정화변경계획을 제출하려는 자는 별지 제9호의3서식의 오염토양정화(변경)계획서에 다음 각 호의 서류를 첨부하여 정화공사 착공 7일 전까지 또는 정화계획 변경 사유가 발생한 날부터 7일 이내에 관할 특별자치도지사·시장·군수·구청장에게 제출

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
</table>
| 오염토양정화계획 (시행규칙 제19조의 3) | • 오염토양의 양 및 오염범위(도면을 포함한다)  
• 토양오염물질 및 오염정도  
• 정화방법 및 정화일정  
• 시공할 토양정화업자  
• 검증할 토양관련전문기관  
• 그 밖에 오염토양의 정화에 필요한 사항 |
| 첨부서류 | • 오염토양정화공사계획서  
• 정화시설 설치·운영계획서(오염토양을 반출하여 정화하는 경우에는 제외)  
• 정화사업계약서 사본  
• 정화검증계약서 사본 |

- 오염토양정화계획서 상에 표기된 정화공법이 오염부지에 맞도록 기술적 타당성, 공법의 효율성 평가를 통하여 정화기간, 소요비용 등을 비교·평가하여 최적의 정화공법을 선정하였는지 판단
- 국내의 경우 ‘특정토양오염관리대상 시설의 방지시설 등에 관한 고시’에서 처리방법별로 18개 기술로 구분. 오염원인자가 오염토양정화계획서에 계획서에 제출한 정화방법이 국내 오염토양 정화기술의 종류[표 3-1]에 해당되는 기술인지를 확인한 후 공법의 적정성을 판단
<표 1-1> 처리위치에 따른 정화공법

<table>
<thead>
<tr>
<th>지중처리법 (In-Situ)</th>
<th>지상처리법 (Ex-Situ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>생물학적 분해법 (Biodegradation)</td>
<td>토양경작법 (Land Farming)</td>
</tr>
<tr>
<td>생물학적 통풍법 (Bioventing)</td>
<td>열탈착법 (Thermal Desorption)</td>
</tr>
<tr>
<td>자연분해법 (Natural Attenuation)</td>
<td>바이오파일 (Biopile)</td>
</tr>
<tr>
<td>화학적 산화법 (Chemical Oxidation)</td>
<td>소각법 (Incineration)</td>
</tr>
<tr>
<td>토양증기추출법 (SVE)</td>
<td>유리화법 (Vitrification)</td>
</tr>
<tr>
<td>토양세정법 (Soil Flushing)</td>
<td>열분해법 (Pyrolysis)</td>
</tr>
<tr>
<td>식물재배법 (Phytoremediation)</td>
<td>토양세척법 (Soil Washing)</td>
</tr>
<tr>
<td>동전기법 (Electrokinetic Separation)</td>
<td>고형화/안정화법 (Solidification/Stabilization)</td>
</tr>
</tbody>
</table>

■ 국내 오염토양 정화기술의 종류 [환경부 고시 제2005-124호 별표 2]
<table>
<thead>
<tr>
<th>기술명</th>
<th>공정개요</th>
</tr>
</thead>
<tbody>
<tr>
<td>생물학적 분해법</td>
<td>생명물과 수분(필수요소)를 이용한 오염토양내로 순환시킴으로써 생명물의 활성을 자극하여 유기물 분해기를 증가시키는 방법</td>
</tr>
<tr>
<td>생물학적동풍법</td>
<td>노력된 토양에 대하여 강제적으로 공기를 주입하여 산소농도를 증가시킴으로써, 생명물의 생활을 증가시키는 방법</td>
</tr>
<tr>
<td>토양중기추출법</td>
<td>오염토양을 공장에 접속하여 토양추출(kiling gent)로 나무껍질, 동물, 플라스틱 등으로의 화학적 산화 또는 혐기성 화학반응을 통해 배출물질을 분해시킴</td>
</tr>
<tr>
<td>바이오파일법</td>
<td>오염토양을 공장에 접속하여 양조물, 수분 등을 혼합한 후 배출한 토양을 만들고, 각 기기를 활용하여 오염물질에 대한 생명물의 생활을 증가시키는 방법</td>
</tr>
<tr>
<td>식물재배 정화법</td>
<td>식물의 성장에 따라, 토양내의 오염물질을 분해·흡착·침전 등으로 동력으로 오염토양을 정화하는 방법</td>
</tr>
<tr>
<td>퇴비화법</td>
<td>오염토양을 조직하여 배출(kiling gent)로 나무껍질, 동물, 플라스틱 등으로의 화학적 산화 또는 혐기성 화학반응을 통해 배출물질을 분해시킴</td>
</tr>
<tr>
<td>자연저감법</td>
<td>토양 또는 토양층에서 자연적으로 일어나는 희석, 휘발, 생분해, 흡착 그리고 지중물질과의 화학반응 등으로 오염물질 농도를 감소시키는 방법</td>
</tr>
<tr>
<td>물리화학적 처리방법</td>
<td>물리화학적 처리방법</td>
</tr>
</tbody>
</table>
오염토양정화(변경)계획서에 변경내용과 관련된 서류를 첨부하여 관할 특별자치도지사·시장·군수·구청장에게 제출

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
</table>
| 오염토양정화 변경승인 | • 오염토양의 양 또는 오염범위(20퍼센트 이상 증감하는 경우만 해당)  
• 오염토양물질의 오염정도(20퍼센트 이상 증감하는 경우만 해당) 또는 토양오염물질 종류  
• 정화방법, 정화소요기간, 토양정화업자 또는 검증할 토양관련전문기관  
• 정화시설 설치·운영계획의 변경 |
| 첨부서류 | • 오염토양정화공사계획서  
• 정화시설 설치·운영계획서(오염토양을 반출하여 정화하는 경우에는 제외)  
• 정화사업계약서 사본  
• 정화검증계약서 사본 |

2.5.4 오염토양반출정화계획서 제출 : 토양환경보전법 시행규칙 제19조2항

<table>
<thead>
<tr>
<th>주요 내용</th>
</tr>
</thead>
</table>
| • 오염토양반출정화계획서상 반출사유, 오염토양현황, 운반계획, 정화계획적합성 판단  
• 시공할 토양정화업자가 토양정화업 면허가 등록되어있는지 파악  
• 운반방법 파악(자가 및 위탁운반여부)  
• 정화검증업체가 토양관련전문기관으로 등록되어있는지 파악 |

- 오염토양을 반출하여 정화하고자 하는 자는 별지 제9호의2서식의 오염토양반출정화(변경)계획서에 다음 서류를 첨부하여 관할 특별자치도지사·시장·군수·구청장에게 미리 제출  
• 특별자치도지사·시장·군수·구청장은 오염토양반출정화(변경)계획서를 검토하여 반출정화계획이 적정한 경우에는 10일 이내에 적정통보를 하여야 하며 반출정화대상에 해당하지 아니하는 등 반출정화계획의 내용이 적정하지 아니한 경우에는 10일 이내에 오염토양반출정화(변경)계획서를 반려하거나 보완을 요구
### 구분 | 내용
--- | ---
반출정화대상 (시행규칙 제 19조 및 오염토양 반출정화대상고시) | • 「국토의 계획 및 이용에 관한 법률」에 의한 도시지역안의 건설공사 현장 등 환경부장관이 정하여 고시하는 경우
• 토양오염물질 운송차량의 전복 등 긴급한 사고로 인한 오염토양으로서 즉시 처리하여야 하는 경우
• 오염토양의 양이 5세제곱미터 미만으로서 현장에서 정화하는 때에는 정화효율이 현저하게 저하되는 경우
• 오염토양의 정화 조치명령을 받은 자가 오염토양 정화공사를 시행하였으나 오염물질의 종류, 오염정도 및 기술적 한계 등으로 최초 조치명령기간 내에 이를 완료하지 못한 경우로서 토양오염조사기관의 정화과정 검증결과 반출하여 정화할 필요가 있다고 인정한 경우
• 토양오염이 발생한 부지가 같은 시·군·구내에 흩어져 있는 경우로서 오염부지의 소유자 또는 오염원인자가 같고 각각의 오염부지에 토양정화시설을 모두 설치하기 곤란하여 토양정화업자가 오염부지 중 어느 곳에 설치한 시설을 이용하여 한꺼번에 정화하는 경우(정화 대상 오염토양 전부를 하나의 토양정화업자에게 위탁한 경우만 해당)
• 비소, 폴리클로리네이티드비폐닐, 유기인화합물의 토양오염으로 열적처리방법으로 처리하여야 하는 오염토양
• 정화부지가 100제곱미터 이내로 협소하여 부지안에서 정화가 곤란한 오염토양

| 첨부서류 | • 운반위탁계약서 사본(운반을 위탁하는 경우만 해당)
• 정화검증계약서 사본 |

### 오염토양반출정화 변경계획서제출

| 구분 | 내용
--- | ---
오염토양반출정화 변경승인 | • 반출 오염토양의 양 또는 오염범위(20퍼센트 이상 증감하는 경우만 해당)
• 반출 오염토양의 오염정도(20퍼센트 이상 증감하는 경우만 해당한다) 또는 토양오염물질 종류
• 정화방법, 정화소요기간, 토양정화업자 또는 검증할 토양관리전문기관
• 정화시설 설치·운영계획의 변경

| 적정통보 | • 특별자치도지사·시장·군수·구청장은 반출정화계획의 내용을 반입지를 관할하는 유역환경청장 또는 지방환경청장과 특별자치도지사·시장·군수·구청장에게 통보 |
벌칙

<table>
<thead>
<tr>
<th>위반 사항</th>
<th>해당 법조문</th>
<th>과태료 금액</th>
</tr>
</thead>
<tbody>
<tr>
<td>법 제15조의 6에 따른 오염토양정화계획 또는 오염토양정화변경계획을 제출하지 아니한 자</td>
<td>법 제32조제1항제6호</td>
<td>100 150 200</td>
</tr>
<tr>
<td>가) 오염토양정화계획을 제출하지 아니한 자</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가) 오염토양정화계획을 제출하지 아니한 자</td>
<td></td>
<td>50 70 100</td>
</tr>
</tbody>
</table>

2.6 토양정화검증 : 토양환경보전법 제15조의 6

주요 내용

- 정화공사 진행시 오염토양정화계획을 상실히 이행하였는지에 대한 확인으로 과정검증 및 완료검증을 실시함
- 토양시험을 체취･분석하여 정화기준과 비교하고 정화가 완료되었는지를 검증
- 정화목표까지 정화되었을 경우 검증기관은 오염원인자에게 토양정화 검증서를 발급하며, 정화되지 않았을 경우 재검증을 수행
- 환경부고시 제2012-119호 토양정화검증방법에 관한 고시 참고

- 오염원인자는 오염토양을 정화하기 위하여 토양정화업자에게 토양정화를 위탁하는 경우에는 제23조의 2제1항제1호에 따른 토양오염조사기관으로 하여금 정화과정 및 정화완료에 대한 검증을 하게 하여야 한다.
- 다만, 토양정밀조사를 한 결과 오염토양의 규모가 작거나 오염의 농도가 낮은 경우 등 오염토양이 대통령령으로 정하는 규모 및 종류에 해당하는 경우에는 정화과정에 대한 검증을 생략할 수 있음
<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
</table>
| 정화검증계획서 | • 자료검토  
  - 오염도 조사보고서(토양오염도조사, 토양정밀조사, 토양환경평가 등)  
  - 오염토양정화계획서  
  - 그 밖의 관련자료  
• 자료검토 내용을 확인하기 위한 현장조사  
• 토양정화검증계획서 작성 및 통보(검증기관→오염원인자) |
| 과정검증      | • 오염토양이 1,000㎥ 이하일 경우 과정검증은 생략  
• 완료검증 시료수의 20%이상을 과정검증의 시료수로 산정하고 정화방법의 특성 및 기간을 고려하여 검증  
• 오염토양정화계획의 이행여부를 확인  
• 주기적인 토양시료 채취·분석을 통해 오염농도의 저감을 확인 |
| 완료검증      | • 토양정화공사 완료시점에서 실시  
• 정화목표까지 정화되었을 경우 검증기관은 오염원인자에게 토양정화 검증서를 발급하며, 정화되지 않았을 경우 재검증을 수행  
• 시료채취지점수의 산정은 토양환경평가지침의 기준을 준용함. 시료는 채취지점의 깊이 1m 간격으로 1개씩 채취하여 오염이 확산되지 않은 깊이까지 채취하며 굴착처리하는 경우 굴착 전의 오염분포에 따라서 지점 및 시료수를 산정  
• 최종 시료채취·분석을 통해 오염농도가 정화목표까지 달성되었는지의 여부확인  
• 토양정화검증 결과보고서 작성  
• 토양정화검증서 작성 |
정화완료 : 토양환경보전법 시행규칙 제18조

주요 내용

- 오염원인자는 완료검증 후 적합판정을 받으면 이행보고서에 토양정화검증보고 서를 첨부하여 제출
- 시·도지사 또는 시장·군수·구청장은 이행보고를 받은 때에는 관계공무원으로 하여금 서류 및 현장조사를 통하여 지체없이 이행상태를 확인함

- 오염토양정화계획 또는 오염토양정화변경계획을 제출하려는 자는 별지 제9호의3서식의 오염토양정
  화(변경)계획서에 다음 각 호의 서류를 첨부하여 정화공사 착공 7일 전까지 또는 정화계획 변경 사
  유가 발생한 날부터 7일 이내에 관할 특별자치도지사·시장·군수·구청장에게 제출

<table>
<thead>
<tr>
<th>구분</th>
<th>첨부 서류 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>조치명령등에 따른 이행보고</td>
<td></td>
</tr>
<tr>
<td>시설개선·오염토양정화 등 개선명세서 또는 토양정화검증보고서</td>
<td></td>
</tr>
<tr>
<td>각 개선지점별 토양오염도검사결과. 다만, 부지 밖에서 처리하는 경우에는 각 개선지점별 토양오염도검사 실시 후 이전된 토양처리내용 증명자료(이전장소, 이전물량 및 처리내용(처리자, 영수증, 사진 등))를 제출</td>
<td></td>
</tr>
<tr>
<td>토양정화검증서(토양정화검증대상사업인 경우만 해당)</td>
<td></td>
</tr>
</tbody>
</table>
제3장 토양정화 제출서류 내용 검토요령

3.1 정밀조사보고서 검토요령

주요 내용

- 토양오염조사기관이 환경부고시 제2010-104호 토양정밀조사 지침의 붙임[1]의 토양정밀조사 결과보고에 따라 정밀조사보고서를 제출할 시 아래 Check List의 항목에 따라 주요내용이 포함되어있는지 확인

3.1.1 정밀조사보고서 Check List

<table>
<thead>
<tr>
<th>항목</th>
<th>검토사항</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 조사목적</td>
<td>• 조사의 배경과 목적</td>
<td></td>
</tr>
<tr>
<td>2. 조사내용</td>
<td>• 조사대상 지역, 조사기간, 시료채취현황(개황조사와 정밀조사 기간 구분), 조사항목</td>
<td></td>
</tr>
<tr>
<td>3. 토양정밀조사 결과 및 종합의견</td>
<td>• 주변지역의 실태(거주인구, 가구 수, 농경지 현황 등)을 요약기술&lt;br&gt;• 오염원으로 나타난 시설의 규모(종류, 발생량, 적치량, 용량 등)와 위치를 지도(A4)에 표시&lt;br&gt;• 오염원의 종류, 규모, 오염물질의 종류, 오염정도, 오염기간, 오염범위 및 주변 토지이용실태 등에 따른 종합적인 토양오염상태 및 조사자 의견제시&lt;br&gt;• 오염토양 정화대상량 산정, 제시(오염물질 종류별 대상량을 제시)</td>
<td></td>
</tr>
<tr>
<td>4. 대책 방안</td>
<td>• 토양 등의 오염범위, 오염정도를 감안하여 대상지역의 토양오염 방지를 위한 사업추진 필요성과 구체적인 방법 제시&lt;br&gt;• 특정토양오염관리대상시설 등 오염을 유발할 가능성이 있는 시설이 있을 경우 적정관리방안 제시&lt;br&gt;• 조사지역의 지형, 지질 등 입지상태와 오염물질의 종류 및 오염도를 고려하여 기술적으로 적용 가능한 오염토양 정화방법 등을 비교 제시</td>
<td></td>
</tr>
<tr>
<td>5. 향후 대책계획</td>
<td>• 오염토양 정화과정과 정화이후 오염확산 방지를 위한 방안 제시</td>
<td></td>
</tr>
</tbody>
</table>
## 3.2 오염토양정화계획서 검토요령

### 주요 내용
- 토양환경보전법 시행규칙 별지 제9호의3서식의 오염토양정화(변경)계획서 제출할 시 아래 Check List의 항목에 따라 주요내용이 포함되어있는지 확인

### 3.2.1 오염토양정화계획서 Check List

<table>
<thead>
<tr>
<th>항목</th>
<th>검토사항</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 제출인</td>
<td>• 오염원인자 성명, 상호, 주소</td>
<td></td>
</tr>
<tr>
<td>2. 오염토양현황</td>
<td>• 오염물질 및 농도(오염물질의 종류, 최고・최저 농도), 오염토양의 양(m³), 오염현장 소재지, 오염사유</td>
<td></td>
</tr>
<tr>
<td>3. 정화계획</td>
<td>• 정화방법&lt;br&gt;• 정화업자&lt;br&gt;• 정화소요기간&lt;br&gt;• 정화감시기관(토양관련전문기관)&lt;br&gt;• 정화토양 처리계획(오염토양을 굴토하여 처리할 경우)</td>
<td></td>
</tr>
<tr>
<td>4. 첨부서류</td>
<td>• 오염토양정화공사계획서 1부&lt;br&gt;• 정화시설 설치・운영계획서(반출정화는 제외)&lt;br&gt;• 정화사업계약서 사본 1부&lt;br&gt;• 정화감시계약서 사본 1부</td>
<td></td>
</tr>
</tbody>
</table>

## 3.3 오염토양(반출)정화계획서 검토요령

### 주요 내용
- 토양환경보전법 시행규칙 별지 제9호의2서식의 오염토양반출정화(변경)계획서 제출할 시 아래 Check List의 항목에 따라 주요내용이 포함되어있는지 확인
### 3.3.1 오염토양반출정화계획서 Check List

<table>
<thead>
<tr>
<th>항목</th>
<th>검토사항</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 제출인</td>
<td>• 오염원인자 성명, 상호, 주소</td>
<td></td>
</tr>
<tr>
<td>2. 반출정화사유</td>
<td>• 토양환경보전법 시행령 19조 반출정화대상에 해당하는 사유 및 그밖에의 사유</td>
<td></td>
</tr>
<tr>
<td>3. 오염토양현황</td>
<td>• 오염물질 및 농도(오염물질의 종류, 최고·최저 농도), 오염토양의 양 (m^3), 오염현장 소재지, 오염사유</td>
<td></td>
</tr>
<tr>
<td>4. 운반계획</td>
<td>• 운반방법(자가 또는 위탁운반 여부/ 위탁운반의 경우 운전자 별기)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 운반차량(번호)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 운반장소(거리, km)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 운반경로(소요시간, 운송시 통과하는 주요지점(도로) 등) “→”로 연결하여 기재</td>
<td></td>
</tr>
<tr>
<td>4. 정화계획</td>
<td>• 정화방법</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 정화업자</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 정화소요기간</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 정화검증기관(토양관련전문기관)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 정화후 처리계획</td>
<td></td>
</tr>
<tr>
<td>6. 첨부서류</td>
<td>• 운반위탁계약서 사본(반출정화시 운반을 위탁하는 경우만 해당)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 정화검증계약서 사본 1부</td>
<td></td>
</tr>
</tbody>
</table>

### 3.4 정화검증계획서 검토요령

<table>
<thead>
<tr>
<th>주요 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 토양오염조사기관이 환경부고시 제2012 - 119호 토양정화검증에 관한 고시 [별지 제 2호서식]에 따라 정화검증계획서를 제출할 시 아래 Check List의 항목에 따라 주요내용이 포함되어있는지 확인</td>
</tr>
</tbody>
</table>
### 3.4.1 정화검증계획서 Check List

<table>
<thead>
<tr>
<th>항목</th>
<th>검토사항</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 신청인</td>
<td>• 오염원인자 성명, 상호, 주소&lt;br&gt;• 정화업자 성명, 상호, 주소</td>
<td></td>
</tr>
<tr>
<td>2. 정화계획내용</td>
<td>• 정화대상지역&lt;br&gt;• 정화장소&lt;br&gt;• 정화공법&lt;br&gt;• 오염물질농도&lt;br&gt;• 정화목표&lt;br&gt;• 정확기간&lt;br&gt;• 정화방법&lt;br&gt;• 정화범위&lt;br&gt;• 검증시험기관</td>
<td></td>
</tr>
<tr>
<td>3. 검증계획</td>
<td>• 검증자(성명, 직책, 자격사항)&lt;br&gt;• 검증기간</td>
<td></td>
</tr>
<tr>
<td>4. 첨부서류</td>
<td>• 정화검증업무 수행계획서 1부</td>
<td></td>
</tr>
</tbody>
</table>

### 3.5 정화검증완료보고서 검토요령

#### 3.5.1 정화검증완료보고서 Check List

<table>
<thead>
<tr>
<th>항목</th>
<th>검토사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 서론</td>
<td>• 정화검증 목적, 정화검증 대상 및 범위</td>
</tr>
<tr>
<td>2. 정화공사의 일반현황</td>
<td>• 정화공사의 일반현황&lt;br&gt;•토양정화사업의 내용(정화목표 설정, 정화공법 선정 및 평가, 오염토양 및 오염지하수 정화계획)</td>
</tr>
<tr>
<td>3. 정화검증 계획</td>
<td>• 기초자료 검토내용&lt;br&gt;• 현장조사 내용&lt;br&gt;• 정화검증 절차&lt;br&gt;• 정화검증 방법 및 내용&lt;br&gt; (정화공정별 정화검증 내용, 정화검증 세부수행 방법)</td>
</tr>
<tr>
<td>4. 검증의 내용 및 결과</td>
<td>• 과정검증을 통한 오염저감도 평가&lt;br&gt;• 완료검증을 통한 정화목표달성도 평가&lt;br&gt;• 재검증을 통한 정화목표달성도 평가</td>
</tr>
<tr>
<td>5. 부록</td>
<td>• 토양시험 분석자료&lt;br&gt;• 현장사진</td>
</tr>
</tbody>
</table>
제4장 토양정화관련 인허가 사항

4.1 인허가 수립 전 검토사항

<table>
<thead>
<tr>
<th>인허가 수립 전 검토사항</th>
<th>관련법규</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 부지 용도별 분류(1, 2, 3'지역)</td>
<td>• 토양환경보전법상 지목</td>
</tr>
<tr>
<td>• 해당 지자체 고시/조례 검색</td>
<td>• 개발제한구역의 지정 및 관리에 관한 특별조치법</td>
</tr>
<tr>
<td>• 타 법(건축법 등) 저촉 여부</td>
<td>• 건축법, 도시계획법</td>
</tr>
<tr>
<td>• 정화시설 설치 인허가 문의</td>
<td>• 국토의 계획 및 이용에 관한 법률</td>
</tr>
<tr>
<td>• 개발제한구역 여부</td>
<td>• 도시계획 특별법</td>
</tr>
<tr>
<td>• 그린벨트 지역 여부</td>
<td></td>
</tr>
<tr>
<td>• 향후 지목변경 등 개발계획</td>
<td></td>
</tr>
</tbody>
</table>

4.2 정화사업 인허가 항목

4.2.1 배출시설 관련 인허가

<table>
<thead>
<tr>
<th>항목</th>
<th>주무관청/지방 대</th>
<th>소요시간</th>
<th>서류</th>
<th>관련 법</th>
</tr>
</thead>
<tbody>
<tr>
<td>소음진동배출시설 및방지시설 설치</td>
<td>시·도지사</td>
<td>설치 전</td>
<td>설치신고서 또는 허가서</td>
<td>소음·진동규제법 제9조,제10조</td>
</tr>
<tr>
<td></td>
<td>시·도지사</td>
<td>가동개시 전</td>
<td>가동개시 신고서</td>
<td>소음·진동규제법 제13조</td>
</tr>
<tr>
<td>대기오염물질배출시설 및방지시설 설치</td>
<td>설치서</td>
<td>설치 전</td>
<td>설치신고서 또는 설치허가신청서</td>
<td>대기환경보전법제10조,제11조</td>
</tr>
<tr>
<td></td>
<td>환경부장관</td>
<td>가동개시 전</td>
<td>배출시설 및 방지시설의 가동개시신고서</td>
<td>대기환경보전법제14조</td>
</tr>
<tr>
<td>폐수배출시설 설치</td>
<td>시·도지사</td>
<td>설치 전</td>
<td>폐수배출시설 설치허가신청서</td>
<td>수질 및 수생태계 보전에 관한 법률 제33조</td>
</tr>
<tr>
<td></td>
<td>지방환경청장</td>
<td>가동개시전</td>
<td>배출시설 및 방지시설의 가동개시신고서</td>
<td>-</td>
</tr>
</tbody>
</table>
### 4.2.2 현장 환경관련 인허가

<table>
<thead>
<tr>
<th>항목</th>
<th>주무관청</th>
<th>소요시간</th>
<th>서류</th>
<th>관련 법</th>
</tr>
</thead>
<tbody>
<tr>
<td>생활소음·진동 발생공사 신고</td>
<td>시·도지사</td>
<td>공사개시 3일전 까지</td>
<td>특정공사 사전 신고서</td>
<td>소음·진동규제법 제25조</td>
</tr>
<tr>
<td>비산먼지 발생신고</td>
<td>시·도지사</td>
<td>3일전</td>
<td>비산먼지발생 사업신고서</td>
<td>대기환경 보전법 제28조 1</td>
</tr>
<tr>
<td>폐기물 처리</td>
<td>관할 구청장</td>
<td>배출 전</td>
<td>사업장폐기물 배출자 신고서</td>
<td>폐기물 관리법 제17조 1</td>
</tr>
<tr>
<td></td>
<td>시·도지사</td>
<td>폐기물 처리 전</td>
<td>폐기물 처리계획서, 폐기물 분석결과서, 위탁처리자 확인서</td>
<td>폐기물관리법 제25조 2</td>
</tr>
</tbody>
</table>

### 4.2.3 정화관련 인허가

<table>
<thead>
<tr>
<th>항목</th>
<th>주무관청</th>
<th>소요시간</th>
<th>서류</th>
<th>관련 법</th>
</tr>
</thead>
<tbody>
<tr>
<td>오염토양정화계획</td>
<td>관할 구청장</td>
<td>착공 7일전</td>
<td>오염토양정화계획서</td>
<td>• 도양환경보전법 제15조</td>
</tr>
<tr>
<td>기간 연장 신청서</td>
<td>관할 구청장</td>
<td>30일 이내</td>
<td>오염토양정화변경계획서</td>
<td>• 도양환경보전법 시행령 5조</td>
</tr>
<tr>
<td>명령 이행완료 보고</td>
<td>관할 구청장</td>
<td>완료 후</td>
<td>이행보고서</td>
<td>• 도양환경보전법 시행규칙 19조</td>
</tr>
</tbody>
</table>
부록

제 1장 질의·회신 사례
제 2장 오염토양 주요정화공법 개요
제 1장 질의・회신 사례

1.1 오염유종의 발생시점 등을 알 수 없는 경우 오염원인자

질의내용

토양오염을 발생시킨 자가 오염원인자가 되는 것으로 알고 있는데 오염유종의 발생시점 등을 알 수 없어 오염원인자를 규명하기 어려운 경우에는 오염원인자가 누가 되는지 여부

답변

토양환경보전법 제 10조의 4에 따라 오염토양의 정화조치에 대한 책임이 있는 오염원인자를 ① 토양오염을 유발시킨 자, ② 토양오염발생 당시 토양오염의 원인이 된 토양오염관리대상시설을 소유・점유 또는 운영하는 자, ③ 토양오염관리대상시설을 양수한 자 및 합병・상속 등의 방법으로 ①과 ②에 해당하는 자의 권리・의무를 포괄적으로 승계한자, ④ 경매, 환가 등의 방법으로 토양오염관리대상시설을 인수한자로 규정하고 있음

오염토양의 정화 등의 명령은 관할 시장・군수・구청장이 위의 오염원인자에 대하여 처분할 수 있음

오염유종의 발생시점 등을 알 수 없을 경우 오염원인자는 전 운영자 및 현 운영자 모두 해당되며, 관할 관청에서 오염원인자의 재정 능력 및 조기정화 효율성, 정화 후 수익자 등을 감안하여 오염원인자 중 조치명령 대상자를 판단하여야 함

관련법령

토양환경보전법 제 10조의 4

1.2 지면과 밀어진 저장시설의 토양오염도검사 면제 여부

질의내용

회사 옥외 탱크 저장소는 특정토양오염 관리대상시설이나, 탱크 저장소는 철근콘크리트조로 된 지주가 있어서 토양과 접촉하고 있지 않음. 옥외탱크 저장소가 바닥 지면과 밀어져 있는 상태일 경우에도 토양오염도 검사를 실시해야 하는지 여부
답변

- 특정토양오염 관리대상시설 관리지침 (환경부 예규 제421호) 제7조에 “관리대상시설이 콘크리트나 철제 구조물 위 등 바닥면으로부터 멀어져 설치되어 상시육안으로 오염물질의 누출여부를 확인할 수 있는 경우”에는 시장·군수·구청장의 승인을 받아 토양오염검사를 면제받을 수 있도록 규정하고 있음.

관련법령

- 환경부 예규 제421호 (특정토양오염 관리대상시설 관리지침)

1.3 토양오염도검사 면제된 저장시설 폐쇄 시 토양오염도검사 실시

질의내용

- 토양오염도검사 면제된 저장시설 (소용량탱크)의 폐쇄 또는 이설 시에도 토양환경보전법 시행령 제8조 제2항 제1호에 따라 토양오염도검사를 받아야 하는지 여부

답변

- 토양환경보전법 시행령 제8조 제2항 제1호에 따라 특정토양오염관리 대상시설 설치자가 시설의 사용을 폐쇄할 경우 폐쇄일 3개월 전부터 폐쇄일 전일까지의 기간 동안에 수시 토양오염도 검사를 받도록 규정하고 있음.

- 토양오염도검사 면제가 기완료된 시설을 폐쇄 또는 이설할 경우 토양오염도 검사를 받아야함.

관련법령

- 토양환경보전법 시행령 제8조 제2항 제1호

1.4 알코올류 저장탱크의 토양오염검사 대상 여부

질의내용

- 알코올류를 저장하고 있는 유화탱크를 소유하고 있는데, 알코올류 저장소의 경우에도 토양환경보전법에서 규정하고 있는 토양오염검사를 받아야하는지 여부
답변

- 토양환경 보전법 시행규칙 [별표 2]에 따라 위험물 안전관리법 시행령 [별표 1]의 제4류 위험물 중 제1·제2·제3·제4석유류에 해당하는 인화성 액체의 제조·저장 및 취급을 목적으로 설치한 저장시설로서 총 용량이 2만리터 이상인 시설은 특정토양오염관리대상시설에 해당함
- 알콜류는 위험물 안전관리법 시행령 [별표 1]의 제4류 위험물 중 제1·제2·제3·제4석유류에 해당되지 않으므로 토양오염검사를 받지 않아도 됨

관련법령

토양환경 보전법 시행규칙 [별표 2]

1.5 주유소 탱크 교체 시 토양오염도검사 면제 여부

질의내용

- 주유소를 운영 중 주유소 탱크 5개(휘발유, 등유, 경유취급) 중 탱크 1개만 경유에서 휘발유로 변경하고자 하는데 이런 경우 토양오염도검사를 다시 실시해야 하는지 여부

답변

- 토양환경 보전법 시행령 제8조 제2항 제3호에 따라 특정토양오염관리대상시설에 저장하는 토양오염물질의 종류를 변경할 경우에는 변경일 3개월 전부터 변경일 전일까지의 기간 동안 토양오염도검사를 받도록 규정하고 있음
- 그러나 주유소의 경우 토양오염도 검사 시 TPH와 BTX 항목에 대하여 모두 검사를 실시하므로 변환시 휘발유로 품목을 변경하더라도 토양오염도검사(수시검사)를 실시하지 않아도 될 것임(단, 시료채취 지점, 항목 등이 변경 전·후가 동일하여야 함)

관련법령

- 토양환경 보전법 시행령 제8조 제2항 제3호 및 시행령 제8조의2 제1항 제5호

1.6 토양오염정밀조사 실시 항목

질의내용

- 토양환경영향평가에서 TPH항목이 검출되어 관할 지자체로부터 정밀조사명령을
받았을 경우 TPH항목만 실시해야 하는지, 아니면 토양오염물질 전 항목을 실시해야하는지 여부

답변

• 토양정밀조사는 “토양정밀조사의 세부방법에 관한 규정”에서 정하는 바에 따라 토양오염우려기준을 초과하거나 초과할 우려가 있는 토양오염물질에 대하여 토양정밀조사를 실시하여야 함

• 토양환경평가 결과에 따라 토양정밀조사를 실시하는 경우라면 “토양환경평가” 시 조사한 토양오염물질 중 토양오염우려기준을 초과한 우려가 있는 항목(예: 중금속과 불소는 우려기준의 70%, 그 밖의 오염물질은 우려기준의 40%를 초과하는 농도)에 대해 정밀조사를 실시하면 됨

관련법령

• 환경부 고시 제2010-104호(토양정밀조사의 세부방법에 관한 규정)

1.7 토양환경평가 실시 의무사항 여부

질의내용

• 토양환경보전법 제10조의2 규정에서 토양오염관리대상시설이 설치되어 있거나 설치되어 있었던 부지를 양도·양수하거나 임대·임차하는 경우에 당해 시설이 설치된 부지 및 그 주변지역에 대하여 “토양환경평가”를 받는다고 규정하고 있는데 기존 건물 철거 후 새로운 건축물 시공 전에 반드시 토양환경평가를 의무적으로 실시해야하는지 여부

답변

• 토양환경보전법에서 규정하고 있는 “토양환경평가”는 토지를 양도·양수할 경우 오염여부를 확인하기 위하여 도입된 제도로써 의무사항이 아님

관련법령

• 토양환경보전법 제10조의2
1.8 특정토양오염관리시설(유류탱크) 철거 관련 여부

질의내용

택지개발사업지구 내 한 사업장(약 400천㎡)에 하나의 신고번호로 유류탱크 20기가 등록되어 있으나, 그 중 일부는 부득이하게 사용 중에 있어 단계적으로 철거가 불가피한 실정임. 토양환경보전법 시행규칙 제8조의2를 보면 “2. 특정토양 오염관리대상시설의 사용을 종료하거나 폐쇄하는 경우” 변경(폐쇄) 신고를 하도록 되어있는데, 부분적(일부 폐쇄하는 유류탱크)으로도 폐쇄가 가능한지 여부에

답변

토양환경보전법 시행규칙 제8조의2에 따라 특정토양오염관리대상시설의 사용을 종료하거나 폐쇄하는 경우는 일부 또는 전부를 폐쇄하는 경우를 포함

관련법령

토양환경보전법 시행규칙 제8조의2

1.9 오염토양 정화기준

질의내용

주유소의 경우 지목이 주유소용지로 정화기준이 오염토양 우려기준 3지역으로, 당 주유소가 오염되어 관할관청에 반출정화계획서를 제출하여 전량 반출하여 정화할 계획인데, 당 부지의 오염원인자인 주유소사장님께서 1지역으로 정화를 원하고, 1지역 기준 500ppm이상의 토양을 오염물질로 간주하여 다 반출하기를 원함. 1지역을 초과한 오염토양에 대해 전량 반입시설로 반출해서 1지역 기준으로 정화하려고 하는데 가능여부에

답변

행정기관의 조치명령(토양정밀조사 및 정화조치 명령)은 당시의 지목, 토지이용계획 등을 고려하여 부과하도록 하고 있으며, 개인의 사유로 지역기준을 변경하여 정화조치를 명령할 수 없음. 다만, 오염원인자가 스스로 강화된 기준으로 정화하는 것은 추가적인 행정절차가 필요 없음.
관련법령

- 토양환경보전법 시행령 제10조

1.10 오염토양 우려기준 적용

질의내용

당사는 현재 공장부지로 토양환경보전법 개정 전 토양오염경밀조사 실시결과 중금속으로 오염이 된 사실을 알아 오염토양정화를 실시하려고 하는데 “나지역”으로 정화를 해야 하는지? 아니면, 개정된 법에 따라 “1지역”으로 정화해야 하는지 여부

답변

- 토양환경보전법 시행규칙 부칙<제333호, 2009.6.25> 제6조(오염토양정화기준 적용에 관한 경과조치)에 의거, 이 규칙 시행 당시(2010.1.1일) 시행 중인 토양정밀조사 및 토양정화공사의 오염오염우려기준에 대하여는 종전의 기준을 적용해야 함
- 그러나, 2010.1.1일 당시 토양정밀조사가 시행되지 아니한 경우, 토양정밀조사 및 토양정화공사의 오염오염우려기준은 개정기준을 적용함

관련법령

- 토양환경보전법 시행규칙 부칙<제333호, 2009.6.25> 제6조

질의내용

토양오염사고가 발생하여 정밀조사를 실시한 결과 오염토양이 1지역, 2지역, 3지역에 골고루 산재되어 있을 경우 오염토양의 정화기준을 어디에 적용해야 하는지

답변

- 토양환경보전법에서는 토양오염우려기준을 「측량·수로 조사 및 지적에 관한 법률」에 따른 지목을 기준으로 적용하도록 규정하고 있는 바, 지적 공부상 지목이 “담”, “임야”, “공장”인 경우 각 지목에 맞는 토양오염우려기준을 적용하여야 함

관련법령

- 토양환경보전법 시행규칙 제1조의5[별표 3]
1.11 토양정화작업

질의내용

- 현재 3지역으로 구분된 주유소 시설의 토양오염도검사 부적합 판정에 따라 정밀조사를 3지역 조건으로 완료한 상태이며, 해당 시설을 철거 및 정화작업 완료 후 건물을 종종하고자 함. 혹시 소유주가 기존 위험물시설, 건물철거 및 토양정화작업 중이거나 완료 전체 지역으로 용도 변경하여 2지역으로 변경된다면 정화 목표를 2지역 이하 또는 기존 정밀조사를 토대로 한 3지역기준 이하로 정화작업을 완료하여야 하는지 여부

답변

- 「토양환경보전법 시행규칙 제1조의5 토양오염우려기준의 적용은 신중한 조사 및 지적에 관한 법률」에 따라 정화하여야 함. 3지역 기준으로 토양정화작업 중에 건물의 용도변경이 있어 2지역으로 변경된다면 2지역의 기준에 맞추어 정화하여야 할 것으로 판단됨

관련법령

- 토양환경보전법 시행규칙 제1조의5

1.12 토양정화시설 중 토양세척수가 폐수배출시설 해당여부

질의내용

- 토양세척조에서 발생된 세척수가 폐수배출시설에 해당되는지 여부, 만약 배출시설에 해당된다면 배출시설 분류는 어디에 적용을 받는지? 만약 오염토양에 대한 정밀조사 보고서상 표기된 오염물질이 아연과 니켈 토양만 반입 처리한다면 특정수질유해물질 배출사업장에서 제외 될 수 있는지? 아니면 별도의 토양성분 검사서가 필요할지? 특정수질유해물질이 배출되지 않는다는 증명서는 어떻게 증명할 수 있는지 여부

답변

- 토양을 세척하는 과정에 물을 사용하여 토양 속의 수질오염물질과 혼합된 물은 폐수에 해당되며, 수질 및 수생태계 보전에 관한 법률 시행규칙 [별표 4]에 따라 폐수배출시설(분류 : 82) 제1호부터 제81호까지의 분류에 속하지 아니하는 시설에 해당되는 것으로 판단됨.
세척수에 대하여 특정수질유해물질 발생여부에 관한 시험분석자료에 대하여는 규정(시험분석기관)하고 있지 않으므로 관련법에 의해 등록된 측정대행업체에서 측정한 자료로 확인이 가능하며, 동 자료에서 특정수질유해물질이 검출되지 않을 경우 특정수질유해물질 배출사업장에서 제외될 수 있음. 그리고, 동 측정자료는 오염물질의 농도를 객관적으로 입증할 수 있는 자료임을 허가(신고)권자가 인정하여야 함.

관련법령

수질 및 수생태계 보전에 관한 법률 시행규칙 제6조(폐수배출시설)

1.13 오염토양의 하도급 가능 여부

결의내용

발주처로부터 공사를 수주받아 시행해 오다가 오염토양이 발견된 상황임. 당사는 반출시설이 없는데, 토양정화업자와 계약해서 오염토양을 처리할 수 있는지, 토양환경보전법에 저촉되는지 여부

답변

토양환경보전법에서는 오염토양의 정화는 현장정화를 원칙으로 하되, 부지의 협소 또는 긴급한 사고 발생 시 등 제한적인 경우에 한하여 반출정화를 허용하고 있음.
반출 오염토양은 토양환경보전법 제15조의3 제3항에서 규정한 바에 따라 적정하게 정화할 수 있는 반입정화시설에서 정화하여야 하며, 반입정화시설을 등록하지 않은 토양정화업체는 반출정화 대상 오염토양을 수탁받을 수 없음.
수탁받은 오염토양을 정화하지 않고 다른 토양정화업자에게 위탁할 경우 토양환경보전법 제23조의9 제2항을 위배(일괄 하도급 금지)한 것에 해당됨

관련법령

토양환경보전법 제15조의3 제3항 및 제23조의9 제2항

1.14 반출정화 가능여부

결의내용

동일 사업장이 같은 시·군·구 여러 곳에 위치(1공장, 2공장)하고 있으며, 1공장이 오염된 경우 정화부지가 마땅하지 않아 동일한 사업장인 2공장 부지에서 처리가 가능한지 여부
토양환경보전법 제15조의3 제3항에 따라 오염토양의 정화는 현장정화를 원칙으로 하되, 부지의 협조 또는 긴급한 사고 발생시 등 제한적인 경우에 한하여 반출정화를 허용하고 있음.

토양오염이 발생한 부지가 같은 시·군·구 내에 흩어져 있는 경우로서 오염부지의 소유자가 또는 오염원인자가 같고 각각의 오염부지에 토양정화시설을 모두 설치하기 곤란하여 토양정화업자가 오염부지 중 어느 한 곳에 설치한 시설을 이용하여 한꺼번에 정화하는 경우(정화대상 오염토양 전부를 하나의 토양정화업자에게 위탁한 경우)에는 오염토양을 반출하여 정화할 수 있을 것임.

동일 사업장(1공장, 2공장)이라고 하더라도 공장부지 한 곳만 오염된 경우다면 오염부지 내에서 정화를 하여야 할 것으로 판단됨.

관련법령

토양환경보전법 제15조의3 제3항 및 시행규칙 제19조

정화토양의 보관용량 제한 여부

• 반출정화시설에서 오염토양 정화를 완료하였는데 정화토양의 경우 반출정화시설에서 보관제한 용량이 있는지 여부, 또한 정화토양의 경우 반출정화시설에서 반출해야하는 기간이 정해져 있는지 여부

답변

• 반입정화시설에 정화토양의 보관용량 제한 및 반출시기에 대한 사항은 토양환경보전법 등 관련법령에 규정하고 있지 않음.
• 다만, 토양오염 반입정화시설의 세부설치기준(환경부고시 제2009-265호)에 따라 정화토양을 부지 내에 임시로 보관하는 경우 침출수가 주변지역으로 확산되지 않도록 콘크리트, 아스팔트 또는 이와 동등한 이상의 재질로 포장된 장소에 보관하여야 하며, 우수배제 및 비산먼지 발생 등을 방지하기 위하여 덮개 등의 시설을 갖추어 주변환경이 오염되지 않도록 조치하여야 함.

관련법령

• 환경부 고시 제2009-265호(토양오염 반입정화시설의 세부설치기준)
보관 및 처리기준

질의내용

- 공장부지 흙이 오염된 것 같아 토양오염 정밀검사를 한 결과 토양오염 우려 기준을 초과하지 않았으나 토양오염우려기준 오염물질인 불소, 니켈, BTEX 등의 물질이 검출되었다면 토양환경보전법상 지축되지 않아 다른 지역의 성토재 등으로 사용할 수 있는지, 아니면 폐기물관리법상 폐기물로 처리해야 되는지 여부(참고로 상기 토양에 대하여 폐기물관리법에 의한 유해물질 검사결과 중금속 및 기름성분 등이 일부 검출되었으나 지정폐기물 기준치 이하임)

답변

- 토양오염의 방지 및 오염된 토양은 토양환경보전법에 의하여 관리되고 있으며, 토양이 중금속 등에 의하여 오염되어 있다는 사실만으로 폐기물에 해당되지는 않음. 다만, 복원이 불가능할 정도로 오염이 심하여 적정한 시설에서 폐기 처리하고자 토양을 파낸 경우 당해 토양은 폐기물로 적정 처리하여야 할 것임

관련법령

- 토양환경보전법 시행규칙 제1조의5

정화토양의 매립토 또는 성토재 재사용

질의내용

- 3지역에서 발생한 오염토양을 정화 완료하고, 정화토양을 매립토나 성토재로 재사용하고자 함. 정화가 완료된 토양이므로 매립토나 성토재로 재사용이 가능할 것 같는데, 관련법에 지축되지 않는지 여부

답변

- 토양오염 우려기준 이내인 정화토양을 매립토나 성토재로 재사용할 경우 토양환경보전법 시행규칙 제1조의5 [별표 3]에 따라 지역별(1,2,3지역) 토양오염우려기준을 준수하는 범위에서 사용하도록 하고 있음
- 아울러, 토양환경보전법 제15조의3 제4항에 따라 오염토양을 정화하는 자는 오염토양에 다른 토양을 섞어서 오염농도를 낮추는 행위를 하여서는 아니 됨
관련법령

- 토양환경보전법 시행규칙 제1조의5 [별표 3]

1.18 오염토양 부분 완료검증 가능 여부

질의내용

- 오염토양 정화명령을 받고 부지의 일부 지역에 대해 정화를 우선 완료하여 정화가 완료된 일부 부지에 대하여 공사를 우선 시행하고 싶은데, 이 경우 부분적으로 완료검증을 받을 수 있는지 여부

답변

- 오염토양 정화명령을 받은 지역이 동일 지번, 동일 지목이고 동일한 조치명령 대상일 경우, 오염토양 정화검증은 조치명령을 받은 전체 부지의 정화가 완료된 후 정화검증서를 발급하여야 하고, 이를 기준으로 조치명령 이행완료 보고를 하여야 함.
- 토양정화의 검증은 토양환경보전법 제15조의6, 동법 시행규칙 제19조의 4 및 토양정화검증방법에 관한 고시에 따라 정화착공에서 정화완료까지 토양정화의 단계별로 정화검증을 실시하여야 함

관련법령

- 토양환경보전법 제15조의6, 동법 시행규칙 제 19조의4
- 환경부고시 제 2009-173호 (토양정화검증방법에 관한 고시)
제 2장 오염토양 주요정화공법 개요

2.1 토양경작(Landfarming)

2.1.1 기술개요

오염토양을 굴착하여 지표면에 깔아 놓고 정기적으로 뒤집어주므로써 공기를 공급하여 미생물에 호기성 생분해 조건을 제공함으로서 토양에 잔류되어 있는 유기성 오염 물질을 제거하는 생물학적 정화기술이다. 또한 오염된 토양과 공기와의 접촉을 최대로 증가시킴으로써 토양에 흡착되어 있는 휘발성유기화합물질의 휘발을 촉진시키는 물리/화학적 공정도 포함되어 있다. 이때, 휘발성이 강한 가솔린과 같은 물질은 대기 중으로 휘발되며 일부분은 미생물의 분해작용에 의해 처리된다. 비휘발성 물질은 대부분의 생물학적 반응을 통해 저분자 생성물로 변형되거나 분해되지만 장기간의 처리기간이 요구된다.

토양경작법은 오염부지의 범위 및 깊이를 정확히 조사한 후 오염토양을 굴착하여 준비된 경작지역으로 옮겨 처리하는 방법이므로 토양경작장의 설치할 가능성가 충분히 확보되어야만 적용가능한 공법이다. 또한 오염물질의 휘발에 의하여 공기 중으로 휘발성물질(VOCs)이 확산될 수 있기 때문에 배기가스처리장치와 같은 후처리시설이 필요할 수도 있으며, 겨울철과 같이 대기의 온도가 낮아질 경우 미생물의 활성이 급격히 감소하게 되어 효과적인 처리가 불가능한 단점을 가지고 있다.

<그림 2.1-1> 토양경작 공정도
토양경작법의 장단점은 <표 2.1-1>과 같으며, 토양경작법의 주요 영향인자는 오염물질의 특성, 토양 내 생분해조건인자, 토질조건, 기후조건 등 4개 항목으로 구분되며, 최적의 조건이 조성될 경우 최고의 생분해율이 보장될 수 있으므로 경작장 내 환경을 적절히 조절하여야 한다.

<표 2.1-1> 토양경작 장·단점

<table>
<thead>
<tr>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>설계와 정화수행시 상대적으로 간편함</td>
<td>상대적으로 장시간의 정화기간 소요</td>
</tr>
<tr>
<td>처리비용이 낮음</td>
<td>넓은 정화부지 필요</td>
</tr>
<tr>
<td>미생물 분해속도가 높은 유기물에 효과적임</td>
<td>TPH 50,000 mg/kg 이상 또는 중금속 오염의 경우 비효율적임</td>
</tr>
<tr>
<td>경작시 침출수에 의한 2차 오염이 발생할 수 있어 바닥차수가 필요함</td>
<td></td>
</tr>
</tbody>
</table>

토양경작시 적정시설을 갖추지 아니할 경우, 비, 눈, 바람, 기온 등의 영향을 크게 받으므로 토양경작장의 설치형태는 반드시 해당지역의 기후조건 및 오염부지주변현황(민원)을 면밀히 검토한 후 신중히 검토하여야 한다.

토양경작장은 설치형태에 따라 노지형 토양경작장과 온실형 토양경작장으로 크게 구분되며 온실형 토양경작장의 경우 실내에서 경작을 실시하므로 강우시 침출수 발생을 방지할 수 있으며 배가스처리장치를 설치하여 휘발성 유기화합물질(VOCs) 휘발에 의한 2차 오염을 방지할 수 있는 장점이 있으나 시설설치비가 고가여서 대규모, 장기공사에 주로 적용되고 있는 설정이다.

<그림 2.1-2> 노지형경작장 및 온실형 경작장

토양경작의 세부적인 진행공종은 <표 2.1-2>에서와 같이 오염토파기 -> 오염토위집기 -> 셀립토파쇄 -> 유류분해미생물 공급 -> 수분 및 영양염류 공급으로 진행된다.
<표 2.1-2> 도양경작 세부공종

<table>
<thead>
<tr>
<th>항 목</th>
<th>수 행 방 법</th>
</tr>
</thead>
</table>
| 오염토 풀기 | • 곁삭기를 이용하여 1.0m 두께로 풀기와 고르기를 실시  
• 바닥손상방지를 위해 0.2m의 토사 완충층 유지  
• 장비에 의한 토양 압착 방지 |
| 오염토 뒤집기 (Tilling) | • 유류분해 미생물과 양분, 수분의 접촉성을 높이며 산소를 원활히 공급하여 토양을 호기성 조건으로 전환  
• 사용장비 : 곁삭기(Backhoe)  
• 경작방법 : 심토반전 경작 |
| 세립토 파쇄 | • 토양의 균질성 및 미세토양의 처리효율 개선  
• 사용장비 : 고속회전파쇄장치(로타베이터)  
 표준경폭 : 1.5m  표준경심 : 0.4m  
• 오염토 뒤집기(Tilling) 후 시행 |
| 유류분해 미생물 공급 | • 유류분해 미생물 개체수를 적정수준 이상으로 유지시켜 생분해 효율을 높임  
• 공급시기/주기 : 미생물의 정착도, 처리효율 등을 종합 검토하여 수회로 나누어 살포 |
| 수분공급 | • 미생물의 생체유지와 대사활동을 위해 적정수준의 토양수분을 유지  
• 목표 함수율 : 20 ~ 30%(w/w)  
• 지하수 정화장치 처리수를 재사용하여 살수 |
| 영양분 공급 | • 미생물 생체를 구성하는 주요 영양소인 풍오와 인을 공급하여, 양분밸런스를 맞추기 위함  
• C : N : P = 100 : 10 : 1 (중량비 기준)  
• 질소공급원 : 요소비료  
• 인공급원 : 인산비료 |
2.2 토양세척법

2.2.1 기술개요

토양세척법은 적절한 세척제나 용출제를 사용하여 토양입자에 결합되어 있는 유해한 유기오염물질의 표면장력을 약화시키거나 중금속을 액상으로 용출시켜 토양입자로부터 유해한 유기오염물질 및 중금속을 분리시켜 처리하는 지상처리기술이다.

세척법에 이용되는 세척제는 오염물질을 토양으로부터 분리·용해시키는 역할을 하는 물질로 계면의 자유에너지를 낮추고 계면의 성질을 현격히 변화시키며 물에 대한 용해성이 적은 물질을 열역학적으로 안정한 상태로 용해시킬 수 있는 중요한 화학물질이다. 그리고 이렇게 분리된 폐액은 농축·처분하거나 폐수처리방법으로 처리하며, 폐액 내의 중금속을 회수할 수도 있다.

그러나 오염토양의 굴착 및 이송 비용, 토양세척장치의 제작비용, 세척제 비용 및 폐수/폐기물 처리비용 등이 높게 소요될 수 있기 때문에 타 공정에 비하여 비교적 경제성이 낮고, 오염물질이 복합적으로 존재할 경우 세척제를 선별 및 제조하기가 용이하지 않은 단점이 있다. 따라서 토양세척법은 중금속 오염과 같이 타 공정의 적용이 어려운 오염지 역할 경우, 빠른 시간 안에 긴급히 처리해야 할 경우 또는 타 공정의 전처리 공정으로 활용될 경우에 유용하게 사용될 수 있는 공법이라 할 수 있다.

토양세척장치는 오염물질의 종류 및 오염토양의 특성에 따라 최적의 장치를 구성해야 하지만, 일반적으로 파쇄기, 선별기, 분리장치, 혼합 및 추출장치, 세척액 처리장치, 미세토양의 2차 처리장치 등으로 구성된다.

<그림 2.2-1> 토양세척법의 기본 공정도

토양세척법의 일반적인 처리공정도는 <그림 2.2-2>와 같다. 토양세척장치는 처리하고자 하는 오염물질의 종류 및 오염토양의 특성에 따라 최적의 장치를 구성해야 하지만 일반
적으로 투입장치, 토양세척, 고액분리장치, 세척액 처리장치, 미세토 처리장치 등으로 구성되어 있다.

<그림 2.2-1> 토양세척법의 처리 공정도

토양세척법의 장·단점은 아래 <표 2.2-2>와 같으며, 토양세척법 적용시 고려해야할 영향 인자는 <표 2.2-3>에 나타내었다.

<표 2.2-2> 토양세척법의 장·단점

<table>
<thead>
<tr>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
</table>
| - 근본적인 오염원을 토양으로부터 제거가 가능함  
  - 환경변화에 따른 중금속의 재용출 가능성이 없음 | - 비교적 큰 설비 및 폐수처리 시설이 요구됨  
  - 동절기에 적용이 어려움 |
표 2.2-3  토양세척법의 영향인자

<table>
<thead>
<tr>
<th>토양세척법의 영향인자</th>
<th>오염물질 특성</th>
<th>세척첨가제 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>입도분포 및 점토함량</td>
<td>농도(입도별 농도분포)</td>
<td>종류</td>
</tr>
<tr>
<td>유기물 함량</td>
<td>용해도</td>
<td>농도</td>
</tr>
<tr>
<td>완충능력</td>
<td>흡착성(분배계수)</td>
<td>생분해성</td>
</tr>
<tr>
<td>양이온 교환능력</td>
<td>증기압</td>
<td>독성</td>
</tr>
<tr>
<td>pH</td>
<td>점도</td>
<td></td>
</tr>
</tbody>
</table>

토양세척법에서 처리가능한 오염원은 다음과 같다.

- 준휘발성 유기화합물
- 석유류 탄화수소
- Cd, Cu, As, Hg, Pb, Cr\textsuperscript{6+}, Zn, Ni, CN, PCB, TPH, BTEX 등
- 유기물질을 포함한 중금속
- 살충제
2.3 열탈착법

2.3.1 기술개요

저온열탈착(LTTD) 공정에서, 토양물은 90~320℃까지 가열하여 모든 형태의 토양에서 석유계탄화수소를 성공적으로 제거할 수 있는 정화공법이다. 저온열탈착법의 오염물 물해효율은 연소 공정 후에 95% 이상의 효율을 나타냈다. LTTD를 통해 처리된 토양은 원래의 물성을 유지하는 장점이 있다. 그 이유는 LTTD의 운전 온도 범위에서 최종의 가장 높은 온도까지 가열됨에도, 토양의 유기 성분은 파괴되지 않아서, 처리된 토양은 생물학적 활성을 보조하는 능력을 보존하고 있기 때문이다.

![열탈착법 공정도](그림 2.3-1)

![열탈착법 설치 예시](그림 2.3-2)

열탈착법의 장단점은 아래 <표 2.3-1>과 같으며, 적용시 고려해야 할 영향인자는 <표 2.3-2>에 나타내었다.
표 2.3-1 열탈착법 장 · 단점

<table>
<thead>
<tr>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>무기물질 및 방사성 물질을 제외한 대부분의 석유계화합물의 처리에 효과가 탁월함</td>
<td>카드뮴이나 수은을 제외한 중금속 등은 정화 불가능</td>
</tr>
<tr>
<td>토양의 형태나 특성, 오염물질에 관계없이 적용범위가 매우 넓음</td>
<td>다른 정화기술에 비해 높은 에너지 비용이 소요되어 경제성이 낮음</td>
</tr>
<tr>
<td>처리효율이 높고 단기간에 처리가능</td>
<td>수분함량이 높거나 점토 및 휴믹산 등을 높게 함유한 토양의 경우 반응시간이 길어지고 처리비용이 증가함</td>
</tr>
</tbody>
</table>

표 2.3-2 열탈착법 영향인자 검토

<table>
<thead>
<tr>
<th>토양 특성</th>
<th>오염물 구성요소의 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 토양의 점착력 : 오염물흡착증가, 처리효율 감소</td>
<td>- 오염물질 농도 : 높은 농도에 높은 가열량</td>
</tr>
<tr>
<td>- 입자크기의 분포 : &gt;2in은 분쇄, 미세입자는 효율감소</td>
<td>- 끓는점의 범위와 증기압력 : 적응가능성과 적정 가열온도</td>
</tr>
<tr>
<td>- 함수비 : 처리효율은 함수비와 반비례</td>
<td>- 옥탄올/물 분배계수(Kow) : LO8 Gkow값이 높으면 탈착 어려움</td>
</tr>
<tr>
<td>- 열용적율 : 가해지는 열량결정</td>
<td>- 열에 관한 안정성 : 자연발화 이하의 배출 가스온도</td>
</tr>
<tr>
<td>- 토양유기물질의 농도 : 간섭효과, 탈착을 어렵게 함</td>
<td>- 다이옥신의 생성 : PCBs를 함유한 화합물에서 다이옥신이 생성될 수 있음</td>
</tr>
<tr>
<td>- 금속농도 : 고체오염물 처리에서 한계와 공기오염규제에 의한 제한</td>
<td>- 카드뮴이나 수은을 제외한 중금속 등은 정화 불가능</td>
</tr>
<tr>
<td>- 토양특성</td>
<td>- 다른 정화기술에 비해 높은 에너지 비용이 소요되어 경제성이 낮음</td>
</tr>
<tr>
<td>- 수분함량이 높거나 점토 및 휴믹산 등을 높게 함유한 토양의 경우 반응시간이 길어지고 처리비용이 증가함</td>
<td>- 수분함량이 높거나 점토 및 휴믹산 등을 높게 함유한 토양의 경우 반응시간이 길어지고 처리비용이 증가함</td>
</tr>
</tbody>
</table>
화학적산화법

2.4.1 기술개요

화학적산화법은 타 공법에 비하여 유류 오염물질을 빠른 시간 내에 분해하여 처리할 수 있으며 현재 다양한 산화제 및 오염물질을 효과적으로 접촉시키기 위한 다양한 방법이 고안되어 적용되고 있다.

화학적산화법의 적용을 통하여 산화제와 접촉한 유류 오염물질은 지중에서 이산화탄소와 물로 분해되고 결과적으로 오염물질의 농도가 감소하게 된다. 화학적산화법은 수십년 동안 폐수처리 공정에 효과적으로 사용되어 왔으며 최근에는 원위치 토양 및 지하수 오염 정화 분야에도 활용되고 있다.

화학적산화법에 사용되는 산화제 및 적용방법들은 각각의 장점과 단점을 가지고 있다. 일부 산화제는 다른 산화제들보다 산화력이 강하고 지중에서 오염물질과의 접촉시간이 길어 효과적으로 오염물질을 분해할 수 있다. 다양한 산화제 중 적절한 산화제를 선택하기 위해서는 오염물질의 특성에 대한 구체적인 이해가 필수적이다. 예를 들어 유류 오염에서 대표적으로 발견되는 벤젠과 같은 오염물질은 과망간산염(permanganate)을 이용한 원위치 화학적산화법을 적용할 경우 쉽게 분해되지 않을 수도 있다.

오염부지의 수리질적 특성을 이해하는 것은 화학적산화법을 적용하는데 있어서 매우 중요한데 이는 수리질적 특성이 지중에 주입되는 산화제와 오염물질이 접촉할 수 있는 범위를 결정하기 때문이다. 예를 들어 산화제는 투과성이 낮은 균질한 토양 또는 다양화된 유류 오염물질을 포함하고 있으면서 수평적으로 불균질한 토양에서는 쉽게 침투하지 못한다.

산화제와 토양 중 구성물질과의 반응성 또한 화학적산화법의 비용적인 측면을 고려할 때 매우 중요하다. 즉, 지중에 주입된 산화제는 오염물질 뿐만 아니라 토양 중 유기물질과도 반응하여 소모되기 때문에 산화제의 사용량이 증가하고 따라서 전체 정화비용이 증가하게 된다. 또한 각각의 화학적 산화제는 수리질적 특성에 따라 적용 가능한 여부가 결정되기도 한다. 즉, 펜톤 산화제의 반응을 통하여 생성되는 수산화라디칼을 오염물질과 반응하기 전에 탄산염이 먼저 소모시키기 때문에 펜톤 산화제는 탄산염의 농도가 높은 지하수 정화에는 효과적인 적용이 어렵다. 이와는 반대로 토양에 포함된 다양한 탄산염은 과망간산염을 이용한 화학적 산화는 유용하기도 한다.

몇몇 화학적산화법은 오염물질의 분해와 동시에 생물학적 분해를 위하여 호기성 미생물에 활용되는 용존산소를 생성하여 제공하기도 하고, 환원된 전자수용체인 질소,황산염/황산염으로 산화시켜 혐기성 미생물이 오염물질을 분해할 수 있도록 하기도 한다. 따라서 화학적산화법은 오염원에서의 오염물질 분해와 함께 오염원 주변 오염물의 생물학적 분해를 유도함으로써 자연정화법과 연계되어 사용되기도 한다.
화학적산화법의 장단점은 아래 <표 2.4-1>과 같다.

<표 2.4-1> 화학적산화법의 장 · 단점

<table>
<thead>
<tr>
<th>장 점</th>
<th>단 점</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 오염물질을 원위치에서 정화할 수 있음</td>
<td>- 탄소발효에 비하여 초기투자 비용 및 운영비가 많이 소요됨</td>
</tr>
<tr>
<td>- 오염물질의 분해가 수주 또는 수개월로서 매우 빠름</td>
<td>- 토양이 낮은 화학적산화법의 접촉이 쉽지 않음</td>
</tr>
<tr>
<td>- 펜톤 산화를 제외한 다른 산화제의 경우 부산물이 발생되지 않음</td>
<td>- 펜톤 산화는 폭발성 배기가스 발생시킴. 이를 제어하기 위하여 탄소발효법과 같은 탄소발효법의 적용이 필요함</td>
</tr>
<tr>
<td>- 일부 산화제(펜톤 산화제 제외)는 MTBE를 완전히 산화시킬 수 있음</td>
<td>- 화학적산화법의 적용 후 수주 또는 수개월 후에 오염물질의 용존농도가 다시 증가할 수 있음</td>
</tr>
<tr>
<td>- 정화기간이 짧고, 운영비와 모니터링 비용을 감소시킴</td>
<td>- 용존 오염물질의 오염이 화학적산화법의 적용을 통하여 향상할 수 있음</td>
</tr>
<tr>
<td>- 자연정화법과 연계하여 사용될 수 있음</td>
<td>- 산화제의 적용시 인체 건강 및 안전에 각별한 조심이 필요함</td>
</tr>
<tr>
<td>- 일부 산화법은 환경교란을 최소화 할 수 있음</td>
<td>- 기술적 또는 경제적인 면에서 오염물질의 농도를 배경농도 또는 매우 낮은 농도까지 낙추기 어려움</td>
</tr>
<tr>
<td></td>
<td>- 토양 중의 구성물질과 반응하여 산화제의 소요량이 증가할 수 있음</td>
</tr>
</tbody>
</table>

<그림 2.4-1> 화학적산화법 공정도
2.5 바이오슬러핑

2.5.1 기술개요

In-situ 바이오슬러핑은 지하수와 토양내의 유동상 오염물질을 제거하고 호기성 생물분해에 의한 탄화수소 오염물질 분해를 가속화하기 위해서 Bioventing과 진공펌핑의 요소를 결합한 새로운 정화공법이다. 감압 추출을 설치하여 지하수위 표면에 존재하는 유동성 유류를 회수하고, 불포화 대수층의 토양을 진공상태로 만들어 채로써 휘발성/준휘발성 오염물질을 제거하며, 불포화 토양에 산소를 공급함으로써 호기성 미생물의 생물학적 활동을 촉진시킨다. 따라서 바이오슬러핑 공정은 지층에 자유상으로 존재하는 오염물질의 제거에 효과적이며, 이로 인해 지하수 및 토양에 존재하는 석유계 탄화수소의 농도를 낮출 수 있다.
바이오슬러핑의 장단점

<table>
<thead>
<tr>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>자유상유류(\textit{free product})를 정화하는 빠른 정화기술이다.</td>
<td>낮은 투수성을 지닌 토양에는 비효과적이며, 토양의 적절한 수분함량이 필요하며 온도가 낮을 경우 처리속도가 느리다.</td>
</tr>
<tr>
<td>Smearing으로 인해 대수층에서의 오염물질의 수직확산이 일어날 수 있는데 이 공법은 이러한 대수층의 smearing을 감소시킨다.</td>
<td>추출가스에 대한 처리가 필요하다.</td>
</tr>
<tr>
<td>불포화 대수층의 in-situ 생물학적 분해를 증가시킨다.</td>
<td>추출된 물의 양이 많은 부지의 경우 오염물질을 처리하여 방류해야 한다.</td>
</tr>
</tbody>
</table>

바이오슬러핑에 영향을 미치는 인자는 \textless \textbf{표 2.5-2} \textgreater \와 같으며, 이들 인자는 토양 및 지질 특성인자, 오염물질의 성상 및 특성인자 2개 그룹으로 나눌 수 있다.

\textbf{표 2.5-2} 바이오슬러핑 영향인자 검토

<table>
<thead>
<tr>
<th>도양 및 지질특성</th>
<th>오염물질 성상 및 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 수리전도도</td>
<td>- 중기압</td>
</tr>
<tr>
<td>- 토양가스 투과성</td>
<td>- 오염물질의 구성 및 끓는점</td>
</tr>
<tr>
<td>- 토양구조 및 지층구조</td>
<td>- 헨리상수</td>
</tr>
<tr>
<td>- 헨리상수</td>
<td>- 오염물질의 생분해도</td>
</tr>
<tr>
<td>- 지하수위</td>
<td>- 토양 pH</td>
</tr>
<tr>
<td>- 토양 pH</td>
<td>-</td>
</tr>
</tbody>
</table>
2.6 바이오파일

2.6.1 기술개요

바이오파일 공정은 Biocells, Bioheaps, Biomounds, Compost Piles 이라고도 불리우며 생물학적 반응을 통해 토양의 유기성 오염물질을 처리하는 공정이다. 본 기술은 지상처리 (Ex-situ) 공법으로서 오염된 지역의 토양을 굴착하여 파일(piles)을 쌓은 후 배관을 통하여 공기 및 영양물질 주입하고, 수분함유량 등을 조절하여 미생물활성을 극대화시키는 과정을 포함한다.

바이오파일 공정은 토양경작법과 같이 ex-situ 공법으로서 오염토양을 굴착, 이송하여 처리하는 지상처리공정이며, 공기주입을 통해 미생물의 활성을 증대시켜 처리효율을 증가시키는 공정으로서 매우 유사하다.

그러나 토양경작법은 토양을 넓은 지역에 얇게 떨고 경작을 하거나 이량을 만들어 통기시키는 과정을 거치지만 바이오파일 공법은 토양경작법보다 좁은 지역에 더미를 만들고 파일 안으로 통하는 배관을 통하여 강제적 공기주입에 의해 통기시킨다는 점을 차이점으로 들 수 있다.

바이오파일 공정은 오염토양을 적절한 높이까지 쌓아 배관을 통하여 공기를 비롯한 영양물질 등을 주입하는 과정으로서 바이오파일의 일반적인 높이는 1~3m 범위이고 부지 요구량은 파일의 높이에 대한 오염토양의 비에 따라 결정되어진다. 추가적인 부지 넓이는 파일면의 경사도, 접근용이성 등에 따라 달라진다. 바이오파일 건설은 부지정비, 공기주입/추출장 배열, 영양물질과 수분의 주입관 배열, 침출수 수집 및 처리공정, 토양 전처리 공정, 덮개 및 배출가스 처리설비 등이 적절히 고려되어야 한다.

<그림 2.6-1> 바이오파일 공정도
바이오파일 공법은 토양경작법과 매우 유사하기 때문에 일반적으로 토양경작법이 가지는 특징을 비교적 비슷하게 나타낸다. 예를 들어 생분해를 이용하기 때문에 처리비용이 적게 소요되고 넓은 범위의 오염물질을 처리할 수 있으며 특히 유류로 오염된 지역의 경우 탁월한 효과를 나타낸다. 굴착 및 이송비용이 높을 경우 처리단가가 증가할 수 있고 발생되는 배가스의 처리를 위한 후처리 시설이 필요할 수 있으며 강우를 배제하지 않거나 겨울철과 같이 온도가 낮을 경우 미생물의 활성이 감소하여 처리효율이 악화될 수 있다. 그러나 비교적 소요 부지가 좁고 ex-situ 공법으로서 오염토양의 정화정도를 판단하기가 용이하기 때문에 국외 및 국내에서 많이 사용되는 기술이라 할 수 있다.

<table>
<thead>
<tr>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 비합로겐 VOC 물질 및 유류 단화수소 처리가 가능함</td>
<td>- 처리가능 유·무에 대한 사전실험 필요</td>
</tr>
<tr>
<td>- 합로겐화 VOC, SVOC 및 농약의 처리가 가능함</td>
<td>- 유사한 회분식 규모의 처리는 슬러리 상태 공정보다 정화에 시간이 많이 소요됨</td>
</tr>
<tr>
<td></td>
<td>- 정적 처리공정으로 주기적 혼합공정과 비교시 처리결과의 균일성이 떨어짐</td>
</tr>
</tbody>
</table>

<표 2.6-1> 바이오파일 장·단점 검토
2.7 공기분사법

2.7.1 기술개요

In-situ 공기분사법은 지하수, 포화대 내의 휘발성유기물질을 제거하기 위해서 사용된다. 포화대수층 내에 공기를 강제 주입하여 지하수내 오염물질을 휘발시킬 뿐 아니라 산소농도를 증대시켜 생물학적 분해를 촉진시킨다. 주입된 공기는 대수층 내에서 연직 또는 수평방향으로 이동하면서 오염물질을 휘발시켜 상부의 불포화대로 이동시키며, 휘발된 오염물질은 태양중기추출법 등으로 처리한다. 토양의 투수성, 균일성을 공기를 토양 내에서 강제 순환시키고 휘발된 증기의 이동, 추출에 큰 영향을 미친다. 포화층의 두께, 지하수층의 깊이는 공기분사법의 비용을 평가함에 있어서 중요한 요소이다.

<그림 2.7-1> 공기분사법 모식도

<표 2.7-1> 공기분사법의 장・단점

<table>
<thead>
<tr>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
</table>
| - 설치가 용이하고 간편함  
- 지하수에 대한 양수나 굴토 없이 그 자리에서 정화가능함  
- SVE 또는 P&T 와 함께 사용하여 정화 효과를 높일 수 있음  
- 가솔린, 연료성분, 염소계 용제를 비롯한 넓은 범위의 휘발성, 준휘발성 유기물질에 효과적임 | - 공기 및 약품 주입으로 인한 예측하지 못한 오염물의 확산 가능성 있음  
- 단독으로 적용하여 정화기준 도달에 어려움  
- 미사와 결모 퇴적층으로 이루어진 토양에는 적합하지 않다  
- 생분해가 불가능한 물질에는 비효과적이다. |
양수처리법

2.8.1 기술개요

지중 내의 오염지하수를 양수하여 오염지하수내의 오염물질은 여러 가지 처리기법으로 제거한다. 처리된 지하수는 공정 내에 용수로 재활용되거나 방류수질 기준에 맞추어 외부로 방류한다. 오염물질의 이동성과 용해성을 높이기 위해서 계면활성제를 지하수에 주입하기도 한다.

Pump & Treat 작업은 자유유동성오일(Free Flow Products)과 오염된 물을 동시에 회수하게 함으로서 다량의 배출수가 발생하므로 후처리장치가 필요하며, 오염부지 내 지하수 처리를 위한 보편적인 방법이므로 에어 스파징(Air Sparging), 에어 스트리핑(Air Stripping) 또는 물리적 처리방법이 적용된다.

<그림 2.8-1> 양수처리 모식도
지하수처리장은 운영과정에서 침출수, 발생가스, 폐기물 및 오폐수 등에 의해 주변지역으로 오염이 확산되지 않도록 설치되어야 하며, 2차오염 방지시설 및 부대시설 등을 갖추어야 한다. 또한 년중 강우일수가 많은 우리나라의 경우 강우에 의한 침출수를 방지할 수 있어야 하며 겨울철 기온강하에 의한 처리효율 저하를 방지할 수 있게 설계되어야 한다. 또한, 정화과정에서 오염수, 대기오염물질, 악취 또는 폐기물이 발생하는 경우에는 ‘수질 및 수생태계 보전에 관한 법률’, ‘대기환경보전법’, ‘악취방지법’, ‘폐기물관리법’ 등 각각의 관련법에 의한 처리시설을 설치하여 처리하거나 위탁하여 처리하여야 한다.

<표 2.8-1> 양수처리법의 장·단점

<table>
<thead>
<tr>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>설계와 운전이 간단하며 설치가 빠르다.</td>
<td>파쇄암박이나 점토토양에는 적합하지 않다.</td>
</tr>
<tr>
<td>모든 종류의 용존 오염물질에 적용이 가능하다.</td>
<td>지하수위 저하를 위한 다수의 추출장이 필요하다.</td>
</tr>
<tr>
<td>진공추출, 공기추입법, 공기탈기법 등의 다른 정화원기술과 호환 가능하다.</td>
<td>오염지역 환경에 최소한의 영향을 미친다.</td>
</tr>
<tr>
<td>오염지역 환경에 최소한의 영향을 미친다.</td>
<td>적용초기에 오염물을 신속히 제거할 수 있다.</td>
</tr>
</tbody>
</table>